diff --git a/python/MXTuningDoc/fastStageTune.tex b/python/MXTuningDoc/fastStageTune.tex
index cba690a..2117ef1 100644
--- a/python/MXTuningDoc/fastStageTune.tex
+++ b/python/MXTuningDoc/fastStageTune.tex
@@ -177,21 +177,21 @@ $s \cdot iqMeas =\frac{1}{L}iqVolts - \frac{R}{L}iqMeas$\\
Input: Force $u(t)=F$\\
Output: Position $y(t)=x_1(t)$\\
-total mass $m=m_1+m_2+\ldots+m_n$\\
-damping: $d_1 \ldots d_n$\\
-springs: $k_1 \ldots k_n$\\
+mass $m=m_1+m_2+\ldots+m_n$\\
+damping: $d=d_1+d_2+\ldots+d_n$\\
+springs: $k=k_1+k_2+\ldots+k_n$\\
\eqref{mech1} shows the mechanical differential equations:
\begin{equation}
\begin{aligned}
m_1\ddot{x}_1 = & u(t) -k_1x_1-d_1\dot{x}_1\\
- & + k_2x_2+d_2\dot{x}_2
- + k_3x_3+d_3\dot{x}_3
- + k_4x_4+d_4\dot{x}_4\\
- m_2\ddot{x}_2= & -k_2x_2-d_2\dot{x}_2\\
- m_3\ddot{x}_3= & -k_3x_3-d_3\dot{x}_3\\
- m_4\ddot{x}_4= & -k_4x_4-d_4\dot{x}_4\\
+ & + k_2(x_2-x_1)+d_2(\dot{x}_2-\dot{x}_1)
+ + k_3(x_3-x_1)+d_3(\dot{x}_3-\dot{x}_1)
+ + k_4(x_4-x_1)+d_4(\dot{x}_4-\dot{x}_1)\\
+ m_2\ddot{x}_2= & k_2(x_2-x_1)+d_2(\dot{x}_2-\dot{x}_1)\\
+ m_3\ddot{x}_3= & k_3(x_3-x_1)+d_3(\dot{x}_3-\dot{x}_1)\\
+ m_4\ddot{x}_4= & k_4(x_4-x_1)+d_4(\dot{x}_4-\dot{x}_1)\\
\end{aligned}\label{mech1}
\end{equation}
@@ -230,19 +230,19 @@ x_4\\
A=
\begin{bmatrix}
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0\\
--\frac{k_1}{m_1} & -\frac{d_1}{m_1} & -\frac{k_2}{m_1} & -\frac{d_2}{m_1} & -\frac{k_3}{m_1} & -\frac{d_3}{m_1} & -\frac{k_4}{m_1} & -\frac{d_4}{m_1}\\
+-\frac{k}{m_1} & -\frac{d}{m_1} & \frac{k_2}{m_1} & \frac{d_2}{m_1} & \frac{k_3}{m_1} & \frac{d_3}{m_1} & \frac{k_4}{m_1} & \frac{d_4}{m_1}\\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0\\
-0 & 0 & -\frac{k_2}{m_1} & -\frac{d_2}{m_2} & 0 & 0 & 0 & 0 \\
+-\frac{k_1}{m_2} & -\frac{d_1}{m_2} & \frac{k_2}{m_2} & \frac{d_2}{m_2} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0\\
-0 & 0 & 0 & 0 & -\frac{k_3}{m_1} & -\frac{d_3}{m_3} & 0 & 0 \\
+-\frac{k_1}{m_3} & -\frac{d_1}{m_3} & 0 & 0 & \frac{k_3}{m_1} & \frac{d_3}{m_3} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1\\
-0 & 0 & 0 & 0 & 0 & 0 & -\frac{k_4}{m_1} & -\frac{d_4}{m_4} \\
+-\frac{k_1}{m_4} & -\frac{d_1}{m_4} & 0 & 0 & 0 & 0 & \frac{k_4}{m_1} & \frac{d_4}{m_4} \\
\end{bmatrix},\quad
B=\begin{bmatrix}
-\frac{1}{m} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\\
+\frac{1}{m_1} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0\\
\end{bmatrix}
%,\quad
%C=\begin{bmatrix}
@@ -252,10 +252,51 @@ B=\begin{bmatrix}
\label{mech2}
\end{equation}
+\subsection{Stage data}
+This data comes from datasheets and construction information [biblio: 'Dynamics of Parker Stage', Wayne Glettig 5.12.2018].
