try to cleanup stuff(1)

This commit is contained in:
2024-11-27 15:23:52 +01:00
parent 9888377e13
commit 54ba58f657

View File

@@ -192,7 +192,8 @@ class DebugPlot:
def plot_points(pts):
fig=plt.figure()
ax = fig.add_subplot(1,1,1)
ax.invert_xaxis();ax.invert_yaxis()
#ax.invert_xaxis()
ax.invert_yaxis()
#hl=ax[0].plot(x, y, color=col)
hl=ax.plot(pts[:,0],pts[:,1],'r.')
hl=ax.plot(pts[:,0],pts[:,1],'y--')
@@ -707,187 +708,197 @@ class ShapePath(MotionBase):
the type of generated program is defined by <mode>$
-> the list af all points that will be moved at, is in 'mot_pts'
(m)= mandatory
(o)= optional
common kwargs:
scale : scaling velocity (default=1. value=0 would stop at each point
cnt : move path multiple times (default=1)
dwell : dwell time at end (default=100ms)
scale : (o) scaling velocity (default=1. value=0 would stop at each point
cnt : (o) move path multiple times (default=1)
dwell : (o) dwell time at end (default=100ms)
mode:0 unused
mode:1 pvt motion
mode:1 pvt motion point list
common kwargs plus:
points : point list
trf : optional transformation that will be done on 'points', mot_pts=trf*points
points : (m) point list
trf : (o) transformation that will be done on 'points', mot_pts=trf*points
mode:2 unused
mode:3 pvt motion using inverse fft velocity
mode:3 pvt motion point list using inverse fft velocity
common kwargs plus:
points : point list
trf : optional transformation that will be done on 'points', mot_pts=trf*points
numPad : number of padding points to reduce aliasing (default=16)
points : (m) point list
trf : (o) transformation that will be done on 'points', mot_pts=trf*points
numPad : (o) number of padding points to reduce aliasing (default=16)
mode:4 pvt motion short code using grid parameters
common kwargs plus:
trf : transformation that will be done on 'grid points'
grid: grid parameters: {orig:(0,0),pitch(10,10),cnt:(10,10),mode:0}
trf : (o) transformation that will be done on 'grid points'
grid: (m) grid parameters: {orig:(0,0),pitch(10,10),cnt:(10,10),mode:0}
mode:5 pvt motion 'stop and go' short code using grid parameters.
Instead of continous motion it moves and waits as given in the parameters
common kwargs plus:
trf : transformation that will be done on 'grid points'
grid: grid parameters: {orig:(0,0),pitch(10,10),cnt:(10,10),mode:0}
tmove: time to move in ms (move start on FEL-trigger
twait: time to wait in ms
trf : (o) transformation that will be done on 'grid points'
grid: (m) grid parameters: {orig:(0,0),pitch(10,10),cnt:(10,10),mode:0}
tmove: (m) time to move in ms (move start on FEL-trigger
twait: (m) time to wait in ms
(tmove+twait will be rounded to a multiple of fel_per)
mode:6 pvt motion 'hit and return using grid parameters. continous motion on 2n ells to pump then same 2n wells to probe, then go 2 rows down
common kwargs plus:
trf : transformation that will be done on 'grid points'
grid : grid parameters: {orig:(0,0),pitch(10,10),cnt:(10,10),mode:0}
ssz : section size (in wells)
smv : time(in num of shots) to move to next section (horiz/vert)
trf : (o) transformation that will be done on 'grid points'
grid : (m) grid parameters: {orig:(0,0),pitch(10,10),cnt:(10,10),mode:0}
ssz : (m) section size (in wells)
smv : (o) time(in num of shots) to move to next section (horiz/vert)
default is (ssz[0]-1,ssz[1])
sdelay: shots count of delay. Default is ssz[0]*ssz[1]
sdelay: (o) shots count of delay. Default is ssz[0]*ssz[1]
'''
#scan=0 # snake motion X fast, Y slow
scan=1 # snake motion Y fast, X slow (default)
prg=f'close all buffers\nopen prog {prgId}\n Coord[1].DesTimeBase=Sys.ServoPeriod\n'
verb=self.verbose
comm=self.comm
meta=self.meta
if mode not in (1,3,4,5,6): #### pvt motion
raise ValueError(f'unsupported mode:{mode}')
try:
self.sync_prg
except AttributeError:
_log.warning('missing motion sync code!')
