Merge branch 'master' of https://gitlab.psi.ch/sf-mx/crystfel_tools
This commit is contained in:
214
cool_tools/chip_uc_gather.py
Normal file
214
cool_tools/chip_uc_gather.py
Normal file
@@ -0,0 +1,214 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# author J.Beale
|
||||
|
||||
"""
|
||||
# aim
|
||||
order crystel hits from a .stream output and calcualte the unit-cell volume
|
||||
|
||||
# usage
|
||||
python chip_uc_gather.py -s <path to stream file>
|
||||
-a <size of swissfel acq>
|
||||
-c <chip szie>
|
||||
-o <output>
|
||||
|
||||
# output
|
||||
csv file of aperture, mean, no-of-hits
|
||||
input for uc_analysis.py
|
||||
"""
|
||||
|
||||
# modules
|
||||
import re
|
||||
import argparse
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import os
|
||||
|
||||
def extract_chunks( input_file ):
|
||||
|
||||
# setup
|
||||
chunk_df = pd.DataFrame()
|
||||
event_no = []
|
||||
chunks = []
|
||||
hits = []
|
||||
collect_lines = False
|
||||
# Open the input file for reading
|
||||
with open(input_file, 'r') as f:
|
||||
for line in f:
|
||||
|
||||
# Check for the start condition
|
||||
if line.startswith('----- Begin chunk -----'):
|
||||
hit = False
|
||||
collect_lines = True
|
||||
chunk_lines = []
|
||||
if collect_lines:
|
||||
chunk_lines.append(line)
|
||||
|
||||
# find image_no
|
||||
if line.startswith( "Image serial number:" ):
|
||||
event_search = re.findall( r"Image serial number:\s(\d+)", line )
|
||||
event = int(event_search[0])
|
||||
event_no.append( event )
|
||||
|
||||
# is there a hit in chunk
|
||||
if line.startswith( "Cell parameters" ):
|
||||
hit = True
|
||||
|
||||
if line.startswith('----- End chunk -----'):
|
||||
collect_lines = False # Stop collecting lines
|
||||
chunks.append( chunk_lines )
|
||||
hits.append( hit )
|
||||
|
||||
chunk_df[ "chunks" ] = chunks
|
||||
chunk_df[ "event" ] = event_no
|
||||
chunk_df[ "hit" ] = hits
|
||||
|
||||
return chunk_df
|
||||
|
||||
|
||||
def scrub_acq( chunk ):
|
||||
|
||||
for line in chunk:
|
||||
# example
|
||||
# "Image filename: /sf/cristallina/data/p21981/raw/run0141-hewl_cover_filter_30um/data/acq0001.JF17T16V01j.h5"
|
||||
if line.startswith( "Image filename" ):
|
||||
try:
|
||||
pattern = r"data/acq(\d+)\.JF"
|
||||
acq = re.findall( pattern, line )
|
||||
if AttributeError:
|
||||
return int(acq[0])
|
||||
except AttributeError:
|
||||
print( "scrub acquistion error" )
|
||||
return np.nan
|
||||
|
||||
def scrub_cell( chunk ):
|
||||
|
||||
for line in chunk:
|
||||
if line.startswith( "Cell parameters" ):
|
||||
try:
|
||||
pattern = r"Cell\sparameters\s(\d+\.\d+)\s(\d+\.\d+)\s(\d+\.\d+)\snm,\s(\d+\.\d+)\s(\d+\.\d+)\s(\d+\.\d+)\sdeg"
|
||||
cell_lst = re.findall( pattern, line )
|
||||
if AttributeError:
|
||||
return cell_lst
|
||||
except AttributeError:
|
||||
print( "scrub_cells error" )
|
||||
return np.nan
|
||||
|
||||
def V_unit( a, b, c, alpha, beta, gamma ):
|
||||
|
||||
cos_alpha = np.cos(alpha * (np.pi / 180))
|
||||
cos_beta = np.cos(beta * (np.pi / 180))
|
||||
cos_gamma = np.cos(gamma * (np.pi / 180))
|
||||
m_matrix = np.array([[a * a , a * b * cos_gamma, a * c * cos_beta ], \
|
||||
[a * b * cos_gamma, b * b , b * c * cos_alpha], \
|
||||
[a * c * cos_beta , b * c * cos_alpha, c * c ]])
|
||||
m_matrix_det = np.linalg.det(m_matrix)
|
||||
V_unit = np.sqrt(m_matrix_det)
|
||||
return V_unit
|
||||
|
||||
def main( input_file, acq_size, chip_size, output ):
|
||||
|
||||
# extract chunks
|
||||
print( "finding chucks" )
|
||||
chunk_df = extract_chunks( input_file )
|
||||
# display no. of chunks
|
||||
print( "found {0} chunks".format( len(chunk_df) ) )
|
||||
print( "found {0} crystals".format( chunk_df.hit.sum() ) )
|
||||
print( "done" )
|
||||
|
||||
# find unit cells
|
||||
print( "geting unit cell data from from chunks" )
|
||||
xtal_df = pd.DataFrame()
|
||||
counter = 0
|
||||
for index, row in chunk_df.iterrows():
|
||||
|
||||
chunk, hit, event = row[ "chunks" ], row[ "hit" ], row[ "event" ]
|
||||
|
||||
if hit:
|
||||
|
||||
# calc image number
|
||||
acq = scrub_acq( chunk )
|
||||
image_no = ( acq - 1 )*acq_size + event
|
||||
|
||||
# get unit cells
|
||||
cell_lst = scrub_cell( chunk )
|
||||
|
||||
# concat results
|
||||
cols = [ "a", "b", "c", "alpha", "beta", "gamma" ]
|
||||
xtal_df_1 = pd.DataFrame( cell_lst, columns=cols )
|
||||
|
||||
# set datatype
|
||||
xtal_df_1 = xtal_df_1.astype( float )
|
||||
|
||||
# calculate
|
||||
xtal_df_1[ "image_no" ] = image_no
|
||||
xtal_df_1[ "uc_vol" ] = V_unit( xtal_df_1.a.values[0],
|
||||
xtal_df_1.b.values[0],
|
||||
xtal_df_1.c.values[0],
|
||||
xtal_df_1.alpha.values[0],
|
||||
xtal_df_1.beta.values[0],
|
||||
xtal_df_1.gamma.values[0] )
|
||||
xtal_df = pd.concat( ( xtal_df, xtal_df_1 ) )
|
||||
|
||||
# add count and print every 1000s
|
||||
counter = counter + 1
|
||||
if counter % 1000 == 0:
|
||||
print( counter, end='\r' )
|
||||
print( "done" )
|
||||
|
||||
print( "merging multiple crystals" )
|
||||
# average across multiple hits
|
||||
uc_df = xtal_df.groupby( "image_no" ).mean()
|
||||
uc_df[ "hits" ] = xtal_df.groupby( "image_no" ).count().a
|
||||
print( xtal_df.groupby( "image_no" ).count().a )
|
||||
|
||||
# remove abc
|
||||
uc_df = uc_df[ [ "uc_vol", "hits" ] ]
|
||||
print( uc_df )
|
||||
|
||||
# stretch index to include blanks
|
||||
chip_index = np.arange( 1, chip_size+1 )
|
||||
uc_df = uc_df.reindex( chip_index )
|
||||
|
||||
print( "outputing to csv" )
|
||||
# output to file
|
||||
file_name = "{0}_uc.csv".format( output )
|
||||
uc_df.to_csv( file_name, sep="," )
|
||||
print( "done" )
|
||||
|
||||
def list_of_floats(arg):
|
||||
return list(map(int, arg.split(',')))
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-s",
|
||||
"--stream",
|
||||
help="input stream file",
|
||||
required=True,
|
||||
type=os.path.abspath
|
||||
)
|
||||
parser.add_argument(
|
||||
"-a",
|
||||
"--acq_size",
|
||||
help="size of acquistions used when collecting data. default is 1000 images per acquisition",
|
||||
default=1000,
|
||||
type=int
|
||||
)
|
||||
parser.add_argument(
|
||||
"-c",
|
||||
"--chip_size",
|
||||
help="total number of wells in the chip. default = 26244",
|
||||
default=26244,
|
||||
type=int
|
||||
)
|
||||
parser.add_argument(
|
||||
"-o",
|
||||
"--output",
|
||||
help="output file name.",
|
||||
required=True,
|
||||
type=str
|
||||
)
|
||||
args = parser.parse_args()
|
||||
# run main
|
||||
main( args.stream, args.acq_size, args.chip_size, args.output )
|
||||
64
cool_tools/uc_analysis.py
Normal file
64
cool_tools/uc_analysis.py
Normal file
@@ -0,0 +1,64 @@
|
||||
#!/usr/bin/env python3
|
||||
|
||||
# author J.Beale
|
||||
|
||||
"""
|
||||
# aim
|
||||
compile results from 3 chips to give mean and std.
