rm 16M as now works for Cristallina and Alvra
This commit is contained in:
@@ -4,6 +4,7 @@
|
|||||||
|
|
||||||
"""
|
"""
|
||||||
# aim
|
# aim
|
||||||
|
- -16M=varient for large detectors
|
||||||
make image file to input into pyFAI for initial detector beam-centre and detector distance calibration
|
make image file to input into pyFAI for initial detector beam-centre and detector distance calibration
|
||||||
refer to Cristallina8M-calibration for complete protocol
|
refer to Cristallina8M-calibration for complete protocol
|
||||||
https://docs.google.com/document/d/1RoeUUogvRxX4M6uqGwkjf3dVJBabiMUx4ZxwcA5e9Dc/edit#
|
https://docs.google.com/document/d/1RoeUUogvRxX4M6uqGwkjf3dVJBabiMUx4ZxwcA5e9Dc/edit#
|
||||||
@@ -36,25 +37,46 @@ import argparse
|
|||||||
def convert_image( path_to_json, jungfrau, name ):
|
def convert_image( path_to_json, jungfrau, name ):
|
||||||
|
|
||||||
# opens scan
|
# opens scan
|
||||||
|
print( "opening scane" )
|
||||||
scan = SFScanInfo( path_to_json )
|
scan = SFScanInfo( path_to_json )
|
||||||
|
|
||||||
# step through scan and average files from each positions
|
# steps in scane
|
||||||
mean_image = []
|
nsteps = len(scan)
|
||||||
for step in tqdm( enumerate(scan) ):
|
|
||||||
# step is a SFDataFiles object
|
|
||||||
subset = step[1]
|
|
||||||
mean = np.mean( subset[ jungfrau ].data, axis=0 )
|
|
||||||
mean_image.append(mean)
|
|
||||||
|
|
||||||
|
# define step ch and im_shape
|
||||||
|
step = scan[0]
|
||||||
|
ch = step[jungfrau]
|
||||||
|
img_shape = ch[0].shape
|
||||||
|
|
||||||
|
print("stepping through scan and averaging images at each step")
|
||||||
|
# step through scan and average files from each positions
|
||||||
|
imgs_shape = (nsteps, *img_shape)
|
||||||
|
imgs = np.empty(imgs_shape)
|
||||||
|
for i, subset in tqdm(enumerate(scan)):
|
||||||
|
|
||||||
|
# go through data in_batches so you don't run out of memory
|
||||||
|
ch = subset[jungfrau]
|
||||||
|
mean = np.zeros(img_shape)
|
||||||
|
for _indices, batch in ch.in_batches(size=2):
|
||||||
|
mean += np.mean(batch, axis=0)
|
||||||
|
|
||||||
|
# take mean of means for batch opened data
|
||||||
|
imgs[i] = mean
|
||||||
|
|
||||||
|
print( "done" )
|
||||||
# sum averaged imaged
|
# sum averaged imaged
|
||||||
sum_image = np.sum( mean_image, axis=0 )
|
print( "final average" )
|
||||||
|
mean_image = imgs.mean(axis=0)
|
||||||
|
print("done")
|
||||||
|
|
||||||
# output to file
|
# output to file
|
||||||
np.save( "{0}.npy".format( name ), sum_image )
|
print( "saving to .npy = {0}".format( name ) )
|
||||||
|
np.save( "{0}.npy".format( name ), mean_image )
|
||||||
|
print( "done" )
|
||||||
|
|
||||||
# create plot of summed, averaged scan
|
# create plot of summed, averaged scan
|
||||||
fig, ax = plt.subplots()
|
fig, ax = plt.subplots()
|
||||||
ax.imshow(sum_image, vmin=0, vmax=1000)
|
ax.imshow(mean_image, vmin=0, vmax=1000)
|
||||||
plt.show()
|
plt.show()
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
@@ -78,7 +100,7 @@ if __name__ == "__main__":
|
|||||||
"--name",
|
"--name",
|
||||||
help="name of output file",
|
help="name of output file",
|
||||||
type=str,
|
type=str,
|
||||||
default="sum_mean_scan"
|
default="mean_scan"
|
||||||
)
|
)
|
||||||
args = parser.parse_args()
|
args = parser.parse_args()
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user