wip
This commit is contained in:
@@ -177,21 +177,21 @@ $s \cdot iqMeas =\frac{1}{L}iqVolts - \frac{R}{L}iqMeas$\\
|
||||
|
||||
Input: Force $u(t)=F$\\
|
||||
Output: Position $y(t)=x_1(t)$\\
|
||||
total mass $m=m_1+m_2+\ldots+m_n$\\
|
||||
damping: $d_1 \ldots d_n$\\
|
||||
springs: $k_1 \ldots k_n$\\
|
||||
mass $m=m_1+m_2+\ldots+m_n$\\
|
||||
damping: $d=d_1+d_2+\ldots+d_n$\\
|
||||
springs: $k=k_1+k_2+\ldots+k_n$\\
|
||||
|
||||
\eqref{mech1} shows the mechanical differential equations:
|
||||
|
||||
\begin{equation}
|
||||
\begin{aligned}
|
||||
m_1\ddot{x}_1 = & u(t) -k_1x_1-d_1\dot{x}_1\\
|
||||
& + k_2x_2+d_2\dot{x}_2
|
||||
+ k_3x_3+d_3\dot{x}_3
|
||||
+ k_4x_4+d_4\dot{x}_4\\
|
||||
m_2\ddot{x}_2= & -k_2x_2-d_2\dot{x}_2\\
|
||||
m_3\ddot{x}_3= & -k_3x_3-d_3\dot{x}_3\\
|
||||
m_4\ddot{x}_4= & -k_4x_4-d_4\dot{x}_4\\
|
||||
& + k_2(x_2-x_1)+d_2(\dot{x}_2-\dot{x}_1)
|
||||
+ k_3(x_3-x_1)+d_3(\dot{x}_3-\dot{x}_1)
|
||||
+ k_4(x_4-x_1)+d_4(\dot{x}_4-\dot{x}_1)\\
|
||||
m_2\ddot{x}_2= & k_2(x_2-x_1)+d_2(\dot{x}_2-\dot{x}_1)\\
|
||||
m_3\ddot{x}_3= & k_3(x_3-x_1)+d_3(\dot{x}_3-\dot{x}_1)\\
|
||||
m_4\ddot{x}_4= & k_4(x_4-x_1)+d_4(\dot{x}_4-\dot{x}_1)\\
|
||||
\end{aligned}\label{mech1}
|
||||
\end{equation}
|
||||
|
||||
@@ -230,19 +230,19 @@ x_4\\
|
||||
A=
|
||||
\begin{bmatrix}
|
||||
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\
|
||||
-\frac{k_1}{m_1} & -\frac{d_1}{m_1} & -\frac{k_2}{m_1} & -\frac{d_2}{m_1} & -\frac{k_3}{m_1} & -\frac{d_3}{m_1} & -\frac{k_4}{m_1} & -\frac{d_4}{m_1}\\
|
||||
-\frac{k}{m_1} & -\frac{d}{m_1} & \frac{k_2}{m_1} & \frac{d_2}{m_1} & \frac{k_3}{m_1} & \frac{d_3}{m_1} & \frac{k_4}{m_1} & \frac{d_4}{m_1}\\
|
||||
|
||||
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\
|
||||
0 & 0 & -\frac{k_2}{m_1} & -\frac{d_2}{m_2} & 0 & 0 & 0 & 0 \\
|
||||
-\frac{k_1}{m_2} & -\frac{d_1}{m_2} & \frac{k_2}{m_2} & \frac{d_2}{m_2} & 0 & 0 & 0 & 0 \\
|
||||
|
||||
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\
|
||||
0 & 0 & 0 & 0 & -\frac{k_3}{m_1} & -\frac{d_3}{m_3} & 0 & 0 \\
|
||||
-\frac{k_1}{m_3} & -\frac{d_1}{m_3} & 0 & 0 & \frac{k_3}{m_1} & \frac{d_3}{m_3} & 0 & 0 \\
|
||||
|
||||
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\
|
||||
0 & 0 & 0 & 0 & 0 & 0 & -\frac{k_4}{m_1} & -\frac{d_4}{m_4} \\
|
||||
-\frac{k_1}{m_4} & -\frac{d_1}{m_4} & 0 & 0 & 0 & 0 & \frac{k_4}{m_1} & \frac{d_4}{m_4} \\
|
||||
\end{bmatrix},\quad
|
||||
B=\begin{bmatrix}
|
||||
\frac{1}{m} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\\
|
||||
\frac{1}{m_1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\\
|
||||
\end{bmatrix}
|
||||
%,\quad
|
||||
%C=\begin{bmatrix}
|
||||
@@ -252,10 +252,51 @@ B=\begin{bmatrix}
|
||||
\label{mech2}
|
||||
\end{equation}
|
||||
|
||||
\subsection{Stage data}
|
||||
|
||||
This data comes from datasheets and construction information [biblio: 'Dynamics of Parker Stage', Wayne Glettig 5.12.2018].
|
||||
|
||||
\begin{tabular}{|r|l|}
|
||||
\hline
|
||||
Stage Y mass& 340g \\
|
||||
Stage X mass& 950g \\
|
||||
Interferometer mirrors & 51g (additional)\\
|
||||
Aluminun (instead ABS) & 42g (additional)\\
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\vspace{1pc}
|
||||
|
||||
\begin{tabular}{|r|c|l|}
|
||||
\hline
|
||||
Continous force && 5.51N \\
|
||||
Peak force && 12N \\
|
||||
Static friction && 1N\\
|
||||
Viscose damping && 0.5N$\cdot$s/m\\
|
||||
Motor constant &Km& 1.46N/$\sqrt{watt}$\\
|
||||
Resistance &R&8.8$\Omega$\\
|
||||
Inductance &L& 2.4mH\\
|
||||
\hline
|
||||
\end{tabular}
|
||||
|
||||
\vspace{1pc}
|
||||
|
||||
The data in the data sheet are quite confusing. But lets check the motor Konstant Km.\\
|
||||
The data sheet says:\\
|
||||
Stall Current Continous 0.92A, Stall force Continous 4N
|
||||
|
||||
\[
|
||||
U=R\cdot I \qquad P=U \cdot I \quad \rightarrow \quad P=R \cdot I^2\\
|
||||
\]
|
||||
|
||||
at a constant current of 0.92A we have $ 8.8 \cdot 0.92^2 = 7.44 $W the resulting force will be:\\
|
||||
$1.46N \cdot \sqrt{7.44} = 3.98 N$
|
||||
|
||||
\section{Simulink/MATLAB simulations}
|
||||
|
||||
|
||||
TODO: describe the identification process to get a model out of the bode plots. identifyFxFyStage.m\\
|
||||
|
||||
Simulink simulation \verb|stage_closed_loop.slx| with \verb|ServoDeltaTau_z G(z)| showed similar response
|
||||
Therefore the model seems good enough
|
||||
|
||||
|
||||
Reference in New Issue
Block a user