|
||||
|
||||
# usage
|
||||
python uc_analysis.py <path to csv 1> <path to csv 2> <path to csv 3> output
|
||||
|
||||
# output
|
||||
compile csv of 3 chips and gives a per aperture output of the hits, mean uc and std. uc
|
||||
"""
|
||||
|
||||
# modules
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
def compile_inputs( csv_lst, output ):
|
||||
|
||||
print( "compiling results" )
|
||||
# overall inputs
|
||||
compiled_df = pd.DataFrame()
|
||||
merged_df = pd.DataFrame()
|
||||
|
||||
count=1
|
||||
for csv in csv_lst:
|
||||
|
||||
uc_vol = "vol_{0}".format( count )
|
||||
hits = "hits_{0}".format( count )
|
||||
cols = [ uc_vol, hits ]
|
||||
csv_df = pd.read_csv( csv,
|
||||
skiprows=1,
|
||||
names=cols,
|
||||
index_col=0,
|
||||
sep=","
|
||||
)
|
||||
|
||||
compiled_df = pd.concat( ( compiled_df, csv_df ), axis=1 )
|
||||
|
||||
count = count +1
|
||||
|
||||
# merge hits
|
||||
merged_df[ "hits" ] = compiled_df[ [ "hits_1", "hits_2", "hits_3" ] ].sum(axis=1)
|
||||
merged_df[ "vol_mean" ] = compiled_df[ [ "vol_1", "vol_2", "vol_3" ] ].mean(axis=1)
|
||||
merged_df[ "vol_std" ] = compiled_df[ [ "vol_1", "vol_2", "vol_3" ] ].std(axis=1)
|
||||
|
||||
# output results
|
||||
file_name = "{0}_uc.csv".format( output )
|
||||
merged_df.to_csv( file_name, sep="," )
|
||||
print( "done" )
|
||||
|
||||
if __name__ == "__main__":
|
||||
|
||||
csv_lst = [ sys.argv[1],
|
||||
sys.argv[2],
|
||||
sys.argv[3]
|
||||
]
|
||||
|
||||
print( sys.argv[1] )
|
||||
|
||||
compile_inputs( csv_lst, sys.argv[4] )
|
||||
@@ -25,41 +25,55 @@ import pandas as pd
|
||||
import glob
|
||||
import os
|
||||
import numpy as np
|
||||
from sys import exit
|
||||
|
||||
def concatenate_files( input_file_lst, output ):
|
||||
def concatenate_files( input_file_lst, output, label ):
|
||||
|
||||
output_file = "{0}.lst".format( output )
|
||||
output_file = "{0}_{1}.lst".format( output, label )
|
||||
|
||||
lines = 0
|
||||
# create output file
|
||||
with open( output_file, "w" ) as output:
|
||||
|
||||
# loop through input list - read and write to output file
|
||||
for lst_file_pwd in input_file_lst:
|
||||
for lst_file_pwd in input_file_lst.lst_pwd:
|
||||
|
||||
# open and write to output file
|
||||
with open( lst_file_pwd, "r" ) as lst_file:
|
||||
lines = lines + len( lst_file.readlines() )
|
||||
output.write( lst_file.read() )
|
||||
lst_file.close()
|
||||
|
||||
def make_pwd( run_no, endstation, pgroup ):
|
||||
output.close()
|
||||
|
||||
# construct lst folder path
|
||||
lst_pwd = "/sf/{0}/data/{1}/raw/".format( endstation, pgroup ) + "run" + run_no + "*/data"
|
||||
print( "written {0} images to {1}".format( lines, output_file ) )
|
||||
|
||||
def make_pwd( run_no, endstation, pgroup, jfj ):
|
||||
|
||||
# if to determine folder for jfj/clara or old daq
|
||||
if jfj == True:
|
||||
lst_pwd = "/sf/{0}/data/{1}/res/run{2}*".format( endstation, pgroup, run_no )
|
||||
else:
|
||||
# construct lst folder path
|
||||
lst_pwd = "/sf/{0}/data/{1}/raw/run{2}*/data".format( endstation, pgroup, run_no )
|
||||
|
||||
return lst_pwd
|
||||
|
||||
def find_lst( lst_dir, label ):
|
||||
|
||||
# if label = both, i.e. both lights and darks, set label to lst - so it's alwasy found
|
||||
if label == "both":
|
||||
label = "lst"
|
||||
|
||||
if label == "on" or label == "off":
|
||||
tail = "{0}.list".format( label )
|
||||
if label == "light" or label == "dark":
|
||||
tail = "{0}.lst".format( label )
|
||||
|
||||
# create df for all lst
|
||||
lst_dir_df = pd.DataFrame()
|
||||
|
||||
# search for lst with appropriate labels
|
||||
for path, dirs, files in os.walk( lst_dir ):
|
||||
for name in files:
|
||||
if name.endswith( ".lst" ):
|
||||
|
||||
if name.endswith( tail ):
|
||||
|
||||
# get lst pwd
|
||||
lst_pwd = os.path.join( path, name )
|
||||
@@ -76,7 +90,7 @@ def find_lst( lst_dir, label ):
|
||||
# return df lst from this directory
|
||||
return lst_dir_df
|
||||
|
||||
def generate_lst_df( run_lst, endstation, label, pgroup ):
|
||||
def generate_lst_df( run_lst, endstation, label, pgroup, jfj ):
|
||||
|
||||
# make run number df
|
||||
cols = [ "run_no" ]
|
||||
@@ -85,12 +99,11 @@ def generate_lst_df( run_lst, endstation, label, pgroup ):
|
||||
range_df[ "run_no" ] = range_df.run_no.str.zfill(4)
|
||||
|
||||
# make new column of list paths
|
||||
range_df[ "lst_app_dir" ] = range_df[ "run_no" ].apply( lambda x: make_pwd( x, endstation, pgroup ) )
|
||||
range_df[ "lst_app_dir" ] = range_df[ "run_no" ].apply( lambda x: make_pwd( x, endstation, pgroup, jfj ) )
|
||||
|
||||
# make df of lsts to be concatenated
|
||||
lst_df = pd.DataFrame()
|
||||
|
||||
|
||||
for index, row in range_df.iterrows():
|
||||
|
||||
# get approximate dir pwd
|
||||
@@ -114,13 +127,18 @@ def generate_lst_df( run_lst, endstation, label, pgroup ):
|
||||
|
||||
return lst_df
|
||||
|
||||
def main( run_lst, endstation, label, pgroup, output_file ):
|
||||
def main( run_lst, endstation, label, pgroup, output_file, jfj ):
|
||||
|
||||
# make df of lst files
|
||||
lst_df = generate_lst_df( run_lst, endstation, label, pgroup )
|
||||
lst_df = generate_lst_df( run_lst, endstation, label, pgroup, jfj )
|
||||
|
||||
# check to see if any files have been found
|
||||
if lst_df.empty:
|
||||
print( "no {0} lists were found in runs {1}".format( label, run_lst ) )
|
||||
exit()
|
||||
|
||||
# concatinate all lst file in lst_df
|
||||
concatenate_files( lst_df.lst_pwd, output_file )
|
||||
concatenate_files( lst_df, output_file, label )
|
||||
|
||||
def range_of_runs(arg):
|
||||
return list(map(int, arg.split(',')))
|
||||
@@ -153,20 +171,38 @@ if __name__ == "__main__":
|
||||
help="pgroup the data are collected in",
|
||||
type=str
|
||||
)
|
||||
parser.add_argument(
|
||||
"-j",
|
||||
"--jfj",
|
||||
help="was the Jungfraujoch/Clara data processing pipeline used to process your data. Default = True",
|
||||
type=bool,
|
||||
default=False
|
||||
)
|
||||
parser.add_argument(
|
||||
"-l",
|
||||
"--label",
|
||||
help="the label of the lst file, i.e. 'light', 'dark' or 'both'",
|
||||
type=str,
|
||||
required=True
|
||||
help="the activation label for the data. Not JFJ the labels should = 'light' or 'dark'. With JFJ the labels should = 'on' or 'off'.",
|
||||
type=str
|
||||
)
|
||||
parser.add_argument(
|
||||
"-o",
|
||||
"--output",
|
||||
help="name of output file",
|
||||
type=str,
|
||||
default=None
|
||||
)
|
||||
args = parser.parse_args()
|
||||
# JFJ on/off non-JFJ light/dark logic\
|
||||
if args.label != "off" and args.label != "on" and args.label != "light" and args.label != "dark":
|
||||
print( "label flag (-l) must = either 'on' or 'off' with JFJ = True, or 'light' or 'dark' and JFJ = False." )
|
||||
exit()
|
||||
print( args.jfj )
|
||||
if ( args.label == "off" or args.label == "on" ) and args.jfj == False:
|
||||
print( "JFJ uses 'on' and 'off' flags. Please check inputs and whether the new JFJ/Clara processing pipeline was used." )
|
||||
exit()
|
||||
if ( args.label == "light" or args.label == "dark" ) and args.jfj == True:
|
||||
print( "The old daq uses 'light' and 'dark' flags. Please check inputs and whether the newJFJ/Clara processing pipeline was used." )
|
||||
exit()
|
||||
# make continuous list from input range limits
|
||||
range = []
|
||||
if args.range is not None:
|
||||
@@ -180,7 +216,12 @@ if __name__ == "__main__":
|
||||
runs = args.runs
|
||||
run_lst = range + runs
|
||||
print( "appending {0} lst files from runs {1}".format( args.label, run_lst ) )
|
||||
# make default name
|
||||
if not args.output:
|
||||
output_name = "-".join( str(e) for e in run_lst )
|
||||
output_name = "run{0}".format( output_name )
|
||||
else:
|
||||
output_name = args.output
|
||||
# run main
|
||||
main( run_lst, args.endstation, args.label, args.pgroup, args.output )
|
||||
print( "done" )
|
||||
|
||||
main( run_lst, args.endstation, args.label, args.pgroup, output_name, args.jfj )
|
||||
print( "done" )
|
||||
@@ -13,7 +13,7 @@ python crystfel_split.py -l <path-to-list-file>
|
||||
-g <path-to-geom-file>
|
||||
-c <path-to-cell-file>
|
||||
-n <name-of-job>
|
||||
-e name of endstation
|
||||
-p photons or
|
||||
|
||||
# crystfel parameter may need some editing in the function - write_crystfel_run
|
||||
|
||||
@@ -24,11 +24,11 @@ a log file with .geom and evalation of indexing, cell etc
|
||||
"""
|
||||
|
||||
# modules
|
||||
import argparse
|
||||
import pandas as pd
|
||||
import subprocess
|
||||
import os, errno
|
||||
import time
|
||||
import argparse
|
||||
from tqdm import tqdm
|
||||
import regex as re
|
||||
import numpy as np
|
||||
@@ -69,7 +69,7 @@ def scrub_res( stream ):
|
||||
# example - diffraction_resolution_limit = 4.07 nm^-1 or 2.46 A
|
||||
# scrub res_lst or return np.nan
|
||||
try:
|
||||
pattern = r"diffraction_resolution_limit\s=\s\d\.\d+\snm\^-1\sor\s(\d\.\d+)\sA"