# this uses Coord[1].Tm and limits with MaxSpeed
if mode in (1,3,4,5,6): #### pvt motion
if mode!=5:
pt2pt_time=meta['pt2pt_time']=meta['fel_per']
scale=kwargs.get('scale', 1.)
cnt=kwargs.get('cnt', 1) # move path multiple times
dwell=kwargs.get('dwell', 100) # wait time at end of motion
CoordFeedTime=1000. #Defaut deltatau value
if mode in (1, 3): #### pvt motion, using points
pt=kwargs['points']
try:
trf=kwargs['trf']
except KeyError as e:
self.mot_pts=pt
verb=self.verbose
comm=self.comm
meta=self.meta
#scan=0 # snake motion X fast, Y slow
scan=1 # snake motion Y fast, X slow (default)
argsStr=[f'mode:{mode}']
for k,v in kwargs.items():
if type(v) in (np.ndarray,np.matrix):
argsStr.append(f'{k}:{type(v).__name__}({v.shape})')
else:
argsStr.append(f'{k}:{v}')
prg='// '+' '.join(argsStr)
prg+=f'\n\nclose all buffers\nopen prog {prgId}\n Coord[1].DesTimeBase=Sys.ServoPeriod\n'
scale=kwargs.get('scale', 1.)
cnt=kwargs.get('cnt', 1) # move path multiple times
dwell=kwargs.get('dwell', 100) # wait time at end of motion
CoordFeedTime=1000. #Defaut deltatau value
if mode!=5:
pt2pt_time=meta['pt2pt_time']=meta['fel_per']
if mode in (1, 3): #### pvt motion, using points
pt=kwargs['points']
try:
trf=kwargs['trf']
except KeyError as e:
self.mot_pts=pt
else:
self.mot_pts=(np.hstack((pt, np.ones((pt.shape[0], 1))))*np.asmatrix(trf)).A # pt*trf
#pv is an array of posx posy velx vely
pv=np.ndarray(shape=(pt.shape[0]+2,4),dtype=pt.dtype)
pv[:]=np.NaN
pv[ 0,(0,1)]=pt[0,:]
pv[ 1:-1,(0,1)]=pt
pv[ -1,(0,1)]=pt[-1,:]
pv[(0,0,-1,-1),(2,3,2,3)]=0
if mode==1: # set velocity to average from prev to next point
dist=pv[2:,(0,1)] - pv[:-2,(0,1)]
pv[ 1:-1,(2,3)] = dist/(2.*pt2pt_time)*scale #um/ms
else: # mode==3: # set velocity to the reconstructed inverse fourier transformation
numPad=kwargs.get('numPad', 16)
p=np.hstack((pt.T,pt[-1,:].repeat(numPad).reshape(2,-1)))
k=p.shape[1]
stp=((p[:,-1]-p[:,0])/(k-1)) #calculate steepness point to point
#stp*=0
p[0,:]-=stp[0]*np.arange(k)
p[1,:]-=stp[1]*np.arange(k)
f=np.fft.fftfreq(k, d=1.)
