makes summary files and stats for a partialator run
This commit is contained in:
383
reduction_tools/partialator_summary.py
Normal file
383
reduction_tools/partialator_summary.py
Normal file
@@ -0,0 +1,383 @@
|
||||
#!/usr/bin/python
|
||||
|
||||
# author J.Beale
|
||||
|
||||
"""
|
||||
# aim
|
||||
to merge .stream files and calculate statistics
|
||||
|
||||
# usage
|
||||
python partialator.py -s <path-to-stream-file>
|
||||
-n name (name of job - default = partialator)
|
||||
-p pointgroup
|
||||
-m model (unity or xsphere - default is unity)
|
||||
-i iterations - number of iterations in partialator
|
||||
-c <path-to-cell-file>
|
||||
-b number of resolution bins - must be > 20
|
||||
-r high-res limt. Needs a default. Default set to 1.3
|
||||
-a max-adu. Default = 12000
|
||||
-v ra reservation name if available
|
||||
|
||||
# output
|
||||
- scaled/merged files
|
||||
- an mtz file
|
||||
- useful plots
|
||||
- useful summerized .dat files
|
||||
- log file of output
|
||||
"""
|
||||
|
||||
# modules
|
||||
from sys import exit
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import subprocess
|
||||
import os, errno
|
||||
import time
|
||||
import argparse
|
||||
from tqdm import tqdm
|
||||
import regex as re
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.optimize import curve_fit
|
||||
import warnings
|
||||
warnings.filterwarnings( "ignore", category=RuntimeWarning )
|
||||
from loguru import logger
|
||||
|
||||
def submit_job( job_file ):
|
||||
|
||||
|
||||
submit_cmd = [ "sbatch", "--" , job_file ]
|
||||
logger.info( "using slurm command = {0}".format( submit_cmd ) )
|
||||
|
||||
|
||||
job_output = subprocess.check_output( submit_cmd )
|
||||
logger.info( "submited job = {0}".format( job_output ) )
|
||||
|
||||
# scrub job id from - example Submitted batch job 742403
|
||||
pattern = r"Submitted batch job (\d+)"
|
||||
job_id = re.search( pattern, job_output.decode().strip() ).group(1)
|
||||
|
||||
return int( job_id )
|
||||
|
||||
def wait_for_jobs( job_ids, total_jobs ):
|
||||
|
||||
with tqdm( total=total_jobs, desc="Jobs Completed", unit="job" ) as pbar:
|
||||
while job_ids:
|
||||
completed_jobs = set()
|
||||
for job_id in job_ids:
|
||||
status_cmd = [ "squeue", "-h", "-j", str( job_id ) ]
|
||||
status = subprocess.check_output( status_cmd )
|
||||
if not status:
|
||||
completed_jobs.add( job_id )
|
||||
pbar.update( 1 )
|
||||
job_ids.difference_update( completed_jobs )
|
||||
time.sleep( 2 )
|
||||
|
||||
def run_compare_check( proc_dir, name, cell, shells, part_h_res ):
|
||||
|
||||
# check file name
|
||||
check_run_file = "{0}/check_{1}.sh".format( proc_dir, name )
|
||||
|
||||
# write file
|
||||
check_sh = open( check_run_file, "w" )
|
||||
check_sh.write( "#!/bin/sh\n\n" )
|
||||
check_sh.write( "module purge\n" )
|
||||
check_sh.write( "module use MX unstable\n" )
|
||||
check_sh.write( "module load crystfel/0.10.2-rhel8\n" )
|
||||
check_sh.write( "check_hkl --shell-file=mult.dat *.hkl -p {0} --nshells={1} --highres={2} &> check_hkl.log\n".format( cell, shells, part_h_res ) )
|
||||
check_sh.write( "check_hkl --ltest --ignore-negs --shell-file=ltest.dat *.hkl -p {0} --nshells={1} --highres={2} &> ltest.log\n".format( cell, shells, part_h_res ) )
|
||||
check_sh.write( "check_hkl --wilson --shell-file=wilson.dat *.hkl -p {0} --nshells={1} --highres={2} &> wilson.log\n".format( cell, shells, part_h_res ) )
|
||||
