wip
This commit is contained in:
@@ -17,6 +17,7 @@
|
||||
\usepackage{amsmath}
|
||||
\renewcommand{\deg}{$^\circ$}
|
||||
\usepackage[section]{placeins} %place images in section
|
||||
\usepackage{tcolorbox}
|
||||
|
||||
\title{Tuning/modeling fast stages of ESB-MX}
|
||||
\author{Thierry Zamofing}
|
||||
@@ -125,7 +126,13 @@ Here a example to roughly calculate at which frequency the motor moves 1um at 2A
|
||||
A factor 2000 is $1000 \cdot 2 =30dB+3dB=33dB$.
|
||||
Out of the bode plot we can read approx.:\\
|
||||
Motor 1: -33dB at 130Hz\\
|
||||
Motor 2: -33dB at 84Hz
|
||||
Motor 2: -33dB at 84Hz\\
|
||||
|
||||
%n times higher mass $\rightarrow$ n times lower frequency for same amplitude response\\
|
||||
%n times higher frequency $\rightarrow$ n times higher velocity $\rightarrow$ $n^2$ times more acceleration==current
|
||||
%1um at 12Hz with 1 mA $\rightarrow$ with 2000mA $\rightarrow$ sqrt(2000)*12Hz=540Hz
|
||||
%
|
||||
%A very simplified transfer function of the system is $G(s)=k/s^2$
|
||||
|
||||
|
||||
\subsection{Closed Loop}
|
||||
@@ -184,12 +191,15 @@ Moving 5um with frequencies from 10 to 220Hz\\
|
||||
$\rightarrow$ at frequencies above 200 Hz, the current increses up to 2 amps, and the the following error kicks in\\
|
||||
$\rightarrow$ The closed loop response becomes bad above 20Hz (motor 1 ca. -10\%, motor 2 +5\% )\\
|
||||
|
||||
\FloatBarrier
|
||||
\subsubsection{Friction}
|
||||
|
||||
\begin{tcolorbox}[width=15cm,colback=red!5!white,colframe=red!75!black,colbacktitle=red!50,coltitle=black,title=TODO]
|
||||
Record the friction (=current) at a slow move from +lim to -lim.\\
|
||||
Analyse the friction depending on the positions and motion directions.\\
|
||||
Do the records and analysis at different speeds.
|
||||
\end{tcolorbox}
|
||||
|
||||
%→n times higher mass → n times lower frequency for same amplitude response
|
||||
%→n times higher frequency → n times higher velocity → n² times more acceleration==current
|
||||
%1um at 12Hz with 1 mA →with 2000mA → sqrt(2000)*12Hz=540Hz
|
||||
%
|
||||
%A very simplified transfer function of the system is G(s)=k/s²
|
||||
|
||||
\FloatBarrier
|
||||
\subsubsection{using advanced Deltatau Servo Loop}
|
||||
@@ -223,10 +233,11 @@ The Value of $K_{fff}$ is used to compensate the non linear static friction. It
|
||||
|
||||
$K_{vff}$ is used to compensate the linear viscose friction.\\
|
||||
|
||||
\textbf{TODO:}\\
|
||||
\begin{tcolorbox}[colback=red!5!white,colframe=red!75!black,colbacktitle=red!50,coltitle=black,title=TODO]
|
||||
Make simulations in MATLAB. Set C/D filter to compensate resonance and the current loop.\\
|
||||
This sshould be mostly the inverse of the figures: \ref{fig:mot1_chirp} and \ref{fig:mot2_chirp}.\\
|
||||
Use $K_{fff}$
|
||||
\end{tcolorbox}
|
||||
|
||||
|
||||
|
||||
@@ -300,8 +311,7 @@ The inductance of the stage is 2.4 mH.\\
|
||||
Nevertheless simulations with \verb|current_loop.slx| showed, that the current loop only works in the discrete domain. In continous domain neither the amplification nor the shape mached.\\
|
||||
Therefore the only approach is to use the second order transfer function as approximated in section \ref{sec:measCurStep}.\\
|
||||
|
||||
\textbf{TODO:}
|
||||
|
||||
\begin{tcolorbox}[colback=red!5!white,colframe=red!75!black,colbacktitle=red!50,coltitle=black,title=TODO]
|
||||
A further test will be to 'remove' the current loop. This can be done by setting:$IiGain=0, IpfGain=1, IpbGain=-1$.
