initial scripts to analyse the detector distance
This commit is contained in:
155
distance-refinement.py
Normal file
155
distance-refinement.py
Normal file
@@ -0,0 +1,155 @@
|
||||
|
||||
|
||||
# modules
|
||||
import pandas as pd
|
||||
import subprocess
|
||||
import os, errno
|
||||
import regex as re
|
||||
import numpy as np
|
||||
|
||||
def h5_sample( lst, sample ):
|
||||
|
||||
# create sample of images from run
|
||||
# read h5.lst - note - removes // from imade column
|
||||
cols = [ "h5", "image" ]
|
||||
sample_df = pd.read_csv( lst, sep="\s//", engine="python", names=cols )
|
||||
|
||||
# take defined sample
|
||||
sample_df = sample_df.sample( sample )
|
||||
|
||||
# sort list
|
||||
sample_df = sample_df.sort_index()
|
||||
|
||||
# re-add // to image columm
|
||||
sample_df[ "image" ] = "//" + sample_df.image.astype(str)
|
||||
|
||||
# write sample to file
|
||||
sample_file = "h5_{0}_sample.lst".format( sample )
|
||||
sample_df.to_csv( sample_file, sep=" ", index=False, header=False )
|
||||
|
||||
# return sample file name
|
||||
return sample_file
|
||||
|
||||
def geom_amend( lab6_geom_file, clen ):
|
||||
|
||||
# read lab6 geom
|
||||
lab6_geom = open( lab6_geom_file, "r" )
|
||||
|
||||
# use regex to find clen and replace with new
|
||||
# clen example => clen = 0.1217
|
||||
clen_geom = re.sub( "clen = 0\.\d+", "clen = {0}".format( clen ), lab6_geom.read() )
|
||||
|
||||
# close lab6 geom file
|
||||
lab6_geom.close()
|
||||
|
||||
# write new clen_geom to file
|
||||
clen_geom_file = "{0}.geom".format( clen )
|
||||
geom = open( clen_geom_file, "w" )
|
||||
geom.write( clen_geom )
|
||||
geom.close()
|
||||
|
||||
# return clen_geom file name
|
||||
return clen_geom_file
|
||||
|
||||
def write_crystfel_run( clen, sample_h5_file, clen_geom_file, cell_file ):
|
||||
|
||||
# crystfel file name
|
||||
cryst_run_file = "{0}_cryst_run.sh".format( clen )
|
||||
|
||||
# write file
|
||||
run_sh = open( cryst_run_file, "w" )
|
||||
run_sh.write( "#!/bin/sh\n\n" )
|
||||
run_sh.write( "module purge\n" )
|
||||
run_sh.write( "module load crystfel/0.10.2\n" )
|
||||
# run_sh.write( "module use MX unstable\n" )
|
||||
# run_sh.write( "module load gcc/4.8.5 hdf5_serial/1.10.3 xds/20210205 DirAx/1.17 pinkindexer/2021.08\n" )
|
||||
# run_sh.write( "module load xgandalf/2021.08 fdip/2021.08 mosflm/7.3.0 crystfel/0.10.0 HDF5_bitshuffle/2018.05 HDF5_LZ4/2018.05 ccp4\n\n" )
|
||||
run_sh.write( "indexamajig -i {0} \\\n".format( sample_h5_file ) )
|
||||
run_sh.write( " --output={0}.stream \\\n".format( clen ) )
|
||||
run_sh.write( " --geometry={0}\\\n".format( clen_geom_file ) )
|
||||
run_sh.write( " --pdb={0} \\\n".format( cell_file ) )
|
||||
run_sh.write( " --indexing=xgandalf-latt-cell --peaks=peakfinder8 \\\n" )
|
||||
run_sh.write( " --integration=rings-grad --tolerance=10.0,10.0,10.0,2,3,2 --threshold=10 --min-snr=5 --int-radius=2,3,6 \\\n" )
|
||||
run_sh.write( " -j 36 --no-multi --no-retry --check-peaks --max-res=3000 --min-pix-count=1 --local-bg-radius=4 --min-res=85\n\n" )
|
||||
run_sh.close()
|
||||
|
||||
# make file executable
|
||||
subprocess.call( [ "chmod", "+x", "{0}".format( cryst_run_file ) ] )
|
||||
|
||||
# return crystfel file name
|
||||
return cryst_run_file
|
||||
|
||||
def main( lst, sample, lab6_geom_file, centre_clen, cell_file, steps, scan_name, step_size ):
|
||||
|
||||
# set current working directory
|
||||
cwd = os.getcwd()
|
||||
|
||||
# make sample list
|
||||
print( "making {0} sample of images".format( sample ) )
|
||||
sample_h5 = h5_sample( lst, sample)
|
||||
sample_h5_file = "{0}/{1}".format( cwd, sample_h5 )
|
||||
print( "done" )
|
||||
|
||||