check_sh.write( "compare_hkl --fom=Rsplit --shell-file=Rsplit.dat *.hkl1 *hkl2 -p {0} --nshells={1} --highres={2} &> Rsplit.log\n".format( cell, shells, part_h_res ) )
|
||||
check_sh.write( "compare_hkl --fom=cc --shell-file=cc.dat *.hkl1 *hkl2 -p {0} --nshells={1} --highres={2} &> cc.log\n".format( cell, shells, part_h_res ) )
|
||||
check_sh.write( "compare_hkl --fom=ccstar --shell-file=ccstar.dat *.hkl1 *hkl2 -p {0} --nshells={1} --highres={2} &> ccstar.log\n".format( cell, shells, part_h_res ) )
|
||||
check_sh.close()
|
||||
|
||||
# make file executable
|
||||
subprocess.call( [ "chmod", "+x", "{0}".format( check_run_file ) ] )
|
||||
|
||||
# add check script to log
|
||||
check_input = open( check_run_file, "r" )
|
||||
logger.info( "check input file =\n{0}".format( check_input.read() ) )
|
||||
check_input.close()
|
||||
|
||||
# return check file name
|
||||
return check_run_file
|
||||
|
||||
def summary_stats( cc_dat, ccstar_dat, mult_dat, rsplit_dat, wilson_dat ):
|
||||
|
||||
# read all files into pd
|
||||
# function to sort out different column names
|
||||
def read_dat( dat, var ):
|
||||
|
||||
# different columns names of each dat file
|
||||
if var == "cc":
|
||||
cols = [ "d(nm)", "cc", "nref", "d", "min", "max" ]
|
||||
elif var == "ccstar":
|
||||
cols = [ "1(nm)", "ccstar", "nref", "d", "min", "max" ]
|
||||
elif var == "mult":
|
||||
cols = [ "d(nm)", "nref", "poss", "comp", "obs",
|
||||
"mult", "snr", "I", "d", "min", "max" ]
|
||||
elif var == "rsplit":
|
||||
cols = [ "d(nm)", "rsplit", "nref", "d", "min", "max" ]
|
||||
elif var == "wilson":
|
||||
cols = [ "bin", "s2", "d", "lnI", "nref" ]
|
||||
|
||||
df = pd.read_csv( dat, names=cols, skiprows=1, sep="\s+" )
|
||||
|
||||
return df
|
||||
|
||||
# make df
|
||||
cc_df = read_dat( cc_dat, "cc" )
|
||||
ccstar_df = read_dat( ccstar_dat, "ccstar" )
|
||||
mult_df = read_dat( mult_dat, "mult" )
|
||||
rsplit_df = read_dat( rsplit_dat, "rsplit" )
|
||||
wilson_df = read_dat( wilson_dat, "wilson" )
|
||||
|
||||
# remove unwanted cols
|
||||
cc_df = cc_df[ [ "cc" ] ]
|
||||
ccstar_df = ccstar_df[ [ "ccstar" ] ]
|
||||
rsplit_df = rsplit_df[ [ "rsplit" ] ]
|
||||
wilson_df = wilson_df[ [ "lnI" ] ]
|
||||
|
||||
# merge dfs
|
||||
stats_df = pd.concat( [ mult_df, cc_df, ccstar_df, rsplit_df, wilson_df ], axis=1, join="inner" )
|
||||
|
||||
# make 1/d, 1/d^2 column
|
||||
stats_df[ "1_d" ] = 1 / stats_df.d
|
||||
stats_df[ "1_d2" ] = 1 / stats_df.d**2
|
||||
|
||||
# change nan to 0
|
||||
stats_df = stats_df.fillna(0)
|
||||
|
||||
return stats_df
|
||||
|
||||
def get_metric( d2_series, cc_series, cut_off ):
|
||||
|
||||
# Define the tanh function from scitbx
|
||||
def tanh(x, r, s0):
|
||||
z = (x - s0)/r
|
||||
return 0.5 * ( 1 - np.tanh(z) )
|
||||
|
||||
def arctanh( y, r, s0 ):
|
||||
return r * np.arctanh( 1 - 2*y ) + s0
|
||||
|
||||
# Fit the tanh to the data
|
||||
params, covariance = curve_fit( tanh, d2_series, cc_series )
|
||||
|
||||
# Extract the fitted parameters
|
||||
r, s0 = params
|
||||
|
||||
# calculate cut-off point
|
||||
cc_stat = arctanh( cut_off, r, s0 )
|
||||
# covert back from 1/d2 to d
|
||||
cc_stat = np.sqrt( ( 1 / cc_stat ) )
|
||||
|
||||
# get curve for plotting
|
||||
cc_tanh = tanh( d2_series, r, s0 )
|
||||
|
||||
return round( cc_stat, 3 ), cc_tanh
|
||||
|
||||
def get_overall_cc():
|
||||
|
||||
# open cc log file
|
||||
cc_log_file = open( "cc.log" )
|
||||
cc_log = cc_log_file.read()
|
||||
|
||||
# regex example = Overall CC = 0.5970865
|
||||