|
||||
pattern = r"diffraction_resolution_limit\s=\s\d+\.\d+\snm\^-1\sor\s(\d+\.\d+)\sA"
|
||||
res_lst = re.findall( pattern, stream )
|
||||
if AttributeError:
|
||||
return res_lst
|
||||
@@ -191,11 +191,23 @@ def make_process_dir( proc_dir ):
|
||||
logger.debug( "making directory error" )
|
||||
raise
|
||||
|
||||
def submit_job( job_file ):
|
||||
def submit_job( job_file, reservation ):
|
||||
|
||||
# submit the job
|
||||
submit_cmd = ["sbatch", "--cpus-per-task=32", "--" ,job_file]
|
||||
job_output = subprocess.check_output(submit_cmd)
|
||||
if reservation:
|
||||
print( "using a ra beamtime reservation = {0}".format( reservation ) )
|
||||
logger.info( "using ra reservation to process data = {0}".format( reservation ) )
|
||||
submit_cmd = [ "sbatch", "-p", "hour", "--reservation={0}".format( reservation ), "--cpus-per-task=32", "--" , job_file ]
|
||||
else:
|
||||
submit_cmd = [ "sbatch", "-p", "hour", "--cpus-per-task=32", "--" , job_file ]
|
||||
logger.info( "using slurm command = {0}".format( submit_cmd ) )
|
||||
|
||||
try:
|
||||
job_output = subprocess.check_output( submit_cmd )
|
||||
logger.info( "submited job = {0}".format( job_output ) )
|
||||
except subprocess.CalledProcessError as e:
|
||||
print( "please give the correct ra reservation or remove the -v from the arguements" )
|
||||
exit()
|
||||
|
||||
# scrub job id from - example Submitted batch job 742403
|
||||
pattern = r"Submitted batch job (\d+)"
|
||||
@@ -205,11 +217,11 @@ def submit_job( job_file ):
|
||||
|
||||
def wait_for_jobs( job_ids, total_jobs ):
|
||||
|
||||
with tqdm(total=total_jobs, desc="Jobs Completed", unit="job") as pbar:
|
||||
with tqdm( total=total_jobs, desc="Jobs Completed", unit="job" ) as pbar:
|
||||
while job_ids:
|
||||
completed_jobs = set()
|
||||
for job_id in job_ids:
|
||||
status_cmd = ["squeue", "-h", "-j", str(job_id)]
|
||||
status_cmd = [ "squeue", "-h", "-j", str( job_id ) ]
|
||||
status = subprocess.check_output(status_cmd)
|
||||
if not status:
|
||||
completed_jobs.add(job_id)
|
||||
@@ -217,7 +229,7 @@ def wait_for_jobs( job_ids, total_jobs ):
|
||||
job_ids.difference_update(completed_jobs)
|
||||
time.sleep(2)
|
||||
|
||||
def run_splits( list_df, cwd, name, lst, chunk_size, geom_file, cell_file, threshold ):
|
||||
def run_splits( list_df, cwd, name, geom_file, cell_file, threshold, reservation ):
|
||||
|
||||
# set chunk counter
|
||||
chunk = 0
|
||||
@@ -249,8 +261,7 @@ def run_splits( list_df, cwd, name, lst, chunk_size, geom_file, cell_file, thres
|
||||
stream_lst.append( "{0}/{1}".format( proc_dir, stream_file ) )
|
||||
|
||||
# submit jobs
|
||||
job_id = submit_job( cryst_run_file )
|
||||
logger.info( f"Job submitted: { job_id }" )
|
||||
job_id = submit_job( cryst_run_file, reservation )
|
||||
submitted_job_ids.add( job_id )
|
||||
|
||||
# increase chunk counter
|
||||
@@ -261,7 +272,7 @@ def run_splits( list_df, cwd, name, lst, chunk_size, geom_file, cell_file, thres
|
||||
|
||||
return submitted_job_ids, chunk, stream_lst
|
||||
|
||||
def main( cwd, name, lst, chunk_size, geom_file, cell_file, threshold ):
|
||||
def main( cwd, name, lst, chunk_size, geom_file, cell_file, threshold, reservation ):
|
||||
|
||||
print( "reading SwissFEL lst file" )
|
||||
print( "creating {0} image chunks of lst".format( chunk_size ) )
|
||||
@@ -270,11 +281,11 @@ def main( cwd, name, lst, chunk_size, geom_file, cell_file, threshold ):
|
||||
|
||||
# run crystfel runs on individual splits
|
||||
print( "submitting jobs to cluster" )
|
||||
submitted_job_ids, chunk, stream_lst = run_splits( list_df, cwd, name, lst, chunk_size, geom_file, cell_file, threshold )
|
||||
submitted_job_ids, chunk, stream_lst = run_splits( list_df, cwd, name, geom_file, cell_file, threshold, reservation )
|
||||
|
||||
# monitor progress of jobs
|
||||
time.sleep(30)
|
||||
wait_for_jobs(submitted_job_ids, chunk)
|
||||
time.sleep( 30 )
|
||||
wait_for_jobs( submitted_job_ids, chunk )
|
||||
print( "done" )
|
||||
|
||||
# make composite .stream file
|
||||
@@ -323,6 +334,20 @@ def main( cwd, name, lst, chunk_size, geom_file, cell_file, threshold ):
|
||||
logger.info( "mean beta = {0} +/- {1} A".format( mean_beta, std_beta ) )
|
||||
logger.info( "mean gamma = {0} +/- {1} A".format( mean_gamma, std_gamma ) )
|
||||
|
||||
print( "printing stats" )
|
||||
print( "image = {0}".format( chunks ) )
|
||||
print( "crystals = {0}".format( xtals ) )
|
||||
print( "indexing rate = {0} %".format( index_rate ) )
|
||||
print( "mean resolution = {0} +/- {1} A".format( mean_res, std_res ) )
|
||||
print( "median resolution = {0} A".format( median_res ) )
|
||||
print( "mean observations = {0} +/- {1}".format( mean_obs, std_obs ) )
|
||||
print( "mean a = {0} +/- {1} A".format( mean_a, std_a ) )
|
||||
print( "mean b = {0} +/- {1} A".format( mean_b, std_b ) )
|
||||
print( "mean c = {0} +/- {1} A".format( mean_c, std_c ) )
|
||||
print( "mean alpha = {0} +/- {1} A".format( mean_alpha, std_alpha ) )
|
||||
print( "mean beta = {0} +/- {1} A".format( mean_beta, std_beta ) )
|
||||
print( "mean gamma = {0} +/- {1} A".format( mean_gamma, std_gamma ) )
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
@@ -360,6 +385,20 @@ if __name__ == "__main__":
|
||||
type=str,
|
||||
default="split"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-v",
|
||||
"--reservation",
|
||||
help="reservation name for ra cluster. Usually along the lines of P11111_2024-12-10",
|
||||
type=str,
|
||||
default=None
|
||||
)
|
||||
parser.add_argument(
|
||||
"-p",
|
||||
"--photons_or_energy",
|
||||
help="determines the threshold to use for CrystFEL. Photons counts have always been used in Cristallina and are now used on Alvra from 01.11.2024. Please use 'energy' for Alvra before this.",
|
||||
type=str,
|
||||
default="photons"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-d",
|
||||
"--debug",
|
||||
@@ -367,21 +406,9 @@ if __name__ == "__main__":
|
||||
type=bool,
|
||||
default=False
|
||||
)
|
||||
parser.add_argument(
|
||||
"-e",
|
||||
"--endstation",
|
||||
help="which endstation did you collect these data from, e.g., alvra or cristallina. Please over-write name depending on endstation.",
|
||||
type=str,
|
||||
default="cristallina"
|
||||
)
|
||||
args = parser.parse_args()
|
||||
# set current working directory
|
||||
cwd = os.getcwd()
|
||||
# set threshold based on endstation
|
||||
if args.endstation == "alvra":
|
||||
threshold = 3000
|
||||
elif args.endstation == "cristallina":
|
||||
threshold = 10
|
||||
# set loguru
|
||||
if not args.debug:
|
||||
logger.remove()
|
||||
@@ -390,5 +417,10 @@ if __name__ == "__main__":
|
||||
# log geometry file
|
||||
geom = open( args.geom_file, "r" ).read()
|
||||
logger.info( geom )
|
||||
main( cwd, args.job_name, args.lst_file, args.chunk_size, args.geom_file, args.cell_file, threshold )
|
||||
# set threshold based on detector
|
||||
if args.photons_or_energy == "energy":
|
||||
threshold = 3000
|
||||
elif args.photons_or_energy == "photons":
|
||||
threshold = 15
|
||||
main( cwd, args.job_name, args.lst_file, args.chunk_size, args.geom_file, args.cell_file, threshold, args.reservation )
|
||||
|
||||
|
||||
@@ -27,12 +27,99 @@ a series of stream files from crystfel in the current working directory
|
||||
|
||||
# modules
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import subprocess
|
||||
import os, errno
|
||||
import time
|
||||
import argparse
|
||||
from tqdm import tqdm
|
||||
import regex as re
|
||||
from loguru import logger
|
||||
|
||||
def count_chunks( stream ):
|
||||
|
||||
# get number of chunks
|
||||
# example - ----- Begin chunk -----
|
||||
# count them
|
||||
try:
|
||||
pattern = r"-----\sBegin\schunk\s-----"
|
||||
chunks = re.findall( pattern, stream )
|
||||
if AttributeError:
|
||||
return len( chunks )
|
||||
except AttributeError:
|
||||
logger.debug( "count_chunks error" )
|
||||
return np.nan
|
||||
|
||||
def scrub_cells( stream ):
|
||||
|
||||
# get uc values from stream file
|
||||
# example - Cell parameters 7.71784 7.78870 3.75250 nm, 90.19135 90.77553 90.19243 deg
|
||||
# scrub clen and return - else nan
|
||||
try:
|
||||
pattern = r"Cell\sparameters\s(\d+\.\d+)\s(\d+\.\d+)\s(\d+\.\d+)\snm,\s(\d+\.\d+)\s(\d+\.\d+)\s(\d+\.\d+)\sdeg"
|
||||
cell_lst = re.findall( pattern, stream )
|
||||
xtals = len( cell_lst )
|
||||
if AttributeError:
|
||||
return cell_lst, xtals
|
||||
except AttributeError:
|
||||
logger.debug( "scrub_cells error" )
|
||||
return np.nan
|
||||
|
||||
def scrub_res( stream ):
|
||||
|
||||
# get diffraction limit
|
||||
# example - diffraction_resolution_limit = 4.07 nm^-1 or 2.46 A
|
||||
# scrub res_lst or return np.nan
|
||||
try:
|
||||
pattern = r"diffraction_resolution_limit\s=\s\d+\.\d+\snm\^-1\sor\s(\d+\.\d+)\sA"
|
||||
res_lst = re.findall( pattern, stream )
