Files
PBSwissMX/matlab/StateSpaceControlDesign.m
2018-10-10 17:15:36 +02:00

167 lines
3.2 KiB
Matlab

%http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction&section=ControlStateSpace
%zustandsregler:
% web(fullfile(docroot, 'simulink/examples.html'))
% web(fullfile(docroot, 'simulink/examples/inverted-pendulum-with-animation.html'))
% web(fullfile(docroot, 'simulink/examples/double-spring-mass-system.html'))
function [Nbar,A,B,C,D,Ao,Bo,Co,Do,L,K]=StateSpaceControlDesign(mot,motid)
sys=mot.ss;
sys=ss(sys.A,sys.B,sys.C(3,:),0); % $$$ only output position
%sys=ss(tf(mot1.mdl.num1,mot1.mdl.den1));
%A=sys.A;
%B=sys.B;
%C=sys.C;
%[A,B,C,D]=tf2ss(mot1.mdl.num1,mot1.mdl.den1)
%tf2ss(mot1.mdl.num1,mot1.mdl.den1)
figure();h=bodeplot(sys);
setoptions(h,'IOGrouping','all')
A=sys.A;
B=sys.B;
C=sys.C;
D=sys.D;
P=ctrb(A,B);
if rank(A)==rank(P)
disp('sys controlable')
else
disp('sys not controlable')
end
Q=obsv(A,C);
if rank(A)==rank(Q)
disp('sys observable')
else
disp('sys not observable')
end
t = 0:1E-4:.5;
u = ones(size(t)); %1000um
x0 = zeros(1,length(sys.A));
[y,t,x] = lsim(sys,u,t,x0);
figure();plot(t,y)
poles = eig(A);
if motid==1
p1=-3300+2800i;
p2=-1500+500i;
p3=-1200+10i;
P=[p1 p1' p2 p2' p3 p3'];
else
end
K = place(A,B,P);
%K = acker(A,B,P);
%K = acker(A,B,[p1 p1' p2 p2' p3 p3']);
%K = place(A,B,[p1 p1']);
%Nbar = rscale(sys,K);
%Nbar=1;
Nbar=-1./(C*(A-B*K)^-1*B); %from my notes)
%Nbar(2)=1; %the voltage stuff is crap for now
if length(Nbar)>1
Nbar=Nbar(3); % only the position scaling needed
end
sys_cl = ss(A-B*K,B,C,0);
[y,t,x]=lsim(sys_cl,Nbar*u,t,x0);
figure();plot(t,y)
%observer poles-> 5 times farther left than system poles
if motid==1
op1=(p1*5);
op2=(p2*5);
op3=(p3*5);
OP=[op1 op1' op2 op2' op3 op3'];
else
end
L=place(A',C',OP)';
At = [ A-B*K B*K
zeros(size(A)) A-L*C ];
Bt = [ B*Nbar
zeros(size(B)) ];
Ct = [ C zeros(size(C)) ];
sys = ss(At,Bt,Ct,0);
lsim(sys,ones(size(t)),t,[x0 x0]);
%https://www.youtube.com/watch?v=Lax3etc837U
Ao=A-L*C;
Bo=[B L];
Co=K;
Do=zeros(size(Co,1),size(Bo,2));
mdlName='observer';
open(mdlName)
end
function SCRATCH()
A = [ 0 1 0
980 0 -2.8
0 0 -100 ];
B = [ 0
0
100 ];
C = [ 1 0 0 ];
poles = eig(A)
t = 0:0.01:2;
u = zeros(size(t));
x0 = [0.01 0 0];
sys = ss(A,B,C,0);
[y,t,x] = lsim(sys,u,t,x0);
plot(t,y)
title('Open-Loop Response to Non-Zero Initial Condition')
xlabel('Time (sec)')
ylabel('Ball Position (m)')
p1 = -10 + 10i;
p2 = -10 - 10i;
p3 = -50;
K = place(A,B,[p1 p2 p3]);
sys_cl = ss(A-B*K,B,C,0);
lsim(sys_cl,u,t,x0);
xlabel('Time (sec)')
ylabel('Ball Position (m)')
p1 = -20 + 20i;
p2 = -20 - 20i;
p3 = -100;
K = place(A,B,[p1 p2 p3]);
sys_cl = ss(A-B*K,B,C,0);
lsim(sys_cl,u,t,x0);
xlabel('Time (sec)')
ylabel('Ball Position (m)')
t = 0:0.01:2;
u = 0.001*ones(size(t));
sys_cl = ss(A-B*K,B,C,0);
lsim(sys_cl,u,t);
xlabel('Time (sec)')
ylabel('Ball Position (m)')
axis([0 2 -4E-6 0])
Nbar = rscale(sys,K)
lsim(sys_cl,Nbar*u,t)
title('Linear Simulation Results (with Nbar)')
xlabel('Time (sec)')
ylabel('Ball Position (m)')
axis([0 2 0 1.2*10^-3])
end