pf=np.fft.fft(p)
pfd=pf*f*1j # differentiate in fourier
pd=np.fft.ifft(pfd)
v=pd.real.T/pt2pt_time*np.pi*2+stp/pt2pt_time
if numPad==0:
n=None
else:
self.mot_pts=(np.hstack((pt, np.ones((pt.shape[0], 1))))*np.asmatrix(trf)).A # pt*trf
#pv is an array of posx posy velx vely
pv=np.ndarray(shape=(pt.shape[0]+2,4),dtype=pt.dtype)
pv[:]=np.NaN
pv[ 0,(0,1)]=pt[0,:]
pv[ 1:-1,(0,1)]=pt
pv[ -1,(0,1)]=pt[-1,:]
pv[(0,0,-1,-1),(2,3,2,3)]=0
if mode==1: # set velocity to average from prev to next point
dist=pv[2:,(0,1)] - pv[:-2,(0,1)]
pv[ 1:-1,(2,3)] = dist/(2.*pt2pt_time)*scale #um/ms
else: # mode==3: # set velocity to the reconstructed inverse fourier transformation
numPad=kwargs.get('numPad', 16)
p=np.hstack((pt.T,pt[-1,:].repeat(numPad).reshape(2,-1)))
k=p.shape[1]
stp=((p[:,-1]-p[:,0])/(k-1)) #calculate steepness point to point
#stp*=0
p[0,:]-=stp[0]*np.arange(k)
p[1,:]-=stp[1]*np.arange(k)
f=np.fft.fftfreq(k, d=1.)
pf=np.fft.fft(p)
pfd=pf*f*1j # differentiate in fourier
pd=np.fft.ifft(pfd)
v=pd.real.T/pt2pt_time*np.pi*2+stp/pt2pt_time
if numPad==0:
n=None
else:
n=-numPad
pv[ 1:-1,(2,3)] = v[:n]*scale
if verb&0x20:
if 'trf' in kwargs:
_log.warning('correct ploting of pvt only works without transformation !')
else:
dp=DebugPlot(self);self.pvt=dp.plot_gen_pvt(pv)
plt.show(block=False)
pv[1:-1, (2, 3)]*=CoordFeedTime #scaling for Deltatau
prg+=' linear abs\n X%g Y%g\n' % tuple(pv[0, (0,1)])
elif mode in (4,5): #### pvt motion, short code using grid parameters
g=kwargs['grid']
nx, ny=g['count']
xx, yy=np.meshgrid(range(nx), range(ny))
if scan==0: # snake motion X fast, Y slow
for i in range(1,ny,2):
xx[i]=xx[i][::-1]
else: #scan==1 snake motion Y fast, X slow
xx=xx.T
yy=yy.T
for i in range(1, nx, 2):
yy[i]=yy[i][::-1]
pt=np.array([xx.reshape(-1), yy.reshape(-1)], dtype=np.float64).transpose() #*pitch
try:
trf=kwargs['trf']
except KeyError as e:
ox, oy=g['pos']
px, py=g['pitch']
#self.mot_pts=pt
self.mot_pts=pt*np.array(g['pitch'], np.float)+np.array(g['pos'], np.float)
n=-numPad
pv[ 1:-1,(2,3)] = v[:n]*scale
if verb&0x20:
if 'trf' in kwargs:
_log.warning('correct plotting of pvt only works without transformation !')