|
||||
The resulting transfer function is:
|
||||
\[
|
||||
@@ -314,6 +324,7 @@ The resulting transfer function is:
|
||||
\\
|
||||
\]
|
||||
This is a $PT_1$ element with a time constant of $\frac{L}{R}=\frac{2.4mH}{8.8\Omega}=0.27ms$. But probably due to additional cables etc. the resistance and therefore also the timeconstant is bigger.
|
||||
\end{tcolorbox}
|
||||
|
||||
\subsection{Mechanical model}
|
||||
|
||||
@@ -618,10 +629,10 @@ end
|
||||
|
||||
\begin{figure}[h!]
|
||||
\center
|
||||
\includegraphics[scale=.45]{../matlab/figures/sim_cl_observer_1.eps}
|
||||
\includegraphics[scale=.45]{../matlab/figures/sim_cl_observer_bode1.eps}\\
|
||||
\includegraphics[scale=.45]{../matlab/figures/sim_cl_observer_2.eps}
|
||||
\includegraphics[scale=.45]{../matlab/figures/sim_cl_observer_bode2.eps}
|
||||
\includegraphics[scale=.45]{../matlab/figures/sim_cl_obs_0_1.eps}
|
||||
\includegraphics[scale=.45]{../matlab/figures/sim_cl_obs_bode0_1.eps}\\
|
||||
\includegraphics[scale=.45]{../matlab/figures/sim_cl_obs_0_2.eps}
|
||||
\includegraphics[scale=.45]{../matlab/figures/sim_cl_obs_bode0_2.eps}
|
||||
\caption{Observer sim: Motor 1 Motor 2}
|
||||
\label{fig:mot_observer_sim}
|
||||
\end{figure}
|
||||
@@ -664,7 +675,8 @@ Finally the real time servo code is compliled for the DeltaTau with:\\
|
||||
|
||||
Following lines in gpasciiCommander will activate the user servo loop code:
|
||||
|
||||
\verb|TODO...|
|
||||
\begin{tcolorbox}[width=15cm,colback=red!5!white,colframe=red!75!black,colbacktitle=red!50,coltitle=black,title=TODO]
|
||||
\end{tcolorbox}
|
||||
|
||||
\vspace{1pc}
|
||||
|
||||
|
||||
@@ -6,7 +6,8 @@ Matlab Simulink start
|
||||
cd ~/Documents/prj/SwissFEL/epics_ioc_modules/ESB_MX/matlab
|
||||
module load matlab/2018a
|
||||
matlab&
|
||||
or start directly: /afs/psi.ch/sys/psi.x86_64_slp6/Programming/matlab/2018a/bin/matlab&
|
||||
or start directly:
|
||||
/afs/psi.ch/sys/psi.x86_64_slp6/Programming/matlab/2018a/bin/matlab&
|
||||
this works also on my linux computers
|
||||
```
|
||||
|
||||
|
||||
@@ -1,4 +1,4 @@
|
||||
function [ssc]=StateSpaceControlDesign(mot)
|
||||
function [ssc]=StateSpaceControlDesign(mot,mode)
|
||||
% !!! first it need to run: [mot1,mot2]=identifyFxFyStage() to build a motor object !!!
|
||||
%
|
||||
% builds a state space controller designed for the plant.
|
||||
@@ -15,69 +15,81 @@ function [ssc]=StateSpaceControlDesign(mot)
|
||||
%
|
||||
% https://www.youtube.com/watch?v=Lax3etc837U
|
||||
|
||||
%mPlt: mode to select plant
|
||||
%mMdl: mode to select model for observer
|
||||
%0 ss_plt :real plant (model of real plant)
|
||||
%1 ss_c1 :current, mechanic, no resonance
|
||||
%2 ss_d1 :simpl. current, mechanic, no resonance
|
||||
%3 ss_1 :no current, mechanic, no resonance
|
||||
%4 ss_0 :no current, simpl. mechanic, no resonance
|
||||
%plant and model
|
||||
% ss_plt :real plant (model of real plant)
|
||||
% ss_c1 :current, mechanic, no resonance
|
||||
% ss_d1 :simpl. current, mechanic, no resonance
|
||||
% ss_1 :no current, mechanic, no resonance
|
||||
% ss_0 :no current, simpl. mechanic, no resonance
|
||||
|
||||
%mPrefilt:prefilter mode
|
||||
%prefilt:prefilter mode
|
||||
%0 no filter
|
||||