+
+\begin{tabular}{|r|l|}
+\hline
+Stage Y mass& 340g \\
+Stage X mass& 950g \\
+Interferometer mirrors & 51g (additional)\\
+Aluminun (instead ABS) & 42g (additional)\\
+\hline
+\end{tabular}
+
+\vspace{1pc}
+
+\begin{tabular}{|r|c|l|}
+\hline
+Continous force && 5.51N \\
+Peak force && 12N \\
+Static friction && 1N\\
+Viscose damping && 0.5N$\cdot$s/m\\
+Motor constant &Km& 1.46N/$\sqrt{watt}$\\
+Resistance &R&8.8$\Omega$\\
+Inductance &L& 2.4mH\\
+\hline
+\end{tabular}
+
+\vspace{1pc}
+
+The data in the data sheet are quite confusing. But lets check the motor Konstant Km.\\
+The data sheet says:\\
+Stall Current Continous 0.92A, Stall force Continous 4N
+
+\[
+U=R\cdot I \qquad P=U \cdot I \quad \rightarrow \quad P=R \cdot I^2\\
+\]
+
+at a constant current of 0.92A we have $ 8.8 \cdot 0.92^2 = 7.44 $W the resulting force will be:\\
+$1.46N \cdot \sqrt{7.44} = 3.98 N$
\section{Simulink/MATLAB simulations}
+
+TODO: describe the identification process to get a model out of the bode plots. identifyFxFyStage.m\\
+
Simulink simulation \verb|stage_closed_loop.slx| with \verb|ServoDeltaTau_z G(z)| showed similar response
Therefore the model seems good enough
diff --git a/python/MXTuningDoc/model.svg b/python/MXTuningDoc/model.svg
index 3cd4863..3f8d24a 100644
--- a/python/MXTuningDoc/model.svg
+++ b/python/MXTuningDoc/model.svg
@@ -484,11 +484,11 @@
borderopacity="1.0"
inkscape:pageopacity="0.0"
inkscape:pageshadow="2"
- inkscape:zoom="1.3997821"
- inkscape:cx="159.66739"
- inkscape:cy="505.01076"
+ inkscape:zoom="1.9795908"
+ inkscape:cx="227.4925"
+ inkscape:cy="145.89617"
inkscape:document-units="mm"
- inkscape:current-layer="layer1"
+ inkscape:current-layer="g4751"
showgrid="true"
inkscape:snap-grids="false"
inkscape:snap-nodes="true"
@@ -836,8 +836,9 @@
+ d="m 254.80827,948.57917 0,24.08103"
+ style="fill:none;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-opacity:1"
+ sodipodi:nodetypes="cc" />
+ d="m 154.7927,967.95427 99.51557,0"
+ style="color:#000000;clip-rule:nonzero;display:inline;overflow:visible;visibility:visible;opacity:1;isolation:auto;mix-blend-mode:normal;color-interpolation:sRGB;color-interpolation-filters:linearRGB;solid-color:#000000;solid-opacity:1;fill:none;fill-opacity:1;fill-rule:evenodd;stroke:#000000;stroke-width:1px;stroke-linecap:butt;stroke-linejoin:miter;stroke-miterlimit:4;stroke-dasharray:none;stroke-dashoffset:0;stroke-opacity:1;marker-end:url(#arrowSimple-3);color-rendering:auto;image-rendering:auto;shape-rendering:auto;text-rendering:auto;enable-background:accumulate"
+ sodipodi:nodetypes="cc" />
+ inkscape:connector-curvature="0"
+ sodipodi:nodetypes="cc" />
1
x1, xx2, x2, x3, x3
+ style="font-style:normal;font-variant:normal;font-weight:normal;font-stretch:normal;font-size:64.99999762%;font-family:sans-serif;-inkscape-font-specification:sans-serif;baseline-shift:sub">4
+