else:
ox, oy=(0,0)
px, py=(1,1)
self.mot_pts=(np.hstack((pt, np.ones((pt.shape[0], 1))))*np.asmatrix(trf)).A # pt*trf
#prg+=f' linear abs\n X{ox:g} Y{oy:g}\n'
prg+=f' linear abs\n X{ox-px:g} Y{oy-py:g}\n' # start one position out of grid
else: #mode==6: #### pvt motion, hit and return using grid parameters
g=kwargs['grid']
nx,ny=g['count'] #total count of wells
#TODO: rework pt calculation
hrs=HitReturnSim()
pt=hrs.sim_motion(mode=0xff if verb&0x20 else 0x00 , **kwargs)
pt=np.array(pt)[:,:2]
try:
trf=kwargs['trf']
except KeyError as e:
ox, oy=g['pos']
px, py=g['pitch']
self.mot_pts=pt*np.array(g['pitch'], np.float)+np.array(g['pos'], np.float)
else:
ox, oy=(0,0)
px, py=(1,1)
self.mot_pts=(np.hstack((pt, np.ones((pt.shape[0], 1))))*np.asmatrix(trf)).A # pt*trf
sx,sy=kwargs['ssz'] #section size (in wells)
try:
tsx,tsy=kwargs['smv'] #time(in num of shots) to move to next section (horiz/vert)
except KeyError as e:
tsx=sx-1
tsy=sy
try:
tsd=kwargs['sdelay']
except KeyError as e:
tsd=sx*sy
tsd+=1-sx*sy # sdl are shots to wait at position #(6)
prg+=f' linear abs\n X{ox-px:g} Y{oy-py:g}\n' # start one position out of grid
prg+=' dwell 10\n'
try: prg+=self.sync_prg
except AttributeError:
#print('no sync code available')
prg+=' Gather.Enable=2\n'
if cnt>1:
prg+=' P100=%d\n'%cnt
prg+='N100:\n'
if mode in (1,3):
prg+=f'''\
dp=DebugPlot(self);self.pvt=dp.plot_gen_pvt(pv)
plt.show(block=False)
pv[1:-1, (2, 3)]*=CoordFeedTime #scaling for Deltatau
prg+=' linear abs\n X%g Y%g\n' % tuple(pv[0, (0,1)])
elif mode in (4,5): #### pvt motion, short code using grid parameters
g=kwargs['grid']
nx, ny=g['count']
xx, yy=np.meshgrid(range(nx), range(ny))
if scan==0: # snake motion X fast, Y slow
for i in range(1,ny,2):
xx[i]=xx[i][::-1]
else: #scan==1 snake motion Y fast, X slow
xx=xx.T
yy=yy.T
for i in range(1, nx, 2):
yy[i]=yy[i][::-1]
pt=np.array([xx.reshape(-1), yy.reshape(-1)], dtype=np.float64).transpose() #*pitch
try:
trf=kwargs['trf']
except KeyError as e:
ox, oy=g['pos']
px, py=g['pitch']
#self.mot_pts=pt
self.mot_pts=pt*np.array(g['pitch'], np.float)+np.array(g['pos'], np.float)
else:
ox, oy=(0,0)
px, py=(1,1)
self.mot_pts=(np.hstack((pt, np.ones((pt.shape[0], 1))))*np.asmatrix(trf)).A # pt*trf
#prg+=f' linear abs\n X{ox:g} Y{oy:g}\n'
prg+=f' linear abs\n X{ox-px:g} Y{oy-py:g}\n' # start one position out of grid
else: #mode==6: #### pvt motion, hit and return using grid parameters
g=kwargs['grid']
nx,ny=g['count'] #total count of wells
#TODO: rework pt calculation
hrs=HitReturnSim()
pt=hrs.sim_motion(mode=0xff if verb&0x20 else 0x00 , **kwargs)
pt=np.array(pt)[:,:2]
try:
trf=kwargs['trf']
except KeyError as e:
ox, oy=g['pos']
px, py=g['pitch']
self.mot_pts=pt*np.array(g['pitch'], np.float)+np.array(g['pos'], np.float)
else:
ox, oy=(0,0)
px, py=(1,1)
self.mot_pts=(np.hstack((pt, np.ones((pt.shape[0], 1))))*np.asmatrix(trf)).A # pt*trf
sx,sy=kwargs['ssz'] #section size (in wells)
try:
tsx,tsy=kwargs['smv'] #time(in num of shots) to move to next section (horiz/vert)
except KeyError as e:
tsx=sx-1
tsy=sy
try:
tsd=kwargs['sdelay']
except KeyError as e:
tsd=sx*sy
tsd+=1-sx*sy # sdl are shots to wait at position #(6)
prg+=f' linear abs\n X{ox-px:g} Y{oy-py:g}\n' # start one position out of grid
prg+=' dwell 10\n'
try: prg+=self.sync_prg
except AttributeError:
#print('no sync code available')
prg+=' Gather.Enable=2\n'
if cnt>1:
prg+=' P100=%d\n'%cnt
prg+='N100:\n'
if mode in (1,3):
prg+=f'''\
//mode {mode}: pvt motion with each point in program code
pvt{pt2pt_time} abs
'''
for idx in range(1,pv.shape[0]):
#prg+=f'N{idx} ' + 'X%g:%g Y%g:%g\n'%tuple(pv[idx,(0,2,1,3)])
prg+=f' X%g:%g Y%g:%g\n'%tuple(pv[idx, (0, 2, 1, 3)])
prg+=f' X{pv[-1, 0]:g} Y{pv[-1, 1]:g}\n'
elif mode==4:
if scan==0:
raise Exception('scan=0 not supported')
pass
else: # scan=1
vx=px/(pt2pt_time)*scale*CoordFeedTime #scaling for Deltatau
vy=py/(pt2pt_time)*scale*CoordFeedTime #scaling for Deltatau
prg+=f'''\
for idx in range(1,pv.shape[0]):
#prg+=f'N{idx} ' + 'X%g:%g Y%g:%g\n'%tuple(pv[idx,(0,2,1,3)])
prg+=f' X%g:%g Y%g:%g\n'%tuple(pv[idx, (0, 2, 1, 3)])
prg+=f' X{pv[-1, 0]:g} Y{pv[-1, 1]:g}\n'
elif mode==4:
if scan==0:
raise Exception('scan=0 not supported')
pass
else: # scan=1
vx=px/(pt2pt_time)*scale*CoordFeedTime #scaling for Deltatau
vy=py/(pt2pt_time)*scale*CoordFeedTime #scaling for Deltatau
prg+=f'''\
//mode 4: grid pvt motion
pvt{pt2pt_time} abs
L1=0 //slow loop x
@@ -934,22 +945,22 @@ class ShapePath(MotionBase):
X({ox}+L1*{px}):{0:g} Y({oy}+L0*{py}):{0:g}
'''
elif mode==5:
if scan==0:
raise Exception('scan=0 not supported')
pass
else: # scan=1
if meta['sync_mode']==2:
_log.error('sync_mode=2 not allowed for stop-and-go motion !')
tmove=kwargs['tmove']
twait=kwargs['twait']
fel_per=meta['fel_per']
pt2tp_felpulse=round((tmove+twait)/fel_per) # number of fel-pulses for a whole cycle (tmove+twait)
meta['pt2pt_time']=fel_per*pt2tp_felpulse
twait_=round((tmove+twait)/fel_per)*fel_per-tmove
if twait!=twait_:
_log.warning(f'adjust twait({twait}) to {twait_} to match multiple of fel-cycles')
syncPlc=f'''\
elif mode==5:
if scan==0:
raise Exception('scan=0 not supported')
pass
else: # scan=1
if meta['sync_mode']==2:
_log.error('sync_mode=2 not allowed for stop-and-go motion !')
