From 492879592caab840753e9598300f1da5d69c5c7d Mon Sep 17 00:00:00 2001 From: Beale John Henry Date: Wed, 22 Mar 2023 14:10:38 +0100 Subject: [PATCH] rm 16M as now works for Cristallina and Alvra --- pyfai-tools/convert-scan-for-pyfai.py | 44 ++++++++++++++++++++------- 1 file changed, 33 insertions(+), 11 deletions(-) diff --git a/pyfai-tools/convert-scan-for-pyfai.py b/pyfai-tools/convert-scan-for-pyfai.py index 0418aac..436fddf 100644 --- a/pyfai-tools/convert-scan-for-pyfai.py +++ b/pyfai-tools/convert-scan-for-pyfai.py @@ -4,6 +4,7 @@ """ # aim + - -16M=varient for large detectors make image file to input into pyFAI for initial detector beam-centre and detector distance calibration refer to Cristallina8M-calibration for complete protocol https://docs.google.com/document/d/1RoeUUogvRxX4M6uqGwkjf3dVJBabiMUx4ZxwcA5e9Dc/edit# @@ -36,25 +37,46 @@ import argparse def convert_image( path_to_json, jungfrau, name ): # opens scan + print( "opening scane" ) scan = SFScanInfo( path_to_json ) - # step through scan and average files from each positions - mean_image = [] - for step in tqdm( enumerate(scan) ): - # step is a SFDataFiles object - subset = step[1] - mean = np.mean( subset[ jungfrau ].data, axis=0 ) - mean_image.append(mean) + # steps in scane + nsteps = len(scan) + # define step ch and im_shape + step = scan[0] + ch = step[jungfrau] + img_shape = ch[0].shape + + print("stepping through scan and averaging images at each step") + # step through scan and average files from each positions + imgs_shape = (nsteps, *img_shape) + imgs = np.empty(imgs_shape) + for i, subset in tqdm(enumerate(scan)): + + # go through data in_batches so you don't run out of memory + ch = subset[jungfrau] + mean = np.zeros(img_shape) + for _indices, batch in ch.in_batches(size=2): + mean += np.mean(batch, axis=0) + + # take mean of means for batch opened data + imgs[i] = mean + + print( "done" ) # sum averaged imaged - sum_image = np.sum( mean_image, axis=0 ) + print( "final average" ) + mean_image = imgs.mean(axis=0) + print("done") # output to file - np.save( "{0}.npy".format( name ), sum_image ) + print( "saving to .npy = {0}".format( name ) ) + np.save( "{0}.npy".format( name ), mean_image ) + print( "done" ) # create plot of summed, averaged scan fig, ax = plt.subplots() - ax.imshow(sum_image, vmin=0, vmax=1000) + ax.imshow(mean_image, vmin=0, vmax=1000) plt.show() if __name__ == "__main__": @@ -78,7 +100,7 @@ if __name__ == "__main__": "--name", help="name of output file", type=str, - default="sum_mean_scan" + default="mean_scan" ) args = parser.parse_args()