%1 inverse resonance filter
|
||||
%2 manual setup filter
|
||||
|
||||
|
||||
%mShow: mode(bits) to plot/simulate
|
||||
% 0: 1: bode plots of open loop
|
||||
% 1: 2: step answer on open loop
|
||||
% 2: 4: step answer on closed loop with space state controller
|
||||
% 3: 8: step answer on closed loop with observer controller
|
||||
% 4:16: step answer on closed loop with disctrete observer controller
|
||||
% 5:32: plot all closed loop bode and pole-zero diagrams of desPos->actPos
|
||||
% 6:64:
|
||||
%verb: mode(bits) to plot/simulate
|
||||
% 0: 1: poles of model and placed poles of controller
|
||||
% 1: 2: bode plots of open loop
|
||||
% 2: 4: step answer on open loop
|
||||
% 3: 8: step answer on closed loop with space state controller
|
||||
% 4: 16: step answer on closed loop with observer controller
|
||||
% 5: 32: step answer on closed loop with disctrete observer controller
|
||||
% 6: 64: plot all closed loop bode and pole-zero diagrams of desPos->actPos
|
||||
% 7:128: bode plot of filt_pos_err
|
||||
|
||||
|
||||
%use_lqr: use lqr instead of pole placement
|
||||
|
||||
mPlt=0;
|
||||
mMdl=1;
|
||||
mPrefilt=2;
|
||||
mShow=32+64;
|
||||
verb=1;
|
||||
use_lqr=0;
|
||||
|
||||
switch mPlt
|
||||
filt_pos_err=Prefilt(mot,2);
|
||||
%locate poles: 2500rad/s = 397Hz, 6300rad/s = 1027Hz
|
||||
switch mode
|
||||
case -1 %TESTING
|
||||
ss_plt=mot.ss_plt; %ss_plt ss_c1 ss_d1 ss_1 ss_0
|
||||
ss_mdl=mot.ss_d1; %ss_plt ss_c1 ss_d1 ss_1 ss_0
|
||||
if mot.id==1
|
||||
pl=[-2200 -2100 -2000]; % stable with scaling of .05 .. 1.0;
|
||||
else
|
||||
pl=[-2500 -900 -800];
|
||||
end
|
||||
plObs=2*pl;
|
||||
case 0
|
||||
ss_plt=mot.ss_plt;
|
||||
ss_plt=mot.ss_plt; %ss_plt ss_c1 ss_d1 ss_1 ss_0
|
||||
ss_mdl=mot.ss_c1; %ss_plt ss_c1 ss_d1 ss_1 ss_0
|
||||
if mot.id==1
|
||||
pl=[-3300 -3200 -2900 -2800];
|
||||
else
|
||||
pl=[-3300 -3200 -2700 -2600];
|
||||
end
|
||||
plObs=2*pl;
|
||||
case 1
|
||||
ss_plt=mot.ss_c1;
|
||||
ss_plt=mot.ss_plt; %ss_plt ss_c1 ss_d1 ss_1 ss_0
|
||||
ss_mdl=mot.ss_d1; %ss_plt ss_c1 ss_d1 ss_1 ss_0
|
||||
if mot.id==1
|
||||
pl=[-2200 -2100 -2000]; % stable with scaling of .05 .. 1.0;
|
||||
else
|
||||
pl=[-2500 -900 -800];
|
||||
end
|
||||
plObs=2*pl;
|
||||
case 2
|
||||
ss_plt=mot.ss_d1;
|
||||
case 3
|
||||
ss_plt=mot.ss_1;
|
||||
case 4
|
||||
ss_plt=mot.ss_0;
|
||||
ss_plt=mot.ss_plt; %ss_plt ss_c1 ss_d1 ss_1 ss_0
|
||||
ss_mdl=mot.ss_c1; %ss_plt ss_c1 ss_d1 ss_1 ss_0
|
||||
use_lqr=1
|
||||
end
|
||||
ss_plt.Name='open loop plant';
|
||||
|
||||
switch mMdl
|
||||
case 0
|
||||
ss_mdl=mot.ss_plt;
|
||||
case 1
|
||||
ss_mdl=mot.ss_c1;
|
||||
case 2
|
||||
ss_mdl=mot.ss_d1;
|
||||
case 3
|
||||
ss_mdl=mot.ss_1;
|
||||
case 4
|
||||
ss_mdl=mot.ss_0;
|
||||
end
|
||||
ss_mdl.Name='open loop model'; %model for observer
|
||||
|
||||
[Am,Bm,Cm,Dm]=ssdata(ss_mdl);
|
||||
|
||||
if bitand(mShow,1)
|
||||
|
||||
if bitand(verb,1) && use_lqr==0
|
||||
format compact
|
||||
format shortG
|
||||
disp(pole(ss_mdl)) %==eig(Am)
|
||||
%damp(ss_mdl) %further informations
|
||||
disp(pl)
|
||||
disp(plObs)
|
||||
format short
|
||||
end
|
||||
|
||||
if bitand(verb,2)
|
||||
figure();h=bodeplot(ss_plt,ss_mdl);
|
||||
setoptions(h,'IOGrouping','all')