tmove=kwargs['tmove']
twait=kwargs['twait']
fel_per=meta['fel_per']
pt2tp_felpulse=round((tmove+twait)/fel_per) # number of fel-pulses for a whole cycle (tmove+twait)
meta['pt2pt_time']=fel_per*pt2tp_felpulse
twait_=round((tmove+twait)/fel_per)*fel_per-tmove
if twait!=twait_:
_log.warning(f'adjust twait({twait}) to {twait_} to match multiple of fel-cycles')
syncPlc=f'''\
close all buffers
disable plc 2
open plc 2
@@ -967,8 +978,8 @@ open plc 2
close
enable plc 2
'''
comm.gpascii.send_block(syncPlc, verb&0x08)
prg+=f'''\
if comm: comm.gpascii.send_block(syncPlc, verb&0x08)
prg+=f'''\
//mode 5: grid pvt motion
pvt{tmove} abs
L1=0 //slow loop x
@@ -1023,31 +1034,31 @@ enable plc 2
while(Sys.Udata[2]==Sys.Udata[1]){{}};Sys.Udata[2]=Sys.Udata[1] // wait motion trigger
'''
elif mode==6:
if scan==0:
raise Exception('scan=0 not supported')
pass
else: # scan=1
vsx=px/(pt2pt_time)*scale*CoordFeedTime # scaling for Deltatau
vsy=py/(pt2pt_time)*scale*CoordFeedTime # scaling for Deltatau
elif mode==6:
if scan==0:
raise Exception('scan=0 not supported')
pass
else: # scan=1
vsx=px/(pt2pt_time)*scale*CoordFeedTime # scaling for Deltatau
vsy=py/(pt2pt_time)*scale*CoordFeedTime # scaling for Deltatau
#g=kwargs['grid']
#ox,oy=g['pos'] #origin position in um (or counts if scaled)
#px,py=g['pitch'] #pitch to next position in um (or 1 if scaled)
#nx,ny=g['count'] #total count of wells
#sx,sy=kwargs['ssz'] #section size (in wells)
#tsx, tsy, tsd #time scale to pvt move to (next horiz|next vert| after position #6)
tx,ty=nx//sx,ny//sy #total sections
#g=kwargs['grid']
#ox,oy=g['pos'] #origin position in um (or counts if scaled)
#px,py=g['pitch'] #pitch to next position in um (or 1 if scaled)
#nx,ny=g['count'] #total count of wells
#sx,sy=kwargs['ssz'] #section size (in wells)
#tsx, tsy, tsd #time scale to pvt move to (next horiz|next vert| after position #6)
tx,ty=nx//sx,ny//sy #total sections
#variables
cx,cy,dx,dy,n,k,t,vx,vy,x,x0,y,y0=map(lambda x: f'L{x}',range(13))
# replace in python code of hit_and_return.py setup_motion:
# (cx|cy|dx|dy|n|k|sx|sy|tsd|tsx|tsy|tx|ty|vsx|vsy|vx|vy|x|x0|y|y0) -> {\1}
# if ([^:]*): -> if \(\1\){{
# else: -> }}else{{
# elif ([^:]*): -> }}else if \(\1\){{
#variables
cx,cy,dx,dy,n,k,t,vx,vy,x,x0,y,y0=map(lambda x: f'L{x}',range(13))
# replace in python code of hit_and_return.py setup_motion:
# (cx|cy|dx|dy|n|k|sx|sy|tsd|tsx|tsy|tx|ty|vsx|vsy|vx|vy|x|x0|y|y0) -> {\1}
# if ([^:]*): -> if \(\1\){{
# else: -> }}else{{
# elif ([^:]*): -> }}else if \(\1\){{
prg+=f'''\
prg+=f'''\
//mode 6: hit-and-return pvt motion
{t}=1 // motion pvt tome scaling
@@ -1143,11 +1154,9 @@ enable plc 2
}}
'''
else:
raise ValueError('unsupported mode')
#common code to repeat the motion multiple times
if cnt>1:
prg+=f'''\
#common code to repeat the motion multiple times
if cnt>1:
prg+=f'''\
dwell 10
P100=P100-1
f(P100>0)
@@ -1157,9 +1166,8 @@ f(P100>0)
dwell {dwell}
goto 100
}}\n'''
else:
prg+=f' dwell {dwell}\n Gather.Enable=0\nclose\n'
#prg+='&1\nb%dr\n'%prgId)
else:
prg+=f' dwell {dwell}\n Gather.Enable=0\nclose\n'
if verb&0x02:
DebugPlot.plot_points(self.mot_pts)