This commit is contained in:
2019-02-11 16:55:58 +01:00
parent 583d86d4d6
commit 3412e33595
8 changed files with 130 additions and 145 deletions

View File

@@ -17,6 +17,7 @@
\usepackage{amsmath}
\renewcommand{\deg}{$^\circ$}
\usepackage[section]{placeins} %place images in section
\usepackage{tcolorbox}
\title{Tuning/modeling fast stages of ESB-MX}
\author{Thierry Zamofing}
@@ -125,7 +126,13 @@ Here a example to roughly calculate at which frequency the motor moves 1um at 2A
A factor 2000 is $1000 \cdot 2 =30dB+3dB=33dB$.
Out of the bode plot we can read approx.:\\
Motor 1: -33dB at 130Hz\\
Motor 2: -33dB at 84Hz
Motor 2: -33dB at 84Hz\\
%n times higher mass $\rightarrow$ n times lower frequency for same amplitude response\\
%n times higher frequency $\rightarrow$ n times higher velocity $\rightarrow$ $n^2$ times more acceleration==current
%1um at 12Hz with 1 mA $\rightarrow$ with 2000mA $\rightarrow$ sqrt(2000)*12Hz=540Hz
%
%A very simplified transfer function of the system is $G(s)=k/s^2$
\subsection{Closed Loop}
@@ -184,12 +191,15 @@ Moving 5um with frequencies from 10 to 220Hz\\
$\rightarrow$ at frequencies above 200 Hz, the current increses up to 2 amps, and the the following error kicks in\\
$\rightarrow$ The closed loop response becomes bad above 20Hz (motor 1 ca. -10\%, motor 2 +5\% )\\
\FloatBarrier
\subsubsection{Friction}
\begin{tcolorbox}[width=15cm,colback=red!5!white,colframe=red!75!black,colbacktitle=red!50,coltitle=black,title=TODO]
Record the friction (=current) at a slow move from +lim to -lim.\\
Analyse the friction depending on the positions and motion directions.\\
Do the records and analysis at different speeds.
\end{tcolorbox}
%→n times higher mass → n times lower frequency for same amplitude response
%→n times higher frequency → n times higher velocity → n² times more acceleration==current
%1um at 12Hz with 1 mA →with 2000mA → sqrt(2000)*12Hz=540Hz
%
%A very simplified transfer function of the system is G(s)=k/s²
\FloatBarrier
\subsubsection{using advanced Deltatau Servo Loop}
@@ -223,10 +233,11 @@ The Value of $K_{fff}$ is used to compensate the non linear static friction. It
$K_{vff}$ is used to compensate the linear viscose friction.\\
\textbf{TODO:}\\
\begin{tcolorbox}[colback=red!5!white,colframe=red!75!black,colbacktitle=red!50,coltitle=black,title=TODO]
Make simulations in MATLAB. Set C/D filter to compensate resonance and the current loop.\\
This sshould be mostly the inverse of the figures: \ref{fig:mot1_chirp} and \ref{fig:mot2_chirp}.\\
Use $K_{fff}$
\end{tcolorbox}
@@ -300,8 +311,7 @@ The inductance of the stage is 2.4 mH.\\
Nevertheless simulations with \verb|current_loop.slx| showed, that the current loop only works in the discrete domain. In continous domain neither the amplification nor the shape mached.\\
Therefore the only approach is to use the second order transfer function as approximated in section \ref{sec:measCurStep}.\\
\textbf{TODO:}
\begin{tcolorbox}[colback=red!5!white,colframe=red!75!black,colbacktitle=red!50,coltitle=black,title=TODO]
A further test will be to 'remove' the current loop. This can be done by setting:$IiGain=0, IpfGain=1, IpbGain=-1$.
The resulting transfer function is:
\[
@@ -314,6 +324,7 @@ The resulting transfer function is:
\\
\]
This is a $PT_1$ element with a time constant of $\frac{L}{R}=\frac{2.4mH}{8.8\Omega}=0.27ms$. But probably due to additional cables etc. the resistance and therefore also the timeconstant is bigger.
\end{tcolorbox}
\subsection{Mechanical model}
@@ -618,10 +629,10 @@ end
\begin{figure}[h!]
\center
\includegraphics[scale=.45]{../matlab/figures/sim_cl_observer_1.eps}
\includegraphics[scale=.45]{../matlab/figures/sim_cl_observer_bode1.eps}\\
\includegraphics[scale=.45]{../matlab/figures/sim_cl_observer_2.eps}
\includegraphics[scale=.45]{../matlab/figures/sim_cl_observer_bode2.eps}
\includegraphics[scale=.45]{../matlab/figures/sim_cl_obs_0_1.eps}
\includegraphics[scale=.45]{../matlab/figures/sim_cl_obs_bode0_1.eps}\\
\includegraphics[scale=.45]{../matlab/figures/sim_cl_obs_0_2.eps}
\includegraphics[scale=.45]{../matlab/figures/sim_cl_obs_bode0_2.eps}
\caption{Observer sim: Motor 1 Motor 2}
\label{fig:mot_observer_sim}
\end{figure}
@@ -664,7 +675,8 @@ Finally the real time servo code is compliled for the DeltaTau with:\\
Following lines in gpasciiCommander will activate the user servo loop code:
\verb|TODO...|
\begin{tcolorbox}[width=15cm,colback=red!5!white,colframe=red!75!black,colbacktitle=red!50,coltitle=black,title=TODO]
\end{tcolorbox}
\vspace{1pc}