|
||||
end
|
||||
@@ -85,7 +97,7 @@ function [ssc]=StateSpaceControlDesign(mot)
|
||||
xp0 = zeros(1,length(ss_plt.A));
|
||||
xm0 = zeros(1,length(Am));
|
||||
|
||||
if bitand(mShow,2)
|
||||
if bitand(verb,4)
|
||||
% step answer on open loop:
|
||||
t = 0:1E-4:.5;
|
||||
u = ones(size(t));
|
||||
@@ -94,7 +106,6 @@ function [ssc]=StateSpaceControlDesign(mot)
|
||||
figure();plot(t,yp,t,ym,'--');title('step on open loop (plant and model)');
|
||||
legend('plt.iqMeas','plt.iqVolts','plt.actPos','mdl.iqMeas','mdl.iqVolts','mdl.actPos')
|
||||
end
|
||||
poles = eig(Am);
|
||||
%w0=abs(poles);
|
||||
%ang=angle(-poles);
|
||||
%-------------------
|
||||
@@ -104,51 +115,12 @@ function [ssc]=StateSpaceControlDesign(mot)
|
||||
%
|
||||
%place poles for the controller feedback
|
||||
if use_lqr %use the lqr controller
|
||||
Q=eye(length(ss_mdl.A));
|
||||
Q=eye(length(Am));
|
||||
R=1;
|
||||
[K,P,E]=lqr(ss_mdl,Q,R,0);
|
||||
[K,P,E]=lqr(Am,Bm,Q,R,0);
|
||||
else
|
||||
if mot.id==1
|
||||
%2500rad/s = 397Hz -> locate poles here
|
||||
%6300rad/s = 1027Hz -> locate poles here
|
||||
switch mMdl
|
||||
case 0
|
||||
p1=-3300+2800i; p2=-2700+500i; p3=-2500+10i;
|
||||
P=[p1 p1' p2 p2' p3 p3'];
|
||||
case 1
|
||||
%p1=-6300+280i; p2=-6200+150i;
|
||||
%P=[p1 p1' p2 p2'];
|
||||
P=[-4100 -4000 -1500+10j -1500-10j];
|
||||
case 2
|
||||
%p1=-6300+280i; p2=-6200+150i;
|
||||
%P=[p1 p1' p2 p2'];
|
||||
P=[-1500+10j -1500-10j];
|
||||
case 3
|
||||
%p1=-6300+280i; p2=-6200+150i;
|
||||
%P=[p1 p1' p2 p2'];
|
||||
P=[-1500+10j -1500-10j -1400 -1300];
|
||||
end
|
||||
else
|
||||
%2500rad/s = 397Hz -> locate poles here
|
||||
%6300rad/s = 1027Hz -> locate poles here
|
||||
switch mMdl
|
||||
case 0
|
||||
p1=-3300+2800i; p2=-1900+130i; p3=-2900+80i;
|
||||
p4=-2300+450i; p5=-2000+20i; p6=-1500+10i;
|
||||
P=[p1 p1' p2 p2' p3 p3' p4 p4' p5 p5' p6 p6'];
|
||||
case 1
|
||||
%p1=-6300+2800i; p2=-6200+1500i;
|
||||
%P=[p1 p1' p2 p2'];
|
||||
P=[-2500 -2800 -1500+10j -1500-10j];
|
||||
P=[-2500 -2800 -1100+10j -1100-10j];
|
||||
case 2
|
||||
%p1=-6300+2800i; p2=-6200+1500i;
|
||||
%P=[p1 p1' p2 p2'];
|
||||
P=[-2500 -2800 -1500+10j -1500-10j];
|
||||
end
|
||||
end
|
||||
K = place(Am,Bm,P);
|
||||
%K = acker(Am,Bm,Pm);
|
||||
K = place(Am,Bm,pl);
|
||||
%K = acker(Am,Bm,pl);
|
||||
end %if lqr
|
||||
|
||||
V=-1./(Cm*(Am-Bm*K)^-1*Bm); %(from Lineare Regelsysteme2 (Glattfelder) page:173 )
|
||||
@@ -157,7 +129,7 @@ function [ssc]=StateSpaceControlDesign(mot)
|
||||
end
|
||||
|
||||
ss_cl = ss(Am-Bm*K,Bm*V,Cm,0,'Name','space state controller','InputName',ss_mdl.InputName,'OutputName',ss_mdl.OutputName);
|
||||
if bitand(mShow,4)
|
||||
if bitand(verb,8)
|
||||
% step answer on closed loop with space state controller:
|
||||
t = 0:1E-4:.5;
|
||||
[y,t,x]=lsim(ss_cl,V*u,t,xm0);
|
||||
@@ -166,10 +138,15 @@ function [ssc]=StateSpaceControlDesign(mot)
|
||||
|
||||
% *** observer controller ***
|
||||
%
|
||||
%observer poles-> 5 times farther left than system poles
|
||||
OP=2*P;
|
||||
L=place(Am',Cm',OP)';
|
||||
%L=acker(A',C',OP)';
|
||||
%observer poles
|
||||
if use_lqr %use the lqr controller
|
||||
Q=eye(length(Am')); % ??????????????? CHANGES NEEDED ????????????
