labels to graph and removal of argparse

This commit is contained in:
Beale John Henry
2024-01-31 10:28:12 +01:00
parent c3e3101997
commit 6d4789d2a8

View File

@@ -9,7 +9,7 @@ given a regular array of crystfel folders with different detector distances
script will generate a graph analysing the detector distance as a function of the unit-cell constants
# usage
python update-geom-from-lab6.py -f <path to top folder> either coarse or fine
python update-geom-from-lab6.py <path-to-scan-folder>
# output
creates plots of the unit cell axis against clen
@@ -21,7 +21,9 @@ import regex as re
import os
import numpy as np
import matplotlib.pyplot as plt
import argparse
import sys
from scipy.optimize import curve_fit
from scipy.signal import peak_widths, find_peaks
def scrub_clen( stream_pwd ):
@@ -84,7 +86,7 @@ def scrub_us( stream ):
except AttributeError:
return np.nan
def find_clen_values(stats_df):
def find_clen_values( stats_df ):
def find_min_clen(col_name):
min_val = stats_df[col_name].min()
@@ -92,17 +94,45 @@ def find_clen_values(stats_df):
min_clen = min_row['clen'].values[0]
return min_val, min_clen
def gauss(x, *p):
A, mu, sigma = p
return A * np.exp(-(x-mu)**2/(2.*sigma**2))
p0 = [ 30, 0.111, 0.01 ]
parameters, covariance = curve_fit( gauss, stats_df.clen, stats_df.indexed, p0=p0 )
# Get the fitted curve
stats_df[ "gaus" ] = gauss( stats_df.clen, *parameters)
# find peak centre
peaks = find_peaks( stats_df.gaus.values )
# find full peak width
fwhm = peak_widths( stats_df.gaus.values, peaks[0], rel_height=0.5 )
fwhm_str = int( round( fwhm[2][0], 0 ) )
fwhm_end = int( round( fwhm[3][0], 0 ) )
# translate width into motor values
indexed_start = stats_df.iloc[ fwhm_str, 0 ]
indexed_end = stats_df.iloc[ fwhm_end, 0 ]
mid_gauss = stats_df.clen.iloc[ peaks[0] ].values[0]
# cut df to only include indexed patterns
stats_df = stats_df[ ( stats_df.clen < indexed_end ) & ( stats_df.clen > indexed_start ) ]
# calculate minimum values
min_alpha_val, min_alpha_clen = find_min_clen('std_alpha')
min_beta_val, min_beta_clen = find_min_clen('std_beta')
min_gamma_val, min_gamma_clen = find_min_clen('std_gamma')
min_c_val, min_c_clen = find_min_clen('std_c')
# find possible clens
suggested_clen = (min_alpha_clen + min_beta_clen + min_gamma_clen )/3
suggested_clen = round(suggested_clen, 4)
print("The value of clen for the minimum alpha value of {} is {}".format(min_alpha_val, min_alpha_clen))
print("The value of clen for the minimum beta value of {} is {}".format(min_beta_val, min_beta_clen))
print("The value of clen for the minimum gamma value of {} is {}".format(min_gamma_val, min_gamma_clen))
print("The value of clen for the minimum c value of {} is {}".format(min_c_val, min_c_clen))
# return min_alpha_clen, min_beta_clen, min_gamma_clen, min_c_clen, min_alpha_val, min_beta_val, min_gamma_val, min_c_val
print( "middle of indexing gaussion fit of scan = {0}".format( mid_gauss ) )
print( "mean minimum of alpha, beta, gamma of scan = {0}".format( suggested_clen ) )
def plot_indexed_std( stats_df, ax1, ax2 ):
@@ -120,17 +150,16 @@ def plot_indexed_std( stats_df, ax1, ax2 ):
ax2.tick_params(axis='y', labelcolor=color)
# std_a plot
color = "lightsteelblue"
ax2.plot(stats_df.clen, stats_df.std_a, color=color)
color = "turquoise"
ax2.plot(stats_df.clen, stats_df.std_a, color=color, label="a" )
# std_b plot
color = "cornflowerblue"
ax2.plot(stats_df.clen, stats_df.std_b, color=color)
color = "deepskyblue"
ax2.plot(stats_df.clen, stats_df.std_b, color=color, label="b" )
# std_c plot
color = "royalblue"
ax2.plot(stats_df.clen, stats_df.std_c, color=color)
ax2.plot(stats_df.clen, stats_df.std_c, color=color, label="c" )
def plot_indexed_std_alpha_beta_gamma( stats_df, ax1, ax2 ):
@@ -147,16 +176,16 @@ def plot_indexed_std_alpha_beta_gamma( stats_df, ax1, ax2 ):
ax2.tick_params(axis='y', labelcolor=color)
# std_alpha plot
color = "limegreen"
ax2.plot(stats_df.clen, stats_df.std_alpha, color=color)
color = "yellow"
ax2.plot(stats_df.clen, stats_df.std_alpha, color=color, label="alpha" )
# std_beta plot
color = "darkgreen"
ax2.plot(stats_df.clen, stats_df.std_beta, color=color)
color = "green"
ax2.plot(stats_df.clen, stats_df.std_beta, color=color, label="beta" )
# std_gamma plot
color = "green"
ax2.plot(stats_df.clen, stats_df.std_gamma, color=color)
color = "darkolivegreen"
ax2.plot(stats_df.clen, stats_df.std_gamma, color=color, label="gamma" )
def main( top_dir ):
@@ -175,7 +204,6 @@ def main( top_dir ):
stream_pwd, clen = row[ "stream_pwd" ], row[ "clen" ]
# open stream file
print( "scrubbing stream for clen={0}".format( clen ) )
stream = open( stream_pwd, "r" ).read()
# scrub unit cell information
@@ -208,7 +236,7 @@ def main( top_dir ):
stats_df_1 = pd.DataFrame( stats )
stats_df = pd.concat( ( stats_df, stats_df_1 ) )
print( "done" )
print( "done" )
# reset index
stats_df = stats_df.reset_index( drop=True )
@@ -224,20 +252,12 @@ def main( top_dir ):
plot_indexed_std(stats_df, ax1, ax2)
plot_indexed_std_alpha_beta_gamma(stats_df, ax3, ax4)
fig.legend(loc="upper center")
fig.tight_layout()
plt.show()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument(
"-f",
"--scan_folder",
help="give the scan folder path used in the earlier part of the calculation",
type=str,
)
args = parser.parse_args()
# run geom converter
main( args.scan_folder )
stream_pwd = sys.argv[1]
main( stream_pwd )