overcc_pattern = r"Overall\sCC\s=\s(\d\.\d+)"
|
||||
try:
|
||||
overcc = re.search( overcc_pattern, cc_log ).group(1)
|
||||
except AttributeError as e:
|
||||
overcc = np.nan
|
||||
|
||||
return overcc
|
||||
|
||||
def get_overall_rsplit():
|
||||
|
||||
# open rsplit log file
|
||||
rsplit_log_file = open( "Rsplit.log" )
|
||||
rsplit_log = rsplit_log_file.read()
|
||||
|
||||
# regex example = Overall Rsplit = 54.58 %
|
||||
overrsplit_pattern = r"Overall\sRsplit\s=\s(\d+\.\d+)"
|
||||
try:
|
||||
overrsplit = re.search( overrsplit_pattern, rsplit_log ).group(1)
|
||||
except AttributeError as e:
|
||||
overrsplit = np.nan
|
||||
|
||||
return overrsplit
|
||||
|
||||
def get_b():
|
||||
|
||||
# open rsplit log file
|
||||
wilson_log_file = open( "wilson.log" )
|
||||
wilson_log = wilson_log_file.read()
|
||||
|
||||
# regex example = B = 41.63 A^2
|
||||
b_factor_pattern = r"B\s=\s(\d+\.\d+)\sA"
|
||||
try:
|
||||
b_factor = re.search( b_factor_pattern, wilson_log ).group(1)
|
||||
except AttributeError as e:
|
||||
b_factor = np.nan
|
||||
|
||||
return b_factor
|
||||
|
||||
def summary_fig( name, stats_df, cc_tanh, ccstar_tanh, cc_cut, ccstar_cut ):
|
||||
|
||||
def dto1_d( x ):
|
||||
return 1/x
|
||||
|
||||
# plot results
|
||||
cc_fig, axs = plt.subplots(2, 2)
|
||||
cc_fig.suptitle( "cc and cc* vs resolution" )
|
||||
|
||||
# cc plot
|
||||
color = "tab:red"
|
||||
axs[0,0].set_xlabel( "1/d (1/A)" )
|
||||
axs[0,0].set_ylabel( "CC", color=color )
|
||||
axs[0,0].set_ylim( 0, 1 )
|
||||
axs[0,0].axhline( y = 0.3, color="black", linestyle = "dashed" )
|
||||
# plot cc
|
||||
axs[0,0].plot( stats_df[ "1_d" ], stats_df.cc, color=color )
|
||||
# plot fit
|
||||
axs[0,0].plot( stats_df[ "1_d" ], cc_tanh, color="tab:grey", linestyle = "dashed" )
|
||||
sax1 = axs[0,0].secondary_xaxis( 'top', functions=( dto1_d, dto1_d ) )
|
||||
sax1.set_xlabel('d (A)')
|
||||
axs[0,0].tick_params( axis="y", labelcolor=color )
|
||||
axs[0,0].text( 0.1, 0.1, "CC0.5 @ 0.3 = {0}".format( cc_cut ), fontsize = 8 )
|
||||
|
||||
# cc* plot
|
||||
color = "tab:blue"
|
||||
axs[0,1].set_xlabel( "1/d (1/A)" )
|
||||
axs[0,1].set_ylabel( "CC*", color=color )
|
||||
axs[0,1].set_ylim( 0, 1 )
|
||||
axs[0,1].axhline( y = 0.7, color="black", linestyle = "dashed" )
|
||||
axs[0,1].plot( stats_df[ "1_d" ], stats_df.ccstar, color=color )
|
||||
# plot fit
|
||||
axs[0,1].plot( stats_df[ "1_d" ], ccstar_tanh, color="tab:grey", linestyle = "dashed" )
|
||||
sax2 = axs[0,1].secondary_xaxis( 'top', functions=( dto1_d, dto1_d ) )
|
||||
sax2.set_xlabel('d (A)')
|
||||
axs[0,1].tick_params( axis='y', labelcolor=color )
|
||||
axs[0,1].text( 0.1, 0.1, "CC* @ 0.7 = {0}".format( ccstar_cut ) , fontsize = 8 )
|
||||
|
||||
# rsplit plot
|
||||
color = "tab:green"
|
||||
axs[1,0].set_xlabel( "1/d (1/A)" )
|
||||
axs[1,0].set_ylabel( "Rsplit", color=color )
|
||||
axs[1,0].plot( stats_df[ "1_d" ], stats_df.rsplit, color=color )
|
||||
sax3 = axs[1,0].secondary_xaxis( 'top', functions=( dto1_d, dto1_d ) )
|
||||
sax3.set_xlabel( 'd (A)' )
|
||||
axs[1,0].tick_params( axis='y', labelcolor=color )
|
||||
|
||||
# wilson plot
|
||||
color = "tab:purple"
|
||||
axs[1,1].set_xlabel( "1/d**2 (1/A**2)" )
|
||||
axs[1,1].set_ylabel( "lnI", color=color )
|
||||
axs[1,1].plot( stats_df[ "1_d2" ], stats_df.lnI, color=color )
|
||||
axs[1,1].tick_params( axis='y', labelcolor=color )
|
||||
|
||||
# save figure
|
||||
plt.tight_layout()
|
||||
plt.savefig( "{0}_plots.png".format( name ) )