|
||||
R=eye(size(Cm,1));
|
||||
[L,P,E]=lqr(Am',Cm',Q,R,0);
|
||||
else
|
||||
L=place(Am',Cm',plObs)';
|
||||
%L=acker(A',C',plObs)';
|
||||
end
|
||||
|
||||
At = [ Am-Bm*K Bm*K
|
||||
zeros(size(Am)) Am-L*Cm ];
|
||||
@@ -179,7 +156,7 @@ function [ssc]=StateSpaceControlDesign(mot)
|
||||
|
||||
Dt=0;
|
||||
ss_t = ss(At,Bt,Ct,Dt,'Name','observer controller','InputName',{'desPos'},'OutputName',ss_mdl.OutputName);
|
||||
if bitand(mShow,8)
|
||||
if bitand(verb,16)
|
||||
% step answer on closed loop with observer controller:
|
||||
figure();lsim(ss_t,ones(size(t)),t,[xm0 xm0]);title('step on closed loop with observer');
|
||||
end
|
||||
@@ -191,20 +168,16 @@ function [ssc]=StateSpaceControlDesign(mot)
|
||||
[Atz,Btz,Ctz,Dtz]=ssdata(ss_tz );
|
||||
ss_tz.Name='discrete obsvr ctrl';
|
||||
|
||||
if bitand(mShow,16)
|
||||
if bitand(verb,32)
|
||||
% step answer on closed loop with disctrete observer controller:
|
||||
t = 0:Ts:.05;
|
||||
figure();lsim(ss_tz ,ones(size(t)),t,[xm0 xm0]);title('step on closed loop with observer discrete');
|
||||
end
|
||||
|
||||
if bitand(mShow,32)
|
||||
if bitand(verb,64)
|
||||
%plot all bode diagrams of desPos->actPos
|
||||
figure();
|
||||
if mMdl==2 || mMdl==3
|
||||
idx=1;
|
||||
else
|
||||
idx=3;
|
||||
end
|
||||
idx=length(ss_cl.OutputName);
|
||||
h=bodeplot(ss_cl(idx),ss_t(idx),ss_tz(idx));
|
||||
setoptions(h,'FreqUnits','Hz','Grid','on');legend('location','sw');
|
||||
|
||||
@@ -221,13 +194,9 @@ function [ssc]=StateSpaceControlDesign(mot)
|
||||
Bo=[Bm L];
|
||||
Co=K;
|
||||
Do=zeros(size(Co,1),size(Bo,2));
|
||||
|
||||
if mMdl==2 || mMdl==3
|
||||
ss_o = ss(Ao,Bo,Co,Do,'Name','observer controller','InputName',{'desPos','actPos'},'OutputName',{'k*xt'});
|
||||
else
|
||||
ss_o = ss(Ao,Bo,Co,Do,'Name','observer controller','InputName',{'desPos','iqMeas','iqVolts','actPos'},'OutputName',{'k*xt'});
|
||||
end
|
||||
|
||||
|
||||
ss_o = ss(Ao,Bo,Co,Do,'Name','observer controller','InputName',[{'desPos'}; ss_mdl.OutputName ],'OutputName',{'k*xt'});
|
||||
|
||||
%discrete plant
|
||||
%ss_pltz = c2d(ss_plt,Ts);
|
||||
%[Apz,Bpz,Cpz,Dpz]=ssdata(ss_pltz);
|
||||
@@ -235,20 +204,17 @@ function [ssc]=StateSpaceControlDesign(mot)
|
||||
%discrete observer controller
|
||||
ss_oz = c2d(ss_o,Ts);
|
||||
|
||||
%prefilter to compensate non observable resonance frequencies
|
||||
prefilt=Prefilt(mot,mPrefilt);
|
||||
|
||||
%discrete prefilter
|
||||
prefiltz=c2d(prefilt,Ts);
|
||||
filt_pos_err_z=c2d(filt_pos_err,Ts);
