wip
This commit is contained in:
@@ -17,6 +17,7 @@
|
||||
\usepackage{amsmath}
|
||||
\renewcommand{\deg}{$^\circ$}
|
||||
\usepackage[section]{placeins} %place images in section
|
||||
\usepackage{tcolorbox}
|
||||
|
||||
\title{Tuning/modeling fast stages of ESB-MX}
|
||||
\author{Thierry Zamofing}
|
||||
@@ -125,7 +126,13 @@ Here a example to roughly calculate at which frequency the motor moves 1um at 2A
|
||||
A factor 2000 is $1000 \cdot 2 =30dB+3dB=33dB$.
|
||||
Out of the bode plot we can read approx.:\\
|
||||
Motor 1: -33dB at 130Hz\\
|
||||
Motor 2: -33dB at 84Hz
|
||||
Motor 2: -33dB at 84Hz\\
|
||||
|
||||
%n times higher mass $\rightarrow$ n times lower frequency for same amplitude response\\
|
||||
%n times higher frequency $\rightarrow$ n times higher velocity $\rightarrow$ $n^2$ times more acceleration==current
|
||||
%1um at 12Hz with 1 mA $\rightarrow$ with 2000mA $\rightarrow$ sqrt(2000)*12Hz=540Hz
|
||||
%
|
||||
%A very simplified transfer function of the system is $G(s)=k/s^2$
|
||||
|
||||
|
||||
\subsection{Closed Loop}
|
||||
@@ -184,12 +191,15 @@ Moving 5um with frequencies from 10 to 220Hz\\
|
||||
$\rightarrow$ at frequencies above 200 Hz, the current increses up to 2 amps, and the the following error kicks in\\
|
||||
$\rightarrow$ The closed loop response becomes bad above 20Hz (motor 1 ca. -10\%, motor 2 +5\% )\\
|
||||
|
||||
\FloatBarrier
|
||||
\subsubsection{Friction}
|
||||
|
||||
\begin{tcolorbox}[width=15cm,colback=red!5!white,colframe=red!75!black,colbacktitle=red!50,coltitle=black,title=TODO]
|
||||
Record the friction (=current) at a slow move from +lim to -lim.\\
|
||||
Analyse the friction depending on the positions and motion directions.\\
|
||||
Do the records and analysis at different speeds.
|
||||
\end{tcolorbox}
|
||||
|
||||
%→n times higher mass → n times lower frequency for same amplitude response
|
||||
%→n times higher frequency → n times higher velocity → n² times more acceleration==current
|
||||
%1um at 12Hz with 1 mA →with 2000mA → sqrt(2000)*12Hz=540Hz
|
||||
%
|
||||
%A very simplified transfer function of the system is G(s)=k/s²
|
||||
|
||||
\FloatBarrier
|
||||
\subsubsection{using advanced Deltatau Servo Loop}
|
||||
@@ -223,10 +233,11 @@ The Value of $K_{fff}$ is used to compensate the non linear static friction. It
|
||||
|
||||
$K_{vff}$ is used to compensate the linear viscose friction.\\
|
||||
|
||||
\textbf{TODO:}\\
|
||||
\begin{tcolorbox}[colback=red!5!white,colframe=red!75!black,colbacktitle=red!50,coltitle=black,title=TODO]
|
||||
Make simulations in MATLAB. Set C/D filter to compensate resonance and the current loop.\\
|
||||
This sshould be mostly the inverse of the figures: \ref{fig:mot1_chirp} and \ref{fig:mot2_chirp}.\\
|
||||
Use $K_{fff}$
|
||||
\end{tcolorbox}
|
||||
|
||||
|
||||
|
||||
@@ -300,8 +311,7 @@ The inductance of the stage is 2.4 mH.\\
|
||||
Nevertheless simulations with \verb|current_loop.slx| showed, that the current loop only works in the discrete domain. In continous domain neither the amplification nor the shape mached.\\
|
||||
Therefore the only approach is to use the second order transfer function as approximated in section \ref{sec:measCurStep}.\\
|
||||
|
||||
\textbf{TODO:}
|
||||
|
||||
\begin{tcolorbox}[colback=red!5!white,colframe=red!75!black,colbacktitle=red!50,coltitle=black,title=TODO]
|
||||
A further test will be to 'remove' the current loop. This can be done by setting:$IiGain=0, IpfGain=1, IpbGain=-1$.
|
||||
The resulting transfer function is:
|
||||
\[
|
||||
@@ -314,6 +324,7 @@ The resulting transfer function is:
|
||||
\\
|
||||
\]
|
||||
This is a $PT_1$ element with a time constant of $\frac{L}{R}=\frac{2.4mH}{8.8\Omega}=0.27ms$. But probably due to additional cables etc. the resistance and therefore also the timeconstant is bigger.
|
||||
\end{tcolorbox}
|
||||
|
||||
\subsection{Mechanical model}
|
||||
|
||||
@@ -618,10 +629,10 @@ end
|
||||
|
||||
\begin{figure}[h!]
|
||||
\center
|
||||
\includegraphics[scale=.45]{../matlab/figures/sim_cl_observer_1.eps}
|
||||
\includegraphics[scale=.45]{../matlab/figures/sim_cl_observer_bode1.eps}\\
|
||||
\includegraphics[scale=.45]{../matlab/figures/sim_cl_observer_2.eps}
|
||||
\includegraphics[scale=.45]{../matlab/figures/sim_cl_observer_bode2.eps}
|
||||
\includegraphics[scale=.45]{../matlab/figures/sim_cl_obs_0_1.eps}
|
||||
\includegraphics[scale=.45]{../matlab/figures/sim_cl_obs_bode0_1.eps}\\
|
||||
\includegraphics[scale=.45]{../matlab/figures/sim_cl_obs_0_2.eps}
|
||||
\includegraphics[scale=.45]{../matlab/figures/sim_cl_obs_bode0_2.eps}
|
||||
\caption{Observer sim: Motor 1 Motor 2}
|
||||
\label{fig:mot_observer_sim}
|
||||
\end{figure}
|
||||
@@ -664,7 +675,8 @@ Finally the real time servo code is compliled for the DeltaTau with:\\
|
||||
|
||||
Following lines in gpasciiCommander will activate the user servo loop code:
|
||||
|
||||
\verb|TODO...|
|
||||
\begin{tcolorbox}[width=15cm,colback=red!5!white,colframe=red!75!black,colbacktitle=red!50,coltitle=black,title=TODO]
|
||||
\end{tcolorbox}
|
||||
|
||||
\vspace{1pc}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user