|
||||
if AttributeError:
|
||||
return res_lst
|
||||
except AttributeError:
|
||||
logger.debug( "scrub_res error" )
|
||||
return np.nan
|
||||
|
||||
def scrub_obs( stream ):
|
||||
|
||||
# get number of reflections
|
||||
# example - num_reflections = 308
|
||||
# scrub reflections or return np.nan
|
||||
try:
|
||||
pattern = r"num_reflections\s=\s(\d+)"
|
||||
obs_lst = re.findall( pattern, stream )
|
||||
if AttributeError:
|
||||
return obs_lst
|
||||
except AttributeError:
|
||||
logger.debug( "scrub_obs error" )
|
||||
return np.nan
|
||||
|
||||
def calculate_stats( stream_pwd ):
|
||||
|
||||
# open stream file
|
||||
stream = open( stream_pwd, "r" ).read()
|
||||
|
||||
# get total number chunks
|
||||
chunks = count_chunks( stream )
|
||||
|
||||
# get list of cells
|
||||
cell_lst, xtals = scrub_cells( stream )
|
||||
|
||||
# get list of cells
|
||||
res_lst = scrub_res( stream )
|
||||
|
||||
# get list of cells
|
||||
obs_lst = scrub_obs( stream )
|
||||
|
||||
# res_df
|
||||
cols = [ "a", "b", "c", "alpha", "beta", "gamma" ]
|
||||
df = pd.DataFrame( cell_lst, columns=cols )
|
||||
df[ "resolution" ] = res_lst
|
||||
df[ "obs" ] = obs_lst
|
||||
|
||||
# convert all to floats
|
||||
df = df.astype(float)
|
||||
|
||||
return df, xtals, chunks
|
||||
|
||||
def h5_split( lst, chunk_size ):
|
||||
|
||||
@@ -53,7 +140,8 @@ def h5_split( lst, chunk_size ):
|
||||
return list_df
|
||||
|
||||
def write_crystfel_run( proc_dir, name, chunk, chunk_lst_file,
|
||||
geom_file, cell_file, threshold, min_snr,
|
||||
geom_file, cell_file, indexer, peakfinder,
|
||||
integrator, tolerance, threshold, min_snr,
|
||||
int_rad, multi, retry, min_pix, bg_rad, min_res ):
|
||||
|
||||
# stream file name
|
||||
@@ -71,10 +159,11 @@ def write_crystfel_run( proc_dir, name, chunk, chunk_lst_file,
|
||||
run_sh.write( " --output={0} \\\n".format( stream_file ) )
|
||||
run_sh.write( " --geometry={0} \\\n".format( geom_file ) )
|
||||
run_sh.write( " --pdb={0} \\\n".format( cell_file ) )
|
||||
run_sh.write( " --indexing=xgandalf-latt-cell \\\n" )
|
||||
run_sh.write( " --peaks=peakfinder8 \\\n" )
|
||||
run_sh.write( " --integration=rings-grad \\\n" )
|
||||
run_sh.write( " --tolerance=10.0,10.0,10.0,2,3,2 \\\n" )
|
||||
run_sh.write( " --indexing={0} \\\n".format( indexer ) )
|
||||
run_sh.write( " --peaks={0} \\\n".format( peakfinder ) )
|
||||
run_sh.write( " --integration={0} \\\n".format( integrator ) )
|
||||
run_sh.write( " --tolerance={0},{1},{2},{3},{4},{5} \\\n".format( tolerance[0], tolerance[1], tolerance[2],
|
||||
tolerance[3], tolerance[4], tolerance[5] ) )
|
||||
run_sh.write( " --threshold={0} \\\n".format( threshold ) )
|
||||
run_sh.write( " --min-snr={0} \\\n".format( min_snr ) )
|
||||
run_sh.write( " --int-radius={0},{1},{2} \\\n".format( int_rad[0], int_rad[1], int_rad[2] ) )
|
||||
@@ -100,42 +189,51 @@ def make_process_dir( proc_dir ):
|
||||
os.makedirs( proc_dir )
|
||||
except OSError as e:
|
||||
if e.errno != errno.EEXIST:
|
||||
logger.debug( "making directory error" )
|
||||
raise
|
||||
|
||||
def submit_job( job_file ):
|
||||
def submit_job( job_file, reservation ):
|
||||
|
||||
# submit the job
|
||||
submit_cmd = ["sbatch", "--cpus-per-task=32", "--" ,job_file]
|
||||
job_output = subprocess.check_output(submit_cmd)
|
||||
if reservation:
|
||||
print( "using a ra beamtime reservation = {0}".format( reservation ) )
|
||||
logger.info( "using ra reservation to process data = {0}".format( reservation ) )
|
||||
submit_cmd = [ "sbatch", "-p", "hour", "--reservation={0}".format( reservation ), "--cpus-per-task=32", "--" , job_file ]
|
||||
else:
|
||||
submit_cmd = [ "sbatch", "-p", "hour", "--cpus-per-task=32", "--" , job_file ]
|
||||
logger.info( "using slurm command = {0}".format( submit_cmd ) )
|
||||
|
||||
try:
|
||||
job_output = subprocess.check_output( submit_cmd )
|
||||
logger.info( "submited job = {0}".format( job_output ) )
|
||||
except subprocess.CalledProcessError as e:
|
||||
print( "please give the correct ra reservation or remove the -v from the arguements" )
|
||||
exit()
|
||||
|
||||
# scrub job id from - example Submitted batch job 742403
|
||||
pattern = r"Submitted batch job (\d+)"
|
||||
job_id = re.search( pattern, job_output.decode().strip() ).group(1)
|
||||
|
||||
return int(job_id)
|
||||
return int( job_id )
|
||||
|
||||
def wait_for_jobs( job_ids, total_jobs ):
|
||||
|
||||
with tqdm(total=total_jobs, desc="Jobs Completed", unit="job") as pbar:
|
||||
with tqdm( total=total_jobs, desc="Jobs Completed", unit="job" ) as pbar:
|
||||
while job_ids:
|
||||
completed_jobs = set()
|
||||
for job_id in job_ids:
|
||||
status_cmd = ["squeue", "-h", "-j", str(job_id)]
|
||||
status_cmd = [ "squeue", "-h", "-j", str( job_id ) ]
|
||||
status = subprocess.check_output(status_cmd)
|
||||
if not status:
|
||||
completed_jobs.add(job_id)
|
||||
pbar.update(1)
|
||||
job_ids.difference_update(completed_jobs)
|
||||
time.sleep(10)
|
||||
time.sleep(2)
|
||||
|
||||
def run_splits( cwd, name, lst, chunk_size, geom_file,
|
||||
cell_file, progress, threshold, min_snr,
|
||||
int_rad, multi, retry, min_pix ):
|
||||
|
||||
print( "reading SwissFEL lst file" )
|
||||
print( "creating {0} image chunks of lst".format( chunk_size ) )
|
||||
list_df = h5_split( lst, chunk_size )
|
||||
print( "DONE" )
|
||||
def run_splits( list_df, cwd, name, geom_file, cell_file,
|
||||
indexer, peakfinder, integrator, tolerance, threshold,
|
||||
min_snr, int_rad, multi, retry, min_pix, bg_rad,
|
||||
min_res, reservation ):
|
||||
|
||||
# set chunk counter
|
||||
chunk = 0
|
||||
@@ -146,10 +244,9 @@ def run_splits( cwd, name, lst, chunk_size, geom_file,
|
||||
# stream file list
|
||||
stream_lst = []
|
||||
|
||||
print( "creating crystfel jobs for individual chunks" )
|
||||
for chunk_lst in list_df:
|
||||
|
||||
print( "chunk {0} = {1} images".format( chunk, len( chunk_lst ) ) )
|
||||
logger.info( "chunk {0} = {1} images".format( chunk, len( chunk_lst ) ) )
|
||||
# define process directory
|
||||
proc_dir = "{0}/{1}/{1}_{2}".format( cwd, name, chunk )
|
||||
|
||||
@@ -165,13 +262,13 @@ def run_splits( cwd, name, lst, chunk_size, geom_file,
|
||||
|
||||
# write crystfel file and append path to list
|
||||
cryst_run_file, stream_file = write_crystfel_run( proc_dir, name, chunk, chunk_lst_file,
|
||||
geom_file, cell_file, threshold, min_snr,
|
||||
int_rad, multi, retry, min_pix )
|
||||
geom_file, cell_file, indexer, peakfinder,
|
||||
integrator, tolerance, threshold, min_snr,
|
||||
int_rad, multi, retry, min_pix, bg_rad, min_res )
|
||||
stream_lst.append( "{0}/{1}".format( proc_dir, stream_file ) )
|
||||
|
||||
# submit jobs
|
||||
job_id = submit_job( cryst_run_file )
|
||||
print(f"Job submitted: { job_id }")
|
||||
job_id = submit_job( cryst_run_file, reservation )
|
||||
submitted_job_ids.add( job_id )
|
||||
|
||||
# increase chunk counter
|
||||
@@ -180,15 +277,34 @@ def run_splits( cwd, name, lst, chunk_size, geom_file,
|
||||
# move back to top dir
|
||||
os.chdir( cwd )
|
||||
|
||||
return submitted_job_ids, chunk, stream_lst
|
||||
|
||||
def main( cwd, name, lst, chunk_size, geom_file, cell_file,
|
||||
indexer, peakfinder, integrator, tolerance, threshold,
|
||||
min_snr, int_rad, multi, retry, min_pix, bg_rad,
|
||||
min_res, reservation ):
|
||||
|
||||
print( "reading SwissFEL lst file" )
|
||||
print( "creating {0} image chunks of lst".format( chunk_size ) )
|
||||
list_df = h5_split( lst, chunk_size )
|
||||
print( "DONE" )
|
||||
|
||||
wait_for_jobs(submitted_job_ids, chunk)
|
||||
print("slurm processing done")
|
||||
# run crystfel runs on individual splits
|
||||
print( "submitting jobs to cluster" )
|
||||
submitted_job_ids, chunk, stream_lst = run_splits( list_df, cwd, name, geom_file, cell_file,
|
||||
indexer, peakfinder, integrator, tolerance, threshold,
|
||||
min_snr, int_rad, multi, retry, min_pix, bg_rad,
|
||||
min_res, reservation )
|
||||
|
||||
# monitor progress of jobs
|
||||
time.sleep( 30 )
|
||||
wait_for_jobs( submitted_job_ids, chunk )
|
||||
print( "done" )
|
||||
|
||||
# make composite .stream file
|
||||
output_file = "{0}.stream".format( name )
|
||||
|
||||
print( "comp" )
|
||||
print( "concatenating .streams from separate runs." )
|
||||
try:
|
||||
# Open the output file in 'append' mode
|
||||
with open(output_file, "a") as output:
|
||||
@@ -197,110 +313,206 @@ def run_splits( cwd, name, lst, chunk_size, geom_file,
|
||||
with open(file_name, "r") as input_file:
|
||||
# Read the contents of the input file and append to the output file
|
||||
output.write(input_file.read())
|
||||
print(f"Appended contents from {file_name} to {output_file}")
|
||||
except FileNotFoundError:
|
||||
print(f"File {file_name} not found. Skipping.")
|
||||
logger.debug(f"File {file_name} not found. Skipping.")