|
||||
|
||||
def main( cwd, name, cell, shells, part_h_res ):
|
||||
|
||||
# submitted job set
|
||||
submitted_job_ids = set()
|
||||
|
||||
# now run the check and compare scripts
|
||||
print( "running check/compare" )
|
||||
check_run_file = run_compare_check( cwd, name, cell, shells, part_h_res )
|
||||
check_job_id = submit_job( check_run_file )
|
||||
print( f"job submitted: {0}".format( check_job_id ) )
|
||||
submitted_job_ids.add( check_job_id )
|
||||
time.sleep(10)
|
||||
wait_for_jobs( submitted_job_ids, 1 )
|
||||
print( "done" )
|
||||
|
||||
# stats files names
|
||||
cc_dat = "cc.dat"
|
||||
ccstar_dat = "ccstar.dat"
|
||||
mult_dat = "mult.dat"
|
||||
rsplit_dat = "Rsplit.dat"
|
||||
wilson_dat = "wilson.dat"
|
||||
|
||||
# make summary data table
|
||||
stats_df = summary_stats( cc_dat, ccstar_dat, mult_dat, rsplit_dat, wilson_dat )
|
||||
logger.info( "stats table from .dat file =\n{0}".format( stats_df.to_string() ) )
|
||||
print_df = stats_df[ [ "1_d", "d", "min",
|
||||
"max", "nref", "poss",
|
||||
"comp", "obs", "mult",
|
||||
"snr", "I", "rsplit", "cc", "ccstar" ] ]
|
||||
print_df.to_csv( "{0}_summary_table.csv".format( name ), sep="\t", index=False )
|
||||
|
||||
# calculate cc metrics
|
||||
cc_cut, cc_tanh = get_metric( stats_df[ "1_d2" ], stats_df.cc, 0.3 )
|
||||
ccstar_cut, ccstar_tanh = get_metric( stats_df[ "1_d2" ], stats_df.ccstar, 0.7 )
|
||||
print( "resolution at CC0.5 at 0.3 = {0}".format( cc_cut ) )
|
||||
print( "resolution at CC* at 0.7 = {0}".format( ccstar_cut ) )
|
||||
logger.info( "resolution at CC0.5 at 0.3 = {0}".format( cc_cut ) )
|
||||
logger.info( "resolution at CC* at 0.7 = {0}".format( ccstar_cut ) )
|
||||
|
||||
# scrub other metrics
|
||||
|
||||
overcc = get_overall_cc()
|
||||
overrsplit = get_overall_rsplit()
|
||||
b_factor = get_b()
|
||||
|
||||
logger.info( "overall CC0.5 = {0}".format( overcc ) )
|
||||
logger.info( "overall Rsplit = {0}".format( overrsplit ) )
|
||||
logger.info( "overall B = {0}".format( b_factor ) )
|
||||
|
||||
# show plots
|
||||
summary_fig( name, stats_df, cc_tanh, ccstar_tanh, cc_cut, ccstar_cut )
|
||||
|
||||
# move back to top dir
|
||||
os.chdir( cwd )
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-n",
|
||||
"--name",
|
||||
help="name of check.",
|
||||
type=str,
|
||||
required=True
|
||||
)
|
||||
parser.add_argument(
|
||||
"-c",
|
||||
"--cell_file",
|
||||
help="path to CrystFEL cell file for partialator.",
|
||||
type=os.path.abspath,
|
||||
required=True
|
||||
)
|
||||
parser.add_argument(
|
||||
"-b",
|
||||
"--bins",
|
||||
help="number of resolution bins to use. Should be more than 20. Default = 20.",
|
||||
type=int,
|
||||
default=20
|
||||
)
|
||||
parser.add_argument(
|
||||
"-r",
|
||||
"--resolution",
|
||||
help="high res limit - need something here. Default set to 1.3.",
|
||||
type=float,
|
||||
default=1.3
|
||||
)
|
||||
parser.add_argument(
|
||||
"-d",
|
||||
"--debug",
|
||||
help="output debug to terminal.",
|
||||
type=bool,
|
||||
default=False
|
||||
)
|
||||
args = parser.parse_args()
|
||||
# set loguru
|
||||
if not args.debug:
|
||||
logger.remove()
|
||||
logfile = "{0}.log".format( args.name )
|
||||
logger.add( logfile, format="{message}", level="INFO")
|
||||
# run main
|
||||
cwd = os.getcwd()
|
||||
print( "top working directory = {0}".format( cwd ) )
|
||||
main( cwd, args.name, args.cell_file, args.bins, args.resolution )
|
||||
Reference in New Issue
Block a user