# make list of clen steps above and below the central clen
|
||||
print( "make clen array around {0}".format( centre_clen ) )
|
||||
step_range = step_size*steps
|
||||
bottom_step = centre_clen-step_range/2
|
||||
top_step = bottom_step+step_range
|
||||
step_range = np.arange( bottom_step, top_step, step_size )
|
||||
step_range = step_range.round( 4 ) # important - otherwise np gives your .99999999 instead of 1 somethimes
|
||||
print( "done" )
|
||||
|
||||
# make directorys for results
|
||||
print( "begin CrystFEL anaylsis of different clens" )
|
||||
|
||||
# loop to cycle through clen steps
|
||||
for clen in step_range:
|
||||
|
||||
# move back to cwd
|
||||
os.chdir( cwd )
|
||||
|
||||
print( "processing clen = {0}".format( clen ) )
|
||||
# define process directory
|
||||
proc_dir = "{0}/{1}/{2}".format( cwd, scan_name, clen )
|
||||
|
||||
# make process directory
|
||||
try:
|
||||
os.makedirs( proc_dir )
|
||||
except OSError as e:
|
||||
if e.errno != errno.EEXIST:
|
||||
raise
|
||||
|
||||
# move to process directory
|
||||
os.chdir( proc_dir )
|
||||
|
||||
# make geom file
|
||||
print( "amend .geom file" )
|
||||
clen_geom_file = geom_amend( lab6_geom_file, clen )
|
||||
print( "done" )
|
||||
|
||||
# make crystfel run file
|
||||
print( "make crystfel file" )
|
||||
cryst_run_file = write_crystfel_run( clen, sample_h5_file, clen_geom_file, cell_file )
|
||||
print( "done" )
|
||||
|
||||
# run crystfel file
|
||||
print( "run crystFEL" )
|
||||
#subprocess.call( [ "./{0}".format( cryst_run_file ) ] )
|
||||
subprocess.call( [ "sbatch", "-p", "day", "--cpus-per-task=32", "--", "./{0}".format( cryst_run_file ) ] )
|
||||
print( "done" )
|
||||
|
||||
#subprocess.call( [ "sbatch", "-p", "day", "--cpus-per-task=32", "--", "run{0}.sh".format( run.zfill(4) ) ] )
|
||||
|
||||
# variables
|
||||
sample = 500
|
||||
lst = "/sf/cristallina/data/p20590/work/process/jhb/detector_refinement/acq0001.JF17T16V01.dark.lst"
|
||||
lab6_geom_file = "/sf/cristallina/data/p20590/work/process/jhb/detector_refinement/8M_p-op_c-op_p20590.geom"
|
||||
centre_clen = 0.122 # in m
|
||||
cell_file = "/sf/cristallina/data/p20590/work/process/jhb/detector_refinement/hewl.cell"
|
||||
steps = 10
|
||||
scan_name = "fine_scan"
|
||||
step_size = 0.0005 # m - 0.001 = coarse scan, 0.0005 = fine
|
||||
|
||||
main( lst, sample, lab6_geom_file, centre_clen, cell_file, steps, scan_name, step_size )
|
||||
|
||||
|
||||
155
distance-scan-analysis.py
Normal file
155
distance-scan-analysis.py
Normal file
@@ -0,0 +1,155 @@
|
||||
|
||||
|
||||
# modules
|
||||
import pandas as pd
|
||||
import regex as re
|
||||
import os
|
||||
import numpy as np
|
||||
import matplotlib.pyplot as plt
|
||||
|
||||
|
||||
def scrub_clen( stream_pwd ):
|
||||
|
||||
# get clen from stream name
|
||||
# example - /sf/cristallina/data/p20590/work/process/jhb/detector_refinement/coarse_scan/0.115/0.115.stream
|
||||
# scrub clen and return - else nan
|
||||
try:
|
||||
pattern = r"0\.\d+/(0\.\d+)\.stream"
|
||||
re_search = re.search( pattern, stream_pwd )
|
||||
clen = re_search.group( 1 )
|
||||
if AttributeError:
|
||||
return float( clen )
|
||||
except AttributeError:
|
||||
return np.nan
|
||||
|
||||
def find_streams( top_dir ):
|
||||
|
||||
# create df for streams
|
||||
stream_df = pd.DataFrame()
|
||||
|
||||
# search for all files that end with .stream
|
||||
|
||||
for path, dirs, files in os.walk( top_dir ):
|
||||
for name in files:
|
||||
if name.endswith( ".stream" ):
|
||||
|
||||
# get stream pwd
|
||||
stream_pwd = os.path.join( path, name )
|
||||
|
||||
# scrub clen from stream
|
||||
clen = scrub_clen( stream_pwd )
|
||||
|
||||
# put clen and stream pwd into df
|