|
||||
except IOError as e:
|
||||
print(f"An error occurred while appending files: {e}")
|
||||
logger.debug(f"An error occurred while appending files: {e}")
|
||||
|
||||
print( "done" )
|
||||
|
||||
print( "DONE" )
|
||||
df, xtals, chunks = calculate_stats( output_file )
|
||||
|
||||
# stats
|
||||
index_rate = round( xtals/chunks*100, 2 )
|
||||
mean_res, std_res = round( df.resolution.mean(), 2 ), round( df.resolution.std(), 2 )
|
||||
median_res = df.resolution.median()
|
||||
mean_obs, std_obs = round( df.obs.mean(), 2 ), round( df.obs.std(), 2)
|
||||
mean_a, std_a = round( df.a.mean()*10, 2 ), round( df.a.std()*10, 2 )
|
||||
mean_b, std_b = round( df.b.mean()*10, 2 ), round( df.b.std()*10, 2 )
|
||||
mean_c, std_c = round( df.c.mean()*10, 2 ), round( df.c.std()*10, 2 )
|
||||
mean_alpha, std_alpha = round( df.alpha.mean(), 2 ), round( df.alpha.std(), 2 )
|
||||
mean_beta, std_beta = round(df.beta.mean(), 2 ), round( df.beta.std(), 2 )
|
||||
mean_gamma, std_gamma = round( df.gamma.mean(), 2 ), round( df.gamma.std(), 2 )
|
||||
|
||||
logger.info( "image = {0}".format( chunks ) )
|
||||
logger.info( "crystals = {0}".format( xtals ) )
|
||||
logger.info( "indexing rate = {0} %".format( index_rate ) )
|
||||
logger.info( "mean resolution = {0} +/- {1} A".format( mean_res, std_res ) )
|
||||
logger.info( "median resolution = {0} A".format( median_res ) )
|
||||
logger.info( "mean observations = {0} +/- {1}".format( mean_obs, std_obs ) )
|
||||
logger.info( "mean a = {0} +/- {1} A".format( mean_a, std_a ) )
|
||||
logger.info( "mean b = {0} +/- {1} A".format( mean_b, std_b ) )
|
||||
logger.info( "mean c = {0} +/- {1} A".format( mean_c, std_c ) )
|
||||
logger.info( "mean alpha = {0} +/- {1} A".format( mean_alpha, std_alpha ) )
|
||||
logger.info( "mean beta = {0} +/- {1} A".format( mean_beta, std_beta ) )
|
||||
logger.info( "mean gamma = {0} +/- {1} A".format( mean_gamma, std_gamma ) )
|
||||
|
||||
print( "printing stats" )
|
||||
print( "image = {0}".format( chunks ) )
|
||||
print( "crystals = {0}".format( xtals ) )
|
||||
print( "indexing rate = {0} %".format( index_rate ) )
|
||||
print( "mean resolution = {0} +/- {1} A".format( mean_res, std_res ) )
|
||||
print( "median resolution = {0} A".format( median_res ) )
|
||||
print( "mean observations = {0} +/- {1}".format( mean_obs, std_obs ) )
|
||||
print( "mean a = {0} +/- {1} A".format( mean_a, std_a ) )
|
||||
print( "mean b = {0} +/- {1} A".format( mean_b, std_b ) )
|
||||
print( "mean c = {0} +/- {1} A".format( mean_c, std_c ) )
|
||||
print( "mean alpha = {0} +/- {1} A".format( mean_alpha, std_alpha ) )
|
||||
print( "mean beta = {0} +/- {1} A".format( mean_beta, std_beta ) )
|
||||
print( "mean gamma = {0} +/- {1} A".format( mean_gamma, std_gamma ) )
|
||||
|
||||
def list_of_ints(arg):
|
||||
return list(map(int, arg.split(',')))
|
||||
|
||||
def list_of_floats(arg):
|
||||
return list(map(float, arg.split(',')))
|
||||
|
||||
if __name__ == "__main__":
|
||||
parser = argparse.ArgumentParser()
|
||||
parser.add_argument(
|
||||
"-l",
|
||||
"--lst_file",
|
||||
help="file from SwissFEL output to be processed quickly",
|
||||
type=os.path.abspath
|
||||
)
|
||||
parser.add_argument(
|
||||
"-k",
|
||||
"--chunk_size",
|
||||
help="how big should each chunk be? - the bigger the chunk, the fewer jobs, the slower it will be",
|
||||
type=int,
|
||||
default=1000
|
||||
)
|
||||
parser.add_argument(
|
||||
"-g",
|
||||
"--geom_file",
|
||||
help="path to geom file to be used in the refinement",
|
||||
type=os.path.abspath
|
||||
)
|
||||
parser.add_argument(
|
||||
"-c",
|
||||
"--cell_file",
|
||||
help="path to cell file of the crystals used in the refinement",
|
||||
type=os.path.abspath
|
||||
)
|
||||
parser.add_argument(
|
||||
"-n",
|
||||
"--job_name",
|
||||
help="the name of the job to be done",
|
||||
help="the name of the job to be done. Default = split",
|
||||
type=str,
|
||||
default="split"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-l",
|
||||
"--lst_file",
|
||||
help="file from SwissFEL output to be processed quickly. Requried.",
|
||||
type=os.path.abspath,
|
||||
required=True
|
||||
)
|
||||
parser.add_argument(
|
||||
"-k",
|
||||
"--chunk_size",
|
||||
help="how big should each image split be? Default = 500. Fewer will be faster.",
|
||||
type=int,
|
||||
default=500
|
||||
)
|
||||
parser.add_argument(
|
||||
"-g",
|
||||
"--geom_file",
|
||||
help="path to geom file to be used in the refinement. Requried.",
|
||||
type=os.path.abspath,
|
||||
required=True
|
||||
)
|
||||
parser.add_argument(
|
||||
"-c",
|
||||
"--cell_file",
|
||||
help="path to cell file of the crystals used in the refinement. Requried.",
|
||||
type=os.path.abspath,
|
||||
required=True
|
||||
)
|
||||
parser.add_argument(
|
||||
"-x",
|
||||
"--indexer",
|
||||
help="indexer to use. Default = xgandalf-latt-cell",
|
||||
type=str,
|
||||
default="xgandalf-latt-cell"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-f",
|
||||
"--peakfinder",
|
||||
help="peakfinder to use. Default = peakfinder8",
|
||||
type=str,
|
||||
default="peakfinder8"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-a",
|
||||
"--integrator",
|
||||
help="integrator to use. Default = rings-nocen-nograd",
|
||||
type=str,
|
||||
default="rings-nocen-nograd"
|
||||
)
|
||||
parser.add_argument(
|
||||
"-y",
|
||||
"--tolerance",
|
||||
help="tolerance to use. Default = 10.0,10.0,10.0,2.0,3.0,2.0",
|
||||
type=list_of_floats,
|
||||
default=[10.0,10.0,10.0,2.0,3.0,2.0]
|
||||
)
|
||||
parser.add_argument(
|
||||
"-t",
|
||||
"--threshold",
|
||||
help="threshold for crystfel run - peaks must be above this to be found",
|
||||
help="peaks must be above this to be found during spot-finding. Default = 20",
|
||||
type=int,
|
||||
default=10
|
||||
default=20
|
||||
)
|
||||
parser.add_argument(
|
||||
"-s",
|
||||
"--min_snr",
|
||||
help="min-snr for crystfel run - peaks must to above this to be counted",
|
||||
help="peaks must to above this to be counted. Default = 5.",
|
||||
type=int,
|
||||
default=5
|
||||
)
|
||||
parser.add_argument(
|
||||
"-i",
|
||||
"--int_radius",
|
||||
help="int_rad for crystfel run - peaks must to above this to be counted",
|
||||
help="integration ring radii. Default = 2,3,5 = 2 for spot and then 3 and 5 to calculate background.",
|
||||
type=list_of_ints,
|
||||
default=[3,5,9]
|
||||
default=[2,3,5]
|
||||
)
|
||||
parser.add_argument(
|
||||
"-m",
|
||||
"--multi",
|
||||
help="multi crystfel flag, do you wnat to look for multiple lattices",
|
||||
help="do you wnat to look for multiple lattices. Default = True",
|
||||
type=bool,
|
||||
default=False
|
||||
default=True
|
||||
)
|
||||
parser.add_argument(
|
||||
"-r",
|
||||
"--retry",
|
||||
help="retry crystfel flag, do you want to retry failed indexing patterns",
|
||||
help="do you want to retry failed indexing patterns. Default = False",
|
||||
type=bool,
|
||||
default=False
|
||||
)
|
||||
parser.add_argument(
|
||||
"-x",
|
||||
"-p",
|
||||
"--min_pix",
|
||||
help="min-pix-count for crystfel runs, minimum number of pixels a spot should contain in peak finding",
|
||||
help="minimum number of pixels a spot should contain in peak finding.Default = 2",
|
||||
type=int,
|
||||
default=2
|
||||
)
|
||||
parser.add_argument(
|
||||
"-b",
|
||||
"--bg_rad",
|
||||
help="crystfel background radius flag, radius (in pixels) used for the estimation of the local background",
|
||||
help="radius (in pixels) used for the estimation of the local background. Default = 4",
|
||||
type=int,
|
||||
default=2
|
||||
default=4
|
||||
)
|
||||
parser.add_argument(
|
||||
"-q",
|
||||
"--min-res",
|
||||
help="m",
|
||||
help="min-res for spot-finding in pixels. Default = 85.",
|
||||
type=int,
|
||||
default=2
|
||||
default=85
|
||||
)
|
||||
parser.add_argument(
|
||||
"-v",
|
||||
"--reservation",
|
||||
help="reservation name for ra cluster. Usually along the lines of P11111_2024-12-10",
|
||||
type=str,
|
||||
default=None
|
||||
)
|
||||
parser.add_argument(
|
||||
"-d",
|
||||
"--debug",
|
||||
help="output debug to terminal.",
|
||||
type=bool,
|
||||
default=False
|
||||
)
|
||||
args = parser.parse_args()
|
||||
# run geom converter
|
