%http://ctms.engin.umich.edu/CTMS/index.php?example=Introduction§ion=ControlStateSpace %zustandsregler: % web(fullfile(docroot, 'simulink/examples.html')) % web(fullfile(docroot, 'simulink/examples/inverted-pendulum-with-animation.html')) % web(fullfile(docroot, 'simulink/examples/double-spring-mass-system.html')) function [Nbar,A,B,C,D,Ao,Bo,Co,Do,L,K]=StateSpaceControlDesign(mot,motid) sys=mot.ss; sys=ss(sys.A,sys.B,sys.C(3,:),0); % $$$ only output position %sys=ss(tf(mot1.mdl.num1,mot1.mdl.den1)); %A=sys.A; %B=sys.B; %C=sys.C; %[A,B,C,D]=tf2ss(mot1.mdl.num1,mot1.mdl.den1) %tf2ss(mot1.mdl.num1,mot1.mdl.den1) figure();h=bodeplot(sys); setoptions(h,'IOGrouping','all') A=sys.A; B=sys.B; C=sys.C; D=sys.D; P=ctrb(A,B); if rank(A)==rank(P) disp('sys controlable') else disp('sys not controlable') end Q=obsv(A,C); if rank(A)==rank(Q) disp('sys observable') else disp('sys not observable') end t = 0:1E-4:.5; u = ones(size(t)); %1000um x0 = zeros(1,length(sys.A)); [y,t,x] = lsim(sys,u,t,x0); figure();plot(t,y) poles = eig(A); if motid==1 p1=-3300+2800i; p2=-1500+500i; p3=-1200+10i; P=[p1 p1' p2 p2' p3 p3']; else end K = place(A,B,P); %K = acker(A,B,P); %K = acker(A,B,[p1 p1' p2 p2' p3 p3']); %K = place(A,B,[p1 p1']); %Nbar = rscale(sys,K); %Nbar=1; Nbar=-1./(C*(A-B*K)^-1*B); %from my notes) %Nbar(2)=1; %the voltage stuff is crap for now if length(Nbar)>1 Nbar=Nbar(3); % only the position scaling needed end sys_cl = ss(A-B*K,B,C,0); [y,t,x]=lsim(sys_cl,Nbar*u,t,x0); figure();plot(t,y) %observer poles-> 5 times farther left than system poles if motid==1 op1=(p1*5); op2=(p2*5); op3=(p3*5); OP=[op1 op1' op2 op2' op3 op3']; else end L=place(A',C',OP)'; At = [ A-B*K B*K zeros(size(A)) A-L*C ]; Bt = [ B*Nbar zeros(size(B)) ]; Ct = [ C zeros(size(C)) ]; sys = ss(At,Bt,Ct,0); lsim(sys,ones(size(t)),t,[x0 x0]); %https://www.youtube.com/watch?v=Lax3etc837U Ao=A-L*C; Bo=[B L]; Co=K; Do=zeros(size(Co,1),size(Bo,2)); mdlName='observer'; open(mdlName) end function SCRATCH() A = [ 0 1 0 980 0 -2.8 0 0 -100 ]; B = [ 0 0 100 ]; C = [ 1 0 0 ]; poles = eig(A) t = 0:0.01:2; u = zeros(size(t)); x0 = [0.01 0 0]; sys = ss(A,B,C,0); [y,t,x] = lsim(sys,u,t,x0); plot(t,y) title('Open-Loop Response to Non-Zero Initial Condition') xlabel('Time (sec)') ylabel('Ball Position (m)') p1 = -10 + 10i; p2 = -10 - 10i; p3 = -50; K = place(A,B,[p1 p2 p3]); sys_cl = ss(A-B*K,B,C,0); lsim(sys_cl,u,t,x0); xlabel('Time (sec)') ylabel('Ball Position (m)') p1 = -20 + 20i; p2 = -20 - 20i; p3 = -100; K = place(A,B,[p1 p2 p3]); sys_cl = ss(A-B*K,B,C,0); lsim(sys_cl,u,t,x0); xlabel('Time (sec)') ylabel('Ball Position (m)') t = 0:0.01:2; u = 0.001*ones(size(t)); sys_cl = ss(A-B*K,B,C,0); lsim(sys_cl,u,t); xlabel('Time (sec)') ylabel('Ball Position (m)') axis([0 2 -4E-6 0]) Nbar = rscale(sys,K) lsim(sys_cl,Nbar*u,t) title('Linear Simulation Results (with Nbar)') xlabel('Time (sec)') ylabel('Ball Position (m)') axis([0 2 0 1.2*10^-3]) end