||||
data = [ { "stream_pwd" : stream_pwd,
|
||||
"clen" : clen
|
||||
} ]
|
||||
stream_df_1 = pd.DataFrame( data )
|
||||
stream_df = pd.concat( ( stream_df, stream_df_1 ) )
|
||||
|
||||
# sort df based on clen
|
||||
stream_df = stream_df.sort_values( by="clen" )
|
||||
|
||||
# reset df index
|
||||
stream_df = stream_df.reset_index( drop=True )
|
||||
|
||||
# return df of streams and clens
|
||||
return stream_df
|
||||
|
||||
def scrub_us( stream ):
|
||||
|
||||
# get uc values from stream file
|
||||
# example - Cell parameters 7.71784 7.78870 3.75250 nm, 90.19135 90.77553 90.19243 deg
|
||||
# scrub clen and return - else nan
|
||||
try:
|
||||
pattern = r"Cell\sparameters\s(\d\.\d+)\s(\d\.\d+)\s(\d\.\d+)\snm,\s(\d+\.\d+)\s(\d+\.\d+)\s(\d+\.\d+)\sdeg"
|
||||
cells = re.findall( pattern, stream )
|
||||
if AttributeError:
|
||||
return cells
|
||||
except AttributeError:
|
||||
return np.nan
|
||||
|
||||
def main( top_dir ):
|
||||
|
||||
# find stream files from process directory
|
||||
print( "finding stream files" )
|
||||
stream_df = find_streams( top_dir )
|
||||
print( "done" )
|
||||
|
||||
# making results df for unit cell and index no.
|
||||
results_df = pd.DataFrame()
|
||||
|
||||
# loop through stream files and collect unit_cell information
|
||||
print( "looping through stream files to collect unit cell, indexed information" )
|
||||
for index, row in stream_df.iterrows():
|
||||
|
||||
stream_pwd, clen = row[ "stream_pwd" ], row[ "clen" ]
|
||||
|
||||
# open stream file
|
||||
print( "scrubbing stream for clen={0}".format( clen ) )
|
||||
stream = open( stream_pwd, "r" ).read()
|
||||
|
||||
# scrub unit cell information
|
||||
cells = scrub_us( stream )
|
||||
|
||||
# put cells in df
|
||||
cols = [ "a", "b", "c", "alpha", "beta", "gamma" ]
|
||||
cells_df = pd.DataFrame( cells, columns=cols )
|
||||
cells_df = cells_df.astype( float )
|
||||
|
||||
# calc stats
|
||||
indexed = len( cells_df )
|
||||
std_a = cells_df.a.std()
|
||||
std_b = cells_df.b.std()
|
||||
std_c = cells_df.c.std()
|
||||
|
||||
# put stats in results df
|
||||
stats = [ { "clen" : clen,
|
||||
"indexed" : indexed,
|
||||
"std_a" : std_a,
|
||||
"std_b" : std_b,
|
||||
"std_c" : std_c
|
||||
} ]
|
||||
results_df_1 = pd.DataFrame( stats )
|
||||
results_df = pd.concat( ( results_df, results_df_1 ) )
|
||||
|
||||
print( "done" )
|
||||
|
||||
# reset index
|
||||
results_df = results_df.reset_index( drop=True )
|
||||
|
||||
# plot results
|
||||
fig, ax1 = plt.subplots()
|
||||
|
||||
# indexed images plot
|
||||
color = "tab:red"
|
||||
ax1.set_xlabel( "clen" )
|
||||
ax1.set_ylabel( "indexed", color=color )
|
||||
ax1.plot( results_df.clen, results_df.indexed, color=color)
|
||||
ax1.tick_params( axis="y", labelcolor=color)
|
||||
|
||||
# instantiate a second axes that shares the same x-axis
|
||||
ax2 = ax1.twinx()
|
||||
|
||||
# std_a plot
|
||||
color = "tab:blue"
|
||||
ax2.set_ylabel( "st.deviation", color=color )
|
||||
ax2.plot( results_df.clen, results_df.std_a, color=color )
|
||||
ax2.tick_params(axis='y', labelcolor=color)
|
||||
|
||||
# std_b plot
|
||||
ax2.plot( results_df.clen, results_df.std_b, color=color )
|
||||
ax2.tick_params(axis='y', labelcolor=color)
|
||||
|
||||
# std_b plot
|
||||
ax2.plot( results_df.clen, results_df.std_c, color=color )
|
||||
ax2.tick_params(axis='y', labelcolor=color)
|
||||
|
||||
fig.tight_layout() # otherwise the right y-label is slightly clipped
|
||||
plt.show()
|
||||
|
||||
|
||||
# variables
|
||||
top_dir = "/sf/cristallina/data/p20590/work/process/jhb/detector_refinement/coarse_scan"
|
||||
|
||||
|
||||
main( top_dir )
|
||||
Reference in New Issue
Block a user