||||
cwd = os.getcwd()
|
||||
# set loguru
|
||||
if not args.debug:
|
||||
logger.remove()
|
||||
logfile = "{0}.log".format( args.job_name )
|
||||
logger.add( logfile, format="{message}", level="INFO")
|
||||
# log geometry file
|
||||
geom = open( args.geom_file, "r" ).read()
|
||||
logger.info( geom )
|
||||
if args.multi == True:
|
||||
multi = "multi"
|
||||
else:
|
||||
@@ -309,7 +521,8 @@ if __name__ == "__main__":
|
||||
retry = "retry"
|
||||
else:
|
||||
retry = "no-retry"
|
||||
run_splits( cwd, args.job_name, args.lst_file, args.chunk_size,
|
||||
args.geom_file, args.cell_file,
|
||||
args.threshold, args.min_snr, args.int_radius,
|
||||
multi, retry, args.min_pix )
|
||||
main( cwd, args.job_name, args.lst_file, args.chunk_size,
|
||||
args.geom_file, args.cell_file, args.indexer, args.peakfinder,
|
||||
args.integrator, args.tolerance, args.threshold,
|
||||
args.min_snr, args.int_radius, multi, retry, args.min_pix, args.bg_rad,
|
||||
args.min_res, args.reservation )
|
||||
@@ -5,6 +5,7 @@
|
||||
"""
|
||||
# aim
|
||||
to make an mtz from an hkl file output from partialator or process_hkl
|
||||
runs f2mtz and then truncate for create an mtz with other intensities and structure factors
|
||||
|
||||
# usage to make mtz from manually entered lengths and angles
|
||||
python make_mtz.py -i <path to .hkl file from partialator>
|
||||
@@ -14,6 +15,8 @@ python make_mtz.py -i <path to .hkl file from partialator>
|
||||
-d dataset name in mtz
|
||||
-g spacegroup
|
||||
-c list of cell lengths and angles to use - 59.3,59.3,153.1,90.0,90.0,90.0
|
||||
-r number of residues
|
||||
-A resolution range - e.g. 40.0,2.0
|
||||
|
||||
# usage to make mtz from the mean angles and lengths in stream file
|
||||
python make_mtz.py -i <path to .hkl file from partialator>
|
||||
@@ -22,6 +25,8 @@ python make_mtz.py -i <path to .hkl file from partialator>
|
||||
-x xtal name in mtz
|
||||
-d dataset name in mtz
|
||||
-g spacegroup
|
||||
-r number of residues
|
||||
-A resolution range - e.g. 40.0,2.0
|
||||
-s <path to stream file>
|
||||
-u True
|
||||
|
||||
@@ -29,8 +34,11 @@ python make_mtz.py -i <path to .hkl file from partialator>
|
||||
python make_mtz.py -s <path to stream file>
|
||||
|
||||
# output
|
||||
- .mtz file
|
||||
- .html log file
|
||||
- .mtz file - just intensities
|
||||
- f2mtz.log file
|
||||
- _F.mtz file - intensities and structure factors
|
||||
- cuts data to desired resolution
|
||||
- truncate.log file
|
||||
"""
|
||||
|
||||
# modules
|
||||
@@ -72,27 +80,49 @@ def get_mean_cell( stream_file ):
|
||||
|
||||
return mean_cell, len(cell_lst)
|
||||
|
||||
def make_mtz( hklout_file, mtzout_file, project, crystal, dataset, cell, spacegroup ):
|
||||
def make_mtz( hklout_file, mtzout_file, project, crystal, dataset, cell, spacegroup, residues, res_range ):
|
||||
|
||||
# make_mtz file name
|
||||
mtz_run_file = "make_mtz.sh"
|
||||
|
||||
# make F file name
|
||||
Fout_file = os.path.splitext( mtzout_file )[0] + "_F.mtz"
|
||||
|
||||
# write file
|
||||
mtz_sh = open( mtz_run_file, "w" )
|
||||
mtz_sh.write( "#!/bin/sh\n\n" )
|
||||
mtz_sh.write( "module purge\n" )
|
||||
mtz_sh.write( "module load ccp4/8.0\n\n" )
|
||||
mtz_sh.write( "f2mtz HKLIN {0} HKLOUT {1} > out.html << EOF\n".format( hklout_file, mtzout_file ) )
|
||||
mtz_sh.write( "f2mtz HKLIN {0} HKLOUT {1} << EOF_hkl > f2mtz.log\n".format( hklout_file, mtzout_file ) )
|
||||
mtz_sh.write( "TITLE Reflections from CrystFEL\n" )
|
||||
mtz_sh.write( "NAME PROJECT {0} CRYSTAL {1} DATASET {2}\n".format( project, crystal, dataset ) )
|
||||
mtz_sh.write( "CELL {0} {1} {2} {3} {4} {5}\n".format( cell[0], cell[1], cell[2], cell[3], cell[4], cell[5] ) )
|
||||
mtz_sh.write( "SYMM {0}\n".format( spacegroup ) )
|
||||
mtz_sh.write( "SKIP 3\n" )
|
||||
mtz_sh.write( "LABOUT H K L IMEAN SIGIMEAN\n" )
|
||||
mtz_sh.write( "CTYPE H H H J Q\n" )
|
||||
mtz_sh.write( "LABOUT H K L I_stream SIGI_stream\n" )
|
||||
mtz_sh.write( "CTYPE H H H J Q\n" )
|
||||
mtz_sh.write( "FORMAT '(3(F4.0,1X),F10.2,10X,F10.2)'\n" )
|
||||
mtz_sh.write( "SKIP 3\n" )
|
||||
mtz_sh.write( "EOF" )
|
||||
mtz_sh.write( "EOF_hkl\n\n\n" )
|
||||
mtz_sh.write( "echo 'done'\n" )
|
||||
mtz_sh.write( "echo 'I and SIGI from CrystFEL stream saved as I_stream and SIGI_stream'\n" )
|
||||
mtz_sh.write( "echo 'I filename = {0}'\n\n\n".format( mtzout_file ) )
|
||||
mtz_sh.write( "echo 'running truncate'\n" )
|
||||
mtz_sh.write( "echo 'setting resolution range to {0}-{1}'\n".format( res_range[0], res_range[1] ) )
|
||||
mtz_sh.write( "echo 'assuming that there are {0}' in assymetric unit\n\n\n".format( residues ) )
|
||||
mtz_sh.write( "truncate HKLIN {0} HKLOUT {1} << EOF_F > truncate.log\n".format( mtzout_file, Fout_file ) )
|
||||
mtz_sh.write( "truncate YES\n" )
|
||||
mtz_sh.write( "anomalous NO\n" )
|
||||
mtz_sh.write( "nresidue {0}\n".format( residues ) )
|
||||
mtz_sh.write( "resolution {0} {1}\n".format( res_range[0], res_range[1] ) )
|
||||
mtz_sh.write( "plot OFF\n" )
|
||||
mtz_sh.write( "labin IMEAN=I_stream SIGIMEAN=SIGI_stream\n" )
|
||||
mtz_sh.write( "labout F=F_stream SIGF=SIGF_stream\n" )
|
||||
mtz_sh.write( "end\n" )
|
||||
mtz_sh.write( "EOF_F\n\n\n" )
|
||||
mtz_sh.write( "echo 'done'\n" )
|
||||
mtz_sh.write( "echo 'I_stream and SIGI_stream from f2mtz converted to F_stream and F_stream'\n" )
|
||||
mtz_sh.write( "echo 'F filename = {0} (contains both Is and Fs)'".format( Fout_file ) )
|
||||
mtz_sh.close()
|
||||
|
||||
# make file executable
|
||||
@@ -118,7 +148,7 @@ def cut_hkl_file( hklin_file, hklout_file ):
|
||||
|
||||
hklout.close()
|
||||
|
||||
def main( hklin_file, hklout_file, mtzout, project, crystal, dataset, cell, spacegroup ):
|
||||
def main( hklin_file, hklout_file, mtzout, project, crystal, dataset, cell, spacegroup, residues, res_range ):
|
||||
|
||||
# remove final lines from crystfel hkl out
|
||||
print( "removing final lines from crystfel hklin" )
|
||||
@@ -129,7 +159,7 @@ def main( hklin_file, hklout_file, mtzout, project, crystal, dataset, cell, spac
|
||||
print( "making mtz" )
|
||||
print( "using cell constants\n{0} {1} {2} A {3} {4} {5} deg".format( cell[0], cell[1], cell[2], cell[3], cell[4], cell[5] ) )
|
||||
print( "Titles in mtz will be:\nPROJECT {0} CRYSTAL {1} DATASET {2}".format( project, crystal, dataset ) )
|
||||
make_mtz( hklout_file, mtzout, project, crystal, dataset, cell, spacegroup )
|
||||
make_mtz( hklout_file, mtzout, project, crystal, dataset, cell, spacegroup, residues, res_range )
|
||||
print( "done" )
|
||||
|
||||
def list_of_floats(arg):
|
||||
@@ -182,6 +212,18 @@ if __name__ == "__main__":
|
||||
help="list of complete cell length and angles, e.g. 59.3,59.3,153.1,90.0,90.0,90.0. They all should be floats",
|
||||
type=list_of_floats
|
||||
)
|
||||
parser.add_argument(
|
||||
"-r",
|
||||
"--residues",
|
||||
help="number of residues for truncate, e.g., hewl = 129",
|
||||
type=int
|
||||
)
|
||||
parser.add_argument(
|
||||
"-A",
|
||||
"--resolution_range",
|
||||
help="list of 2 floats - low res then high res cut off, e.g., 50.0,1.3",
|
||||
type=list_of_floats
|
||||
)
|
||||
parser.add_argument(
|
||||
"-s",
|
||||
"--stream_file",
|
||||
@@ -200,7 +242,7 @@ if __name__ == "__main__":
|
||||
if args.stream_file:
|
||||
print( "reading stream file" )
|
||||
cell, xtals = get_mean_cell( args.stream_file )
|
||||
print( "found {0} xtats".format( xtals ) )
|
||||
print( "found {0} xtals".format( xtals ) )
|
||||
print( "mean lengths = {0}, {1}, {2} A".format( cell[0], cell[1], cell[2] ) )
|
||||
print( "mean angles = {0}, {1}, {2} deg".format( cell[3], cell[4], cell[5] ) )
|
||||
print( "# for input to make_mtz = {0},{1},{2},{3},{4},{5}".format( cell[0], cell[1], cell[2], cell[3], cell[4], cell[5] ) )
|
||||
@@ -210,11 +252,11 @@ if __name__ == "__main__":
|
||||
mtzout = args.mtzout
|
||||
else:
|
||||
mtzout = os.path.splitext( args.hklin )[0] + ".mtz"
|
||||
main( args.hklin, hklout_file, mtzout, args.project, args.crystal, args.dataset, cell, args.spacegroup )
|
||||
main( args.hklin, hklout_file, mtzout, args.project, args.crystal, args.dataset, cell, args.spacegroup, args.residues, args.resolution_range )
|
||||
if args.stream_file == None and args.use_stream == False:
|
||||
hklout_file = os.path.splitext( args.hklin )[0] + "_cut.hkl"
|
||||
if args.mtzout:
|
||||
mtzout = args.mtzout
|
||||
else:
|
||||
mtzout = os.path.splitext( args.hklin )[0] + ".mtz"
|
||||
main( args.hklin, hklout_file, mtzout, args.project, args.crystal, args.dataset, args.cell, args.spacegroup )
|
||||
main( args.hklin, hklout_file, mtzout, args.project, args.crystal, args.dataset, args.cell, args.spacegroup, args.residues, args.resolution_range )
|
||||
|
||||
@@ -16,15 +16,18 @@ python partialator.py -s <path-to-stream-file>
|
||||
-b number of resolution bins - must be > 20
|
||||
-r high-res limt. Needs a default. Default set to 1.3
|
||||
-a max-adu. Default = 12000
|
||||
-R ra reservation name if available
|
||||
|
||||
# output
|
||||
- scaled/merged files
|
||||
- an mtz file
|
||||
- useful plots
|
||||
- useful summerized .dat files
|
||||
- log file of output
|
||||
"""
|
||||
|
||||
# modules
|
||||
from sys import exit
|
||||
import pandas as pd
|
||||
import numpy as np
|
||||
import subprocess
|
||||
@@ -35,12 +38,27 @@ from tqdm import tqdm
|
||||
import regex as re
|
||||
import matplotlib.pyplot as plt
|
||||
from scipy.optimize import curve_fit
|
||||
import warnings
|
||||
warnings.filterwarnings( "ignore", category=RuntimeWarning )
|
||||
from loguru import logger
|
||||
|
||||
def submit_job( job_file ):
|
||||
def submit_job( job_file, reservation ):
|
||||
|
||||
# submit the job
|
||||
submit_cmd = ["sbatch", "--cpus-per-task=32", "--" ,job_file]
|
||||
job_output = subprocess.check_output(submit_cmd)
|
||||
if reservation:
|
||||
print( "using a ra beamtime reservation = {0}".format( reservation ) )
|
||||
logger.info( "using ra reservation to process data = {0}".format( reservation ) )
|
||||
submit_cmd = [ "sbatch", "-p", "day", "--reservation={0}".format( reservation ), "--cpus-per-task=32", "--" , job_file ]
|
||||
else:
|
||||
submit_cmd = [ "sbatch", "-p", "day", "--cpus-per-task=32", "--" , job_file ]
|
||||
logger.info( "using slurm command = {0}".format( submit_cmd ) )
|
||||
|
||||
try:
|
||||
job_output = subprocess.check_output( submit_cmd )
|
||||
logger.info( "submited job = {0}".format( job_output ) )
|
||||
except subprocess.CalledProcessError as e:
|
||||
print( "please give the correct ra reservation or remove the -R from the arguements" )
|
||||
exit()
|
||||
|
||||
# scrub job id from - example Submitted batch job 742403
|
||||
pattern = r"Submitted batch job (\d+)"
|
||||
@@ -50,17 +68,17 @@ def submit_job( job_file ):
|
||||
|
||||
def wait_for_jobs( job_ids, total_jobs ):
|
||||
|
||||
with tqdm(total=total_jobs, desc="Jobs Completed", unit="job") as pbar:
|
||||
with tqdm( total=total_jobs, desc="Jobs Completed", unit="job" ) as pbar:
|
||||
while job_ids:
|
||||
completed_jobs = set()
|
||||
for job_id in job_ids:
|
||||
status_cmd = ["squeue", "-h", "-j", str(job_id)]
|
||||
status = subprocess.check_output(status_cmd)
|
||||
status_cmd = [ "squeue", "-h", "-j", str( job_id ) ]
|
||||
status = subprocess.check_output( status_cmd )
|
||||
if not status:
|
||||
completed_jobs.add(job_id)
|
||||
pbar.update(1)
|
||||
job_ids.difference_update(completed_jobs)
|
||||
time.sleep(2)
|
||||
completed_jobs.add( job_id )
|
||||
pbar.update( 1 )
|
||||
job_ids.difference_update( completed_jobs )
|
||||
time.sleep( 2 )
|
||||
|
||||
def run_partialator( proc_dir, name, stream, pointgroup, model, iterations, cell, shells, part_h_res, adu ):
|
||||
|
||||
@@ -78,6 +96,7 @@ def run_partialator( proc_dir, name, stream, pointgroup, model, iterations, cell
|
||||
part_sh.write( " -y {0} \\\n".format( pointgroup ) )
|
||||
part_sh.write( " --model={0} \\\n".format( model ) )
|
||||
part_sh.write( " --max-adu={0} \\\n".format( adu ) )
|
||||
part_sh.write( " -j 32 \\\n" )
|
||||
part_sh.write( " --iterations={0}\n\n".format( iterations ) )
|
||||
part_sh.write( "check_hkl --shell-file=mult.dat *.hkl -p {0} --nshells={1} --highres={2} &> check_hkl.log\n".format( cell, shells, part_h_res ) )
|
||||
part_sh.write( "check_hkl --ltest --ignore-negs --shell-file=ltest.dat *.hkl -p {0} --nshells={1} --highres={2} &> ltest.log\n".format( cell, shells, part_h_res ) )
|
||||
@@ -90,6 +109,11 @@ def run_partialator( proc_dir, name, stream, pointgroup, model, iterations, cell
|
||||
# make file executable
|
||||
subprocess.call( [ "chmod", "+x", "{0}".format( part_run_file ) ] )
|
||||
|
||||
# add partialator script to log
|
||||
part_input = open( part_run_file, "r" )
|
||||
logger.info( "partialator input file =\n{0}".format( part_input.read() ) )
|
||||
part_input.close()
|
||||
|
||||
# return partialator file name
|
||||
return part_run_file
|
||||
|
||||
@@ -101,7 +125,7 @@ def make_process_dir( dir ):
|
||||
if e.errno != errno.EEXIST:
|
||||
raise
|
||||
|
||||
def summary_stats( cc_dat, ccstar_dat, mult_dat, rsplit_dat ):
|
||||
def summary_stats( cc_dat, ccstar_dat, mult_dat, rsplit_dat, wilson_dat ):
|
||||
|
||||
# read all files into pd
|
||||
# function to sort out different column names
|
||||
@@ -117,37 +141,33 @@ def summary_stats( cc_dat, ccstar_dat, mult_dat, rsplit_dat ):
|
||||
"mult", "snr", "I", "d", "min", "max" ]
|
||||
elif var == "rsplit":
|
||||
cols = [ "d(nm)", "rsplit", "nref", "d", "min", "max" ]
|
||||
elif var == "wilson":
|
||||
cols = [ "bin", "s2", "d", "lnI", "nref" ]
|
||||
|
||||
df = pd.read_csv( dat, names=cols, skiprows=1, sep="\s+" )
|
||||
|
||||
print(df)
|
||||
return df
|
||||
|
||||
|
||||
# make df
|
||||
cc_df = read_dat( cc_dat, "cc" )
|
||||
ccstar_df = read_dat( ccstar_dat, "ccstar" )
|
||||
mult_df = read_dat( mult_dat, "mult" )
|
||||
rsplit_df = read_dat( rsplit_dat, "rsplit" )
|
||||
wilson_df = read_dat( wilson_dat, "wilson" )
|
||||
|
||||
# remove unwanted cols
|
||||
cc_df = cc_df[ [ "cc" ] ]
|
||||
ccstar_df = ccstar_df[ [ "ccstar" ] ]
|
||||
rsplit_df = rsplit_df[ [ "rsplit" ] ]
|
||||
wilson_df = wilson_df[ [ "lnI" ] ]
|
||||
|
||||
# merge dfs
|
||||
stats_df = pd.concat( [ mult_df, cc_df, ccstar_df, rsplit_df ], axis=1, join="inner" )
|
||||
stats_df = pd.concat( [ mult_df, cc_df, ccstar_df, rsplit_df, wilson_df ], axis=1, join="inner" )
|
||||
|
||||
# make 1/d, 1/d^2 column
|
||||
stats_df[ "1_d" ] = 1 / stats_df.d
|
||||
stats_df[ "1_d2" ] = 1 / stats_df.d**2
|
||||
|
||||
# reorder cols
|
||||
stats_df = stats_df[ [ "1_d", "1_d2", "d", "min",
|
||||
"max", "nref", "poss",
|
||||
"comp", "obs", "mult",
|
||||
"snr", "I", "cc", "ccstar", "rsplit" ] ]
|
||||
|
||||
# change nan to 0
|
||||
stats_df = stats_df.fillna(0)
|
||||
|
||||
@@ -158,7 +178,7 @@ def get_metric( d2_series, cc_series, cut_off ):
|
||||
# Define the tanh function from scitbx
|
||||
def tanh(x, r, s0):
|
||||
z = (x - s0)/r
|
||||
return 0.5 * (1 - np.tanh(z))
|
||||
return 0.5 * ( 1 - np.tanh(z) )
|
||||
|
||||
def arctanh( y, r, s0 ):
|
||||
return r * np.arctanh( 1 - 2*y ) + s0
|
||||
@@ -171,13 +191,21 @@ def get_metric( d2_series, cc_series, cut_off ):
|
||||
|
||||
# calculate cut-off point
|
||||
cc_stat = arctanh( cut_off, r, s0 )
|
||||
|
||||
# covert back from 1/d2 to d
|
||||
cc_stat = np.sqrt( ( 1 / cc_stat ) )
|
||||
|
||||
return cc_stat
|
||||
# get curve for plotting
|
||||
cc_tanh = tanh( d2_series, r, s0 )
|
||||
|
||||
def summary_fig( stats_df ):
|
||||
return round( cc_stat, 3 ), cc_tanh
|
||||
|
||||
def summary_fig( stats_df, cc_tanh, ccstar_tanh, cc_cut, ccstar_cut ):
|
||||
|
||||
def dto1_d( x ):
|
||||
return 1/x
|
||||
|
||||
def dto1_d2( x ):
|
||||
return 1/x**2
|
||||
|
||||
# plot results
|
||||
cc_fig, axs = plt.subplots(2, 2)
|
||||
@@ -186,67 +214,57 @@ def summary_fig( stats_df ):
|
||||
# cc plot
|
||||
color = "tab:red"
|
||||
axs[0,0].set_xlabel( "1/d (1/A)" )
|
||||
axs[0,0].set_ylabel("CC" )
|
||||
axs[0,0].set_ylabel( "CC", color=color )
|
||||
axs[0,0].set_ylim( 0, 1 )
|
||||
axs[0,0].axhline(y = 0.3, color="black", linestyle = "dashed")
|
||||
axs[0,0].plot(stats_df[ "1_d" ], stats_df.cc, color=color)
|
||||
axs[0,0].tick_params(axis="y", labelcolor=color)
|
||||
axs[0,0].axhline( y = 0.3, color="black", linestyle = "dashed" )
|
||||
# plot cc
|
||||
axs[0,0].plot( stats_df[ "1_d" ], stats_df.cc, color=color )
|
||||
# plot fit
|
||||
axs[0,0].plot( stats_df[ "1_d" ], cc_tanh, color="tab:grey", linestyle = "dashed" )
|
||||
sax1 = axs[0,0].secondary_xaxis( 'top', functions=( dto1_d, dto1_d ) )
|
||||
sax1.set_xlabel('d (A)')
|
||||
axs[0,0].tick_params( axis="y", labelcolor=color )
|
||||
axs[0,0].text( 0.1, 0.1, "CC @ 0.2 = {0}".format( cc_cut ), fontsize = 8 )
|
||||
|
||||
# cc* plot
|
||||
color = "tab:blue"
|
||||
axs[0,1].set_xlabel( "1/d (1/A)" )
|
||||
axs[0,1].set_ylabel("CC*", color=color)
|
||||
axs[0,1].set_ylabel( "CC*", color=color )
|
||||
axs[0,1].set_ylim( 0, 1 )
|
||||
axs[0,1].axhline(y = 0.7, color="black", linestyle = "dashed")
|
||||
axs[0,1].plot(stats_df[ "1_d" ], stats_df.ccstar, color=color)
|
||||
axs[0,1].tick_params(axis='y', labelcolor=color)
|
||||
axs[0,1].axhline( y = 0.7, color="black", linestyle = "dashed" )
|
||||
axs[0,1].plot( stats_df[ "1_d" ], stats_df.ccstar, color=color )
|
||||
# plot fit
|
||||
axs[0,1].plot( stats_df[ "1_d" ], ccstar_tanh, color="tab:grey", linestyle = "dashed" )
|
||||
sax2 = axs[0,1].secondary_xaxis( 'top', functions=( dto1_d, dto1_d ) )
|
||||
sax2.set_xlabel('d (A)')
|
||||
axs[0,1].tick_params( axis='y', labelcolor=color )
|
||||
axs[0,1].text( 0.1, 0.1, "CC* @ 0.7 = {0}".format( ccstar_cut ) , fontsize = 8 )
|
||||
|
||||
# rsplit plot
|
||||
color = "tab:green"
|
||||
axs[1,0].set_xlabel( "1/d (1/A)" )
|
||||
axs[1,0].set_ylabel("Rsplit", color=color)
|
||||
axs[1,0].plot(stats_df[ "1_d" ], stats_df.rsplit, color=color)
|
||||
axs[1,0].tick_params(axis='y', labelcolor=color)
|
||||
axs[1,0].set_ylabel( "Rsplit", color=color )
|
||||
axs[1,0].plot( stats_df[ "1_d" ], stats_df.rsplit, color=color )
|
||||
sax3 = axs[1,0].secondary_xaxis( 'top', functions=( dto1_d, dto1_d ) )
|
||||
sax3.set_xlabel('d (A)')
|
||||
axs[1,0].tick_params( axis='y', labelcolor=color )
|
||||
|
||||
|
||||
# rsplit plot
|
||||
# wilson plot
|
||||
color = "tab:purple"
|
||||
axs[1,1].set_xlabel( "1/d (1/A)" )
|
||||
axs[1,1].set_ylabel("Multiplicity", color=color)
|
||||
axs[1,1].plot(stats_df[ "1_d" ], stats_df.mult, color=color)
|
||||
axs[1,1].tick_params(axis='y', labelcolor=color)
|
||||
axs[1,1].set_xlabel( "1/d**2 (1/A**2)" )
|
||||
axs[1,1].set_ylabel( "lnI", color=color )
|
||||
axs[1,1].plot( stats_df[ "1_d2" ], stats_df.lnI, color=color )
|
||||
sax4 = axs[1,1].secondary_xaxis( 'top', functions=( dto1_d2, dto1_d2 ) )
|
||||
sax4.set_xlabel( "d (A)" )
|
||||
axs[1,1].tick_params( axis='y', labelcolor=color )
|
||||
|
||||
# save figure
|
||||
plt.tight_layout()
|
||||
plt.savefig("plots.png")
|
||||
plt.savefig( "plots.png" )
|
||||
|
||||
def get_mean_cell( stream ):
|
||||
def main( cwd, name, stream, pointgroup, model, iterations, cell, shells, part_h_res, adu, reservation ):
|
||||
|
||||
# get uc values from stream file
|
||||
# example - Cell parameters 7.71784 7.78870 3.75250 nm, 90.19135 90.77553 90.19243 deg
|
||||
# scrub clen and return - else nan
|
||||
try:
|
||||
pattern = r"Cell\sparameters\s(\d+\.\d+)\s(\d+\.\d+)\s(\d+\.\d+)\snm,\s(\d+\.\d+)\s(\d+\.\d+)\s(\d+\.\d+)\sdeg"
|
||||
cell_lst = re.findall( pattern, stream )
|
||||
xtals = len( cell_lst )
|
||||
except AttributeError:
|
||||
return np.nan
|
||||
|
||||
cols = [ "a", "b", "c", "alpha", "beta", "gamma" ]
|
||||
cell_df = pd.DataFrame( cell_lst, columns=cols )
|
||||
|
||||
mean_a = round( cell_df.a.mean()*10, 3 )
|
||||
mean_b = round( cell_df.b.mean()*10, 3 )
|
||||
mean_c = round( cell_df.c.mean()*10, 3 )
|
||||
mean_alpha = round( cell_df.alpha.mean(), 3 )
|
||||
mean_beta = round( cell_df.beta.mean(), 3 )
|
||||
mean_gamma = round( cell_df.gamma.mean(), 3 )
|
||||
|
||||
return mean_a, mean_b, mean_c, mean_alpha, mean_beta, mean_gamma
|
||||
|
||||
def main( cwd, name, stream, pointgroup, model, iterations, cell, shells, part_h_res, adu ):
|
||||
|
||||
print( "begin job" )
|
||||
# submitted job set
|
||||
submitted_job_ids = set()
|
||||
|
||||
@@ -257,18 +275,17 @@ def main( cwd, name, stream, pointgroup, model, iterations, cell, shells, part_h
|
||||
# move to part directory
|
||||
os.chdir( part_dir )
|
||||
|
||||
print( "making partialator files" )
|
||||
print( "making partialator file" )
|
||||
# make partialator run file
|
||||
part_run_file = run_partialator( part_dir, name, stream, pointgroup, model, iterations, cell, shells, part_h_res, adu )
|
||||
|
||||
# submit job
|
||||
job_id = submit_job( part_run_file )
|
||||
job_id = submit_job( part_run_file, reservation )
|
||||
print(f"job submitted: {0}".format( job_id ) )
|
||||
submitted_job_ids.add( job_id )
|
||||
print( "DONE" )
|
||||
|
||||
# use progress bar to track job completion
|
||||
time.sleep(30)
|
||||
time.sleep(10)
|
||||
wait_for_jobs(submitted_job_ids, 1 )
|
||||
print("slurm processing done")
|
||||
|
||||
@@ -277,24 +294,27 @@ def main( cwd, name, stream, pointgroup, model, iterations, cell, shells, part_h
|
||||
ccstar_dat = "ccstar.dat"
|
||||
mult_dat = "mult.dat"
|
||||
rsplit_dat = "Rsplit.dat"
|
||||
wilson_dat = "wilson.dat"
|
||||
|
||||
# make summary data table
|
||||
stats_df = summary_stats( cc_dat, ccstar_dat, mult_dat, rsplit_dat )
|
||||
print( stats_df.to_string() )
|
||||
stats_df = summary_stats( cc_dat, ccstar_dat, mult_dat, rsplit_dat, wilson_dat )
|
||||
logger.info( "stats table from .dat file =\n{0}".format( stats_df.to_string() ) )
|
||||
print_df = stats_df[ [ "1_d", "d", "min",
|
||||
"max", "nref", "poss",
|
||||
"comp", "obs", "mult",
|
||||
"snr", "I", "rsplit", "cc", "ccstar"] ]
|
||||
"snr", "I", "rsplit", "cc", "ccstar" ] ]
|
||||
print_df.to_csv( "summary_table.csv", sep="\t", index=False )
|
||||
|
||||
# calculate cc metrics
|
||||
cc_cut = get_metric( stats_df[ "1_d2" ], stats_df.cc, 0.3 )
|
||||
ccstar_cut = get_metric( stats_df[ "1_d2" ], stats_df.ccstar, 0.7 )
|
||||
cc_cut, cc_tanh = get_metric( stats_df[ "1_d2" ], stats_df.cc, 0.3 )
|
||||
ccstar_cut, ccstar_tanh = get_metric( stats_df[ "1_d2" ], stats_df.ccstar, 0.7 )
|
||||
print( "resolution at CC0.5 at 0.3 = {0}".format( cc_cut ) )
|
||||
print( "resolution at CC* at 0.7 = {0}".format( ccstar_cut ) )
|
||||
logger.info( "resolution at CC0.5 at 0.3 = {0}".format( cc_cut ) )
|
||||
logger.info( "resolution at CC* at 0.7 = {0}".format( ccstar_cut ) )
|
||||
|
||||
# show plots
|
||||
summary_fig( stats_df )
|
||||
summary_fig( stats_df, cc_tanh, ccstar_tanh, cc_cut, ccstar_cut )
|
||||
|
||||
# move back to top dir
|
||||
os.chdir( cwd )
|
||||
@@ -361,13 +381,33 @@ if __name__ == "__main__":
|
||||
"-a",
|
||||
"--max_adu",
|
||||
help="maximum detector counts to allow. Default is 12000.",
|
||||
type=int
|
||||
type=int,
|
||||
default=12000
|
||||
)
|
||||
parser.add_argument(
|
||||
"-R",
|
||||
"--reservation",
|
||||
help="reservation name for ra cluster. Usually along the lines of P11111_2024-12-10",
|
||||
type=str,
|
||||
default=None
|
||||
)
|
||||
parser.add_argument(
|
||||
"-d",
|
||||
"--debug",
|
||||
help="output debug to terminal.",
|
||||
type=bool,
|
||||
default=False
|
||||
)
|
||||
args = parser.parse_args()
|
||||
# set loguru
|
||||
if not args.debug:
|
||||
logger.remove()
|
||||
logfile = "{0}.log".format( args.name )
|
||||
logger.add( logfile, format="{message}", level="INFO")
|
||||
# run main
|
||||
cwd = os.getcwd()
|
||||
print( "top working directory = {0}".format( cwd ) )
|
||||
main( cwd, args.name, args.stream_file, args.pointgroup, args.model, args.iterations, args.cell_file, args.bins, args.resolution, args.max_adu )
|
||||
main( cwd, args.name, args.stream_file, args.pointgroup, args.model, args.iterations, args.cell_file, args.bins, args.resolution, args.max_adu, args.reservation )
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -52,7 +52,7 @@ def scrub_res( stream ):
|
||||
# example - diffraction_resolution_limit = 4.07 nm^-1 or 2.46 A
|
||||
# scrub res_lst or return np.nan
|
||||
try:
|
||||
pattern = r"diffraction_resolution_limit\s=\s\d\.\d+\snm\^-1\sor\s(\d\.\d+)\sA"
|
||||
pattern = r"diffraction_resolution_limit\s=\s\d\.\d+\snm\^-1\sor\s(\d+\.\d+)\sA"
|
||||
res_lst = re.findall( pattern, stream )
|
||||
if AttributeError:
|
||||
return res_lst
|
||||
|
||||
Reference in New Issue
Block a user