|
||||
|
||||
if bitand(mShow,64)
|
||||
h=bodeplot(prefilt,prefiltz);
|
||||
if bitand(verb,128)
|
||||
h=bodeplot(filt_pos_err,filt_pos_err_z);
|
||||
setoptions(h,'FreqUnits','Hz','Grid','on');legend('location','sw');
|
||||
end
|
||||
|
||||
%state space controller
|
||||
ssc=struct();
|
||||
for k=["Ts","ss_plt","ss_o","ss_oz","prefilt","prefiltz","V"]
|
||||
for k=["Ts","ss_plt","ss_o","ss_oz","filt_pos_err","filt_pos_err_z","V"]
|
||||
ssc=setfield(ssc,k,eval(k));
|
||||
end
|
||||
save(sprintf('/tmp/ssc%d.mat',mot.id),'-struct','ssc');
|
||||
@@ -275,14 +241,13 @@ function pf=Prefilt(mot,mode)
|
||||
denV=den1;
|
||||
pf=tf(numV,denV);
|
||||
else
|
||||
|
||||
%Lag
|
||||
f=[100 200]; w=f*2*pi; T=1./w;
|
||||
tf1=tf([T(1) 1],[T(2) 1]);
|
||||
%bo = bodeoptions;
|
||||
%bo.FreqUnits = 'Hz'; bo.MagUnits='abs'; bo.Grid='on';
|
||||
%bode(tf1,bo)
|
||||
|
||||
|
||||
%k=1.2; aa=2; f=[40 60];w=f*2*pi; tf([1 33 w0^2]; den3=[1 20 w0^2];
|
||||
%f=277;w0=f*2*pi; num1=[1 20 w0^2]; den1=[1 500 w0^2];
|
||||
%f=138;w0=f*2*pi; num2=[1 300 w0^2]; den2=[1 100 w0^2];
|
||||
|
||||
@@ -28,13 +28,15 @@ disp('document figure generation done');close all;
|
||||
|
||||
|
||||
close all;disp('simulate observer with prefilter...');
|
||||
for k =1:2
|
||||
[ssc]=StateSpaceControlDesign(mot{k});sim('observer');
|
||||
f=figure(); h=plot(desPos_actPos.Time,desPos_actPos.Data,'g');
|
||||
set(h(1),'color','b'); set(h(2),'color',[0 0.5 0]);
|
||||
print(f,sprintf('figures/sim_cl_obs_pf_%d',mot{k}.id),'-depsc');
|
||||
f=bodeSamples(desPos_actPos);
|
||||
print(f,sprintf('figures/sim_cl_obs_pf_bode%d',mot{k}.id),'-depsc');
|
||||
for m =0%0:1
|
||||
for k =1:2
|
||||
[ssc]=StateSpaceControlDesign(mot{k},m);sim('observer');
|
||||
f=figure(); h=plot(desPos_actPos.Time,desPos_actPos.Data,'g');
|
||||
set(h(1),'color','b'); set(h(2),'color',[0 0.5 0]);
|
||||
print(f,sprintf('figures/sim_cl_obs_%d_%d',m,mot{k}.id),'-depsc');
|
||||
f=bodeSamples(desPos_actPos);
|
||||
print(f,sprintf('figures/sim_cl_obs_bode%d_%d',m,mot{k}.id),'-depsc');
|
||||
end
|
||||
end
|
||||
disp('document figure generation done');close all;
|
||||
|
||||
|
||||
@@ -212,6 +212,7 @@ function motCell=identifyFxFyStage(mode)
|
||||
% | 3|-------> actPos
|
||||
% +-----------+
|
||||
mot.ss_plt=connect(tfc,tf1,tf2,'iqCmd',{'iqMeas','actVel','actPos'});
|
||||
mot.ss_plt.Name='best plant approximation';
|
||||
chkCtrlObsv(mot.ss_plt,'ss_plt fyStage');
|
||||
|
||||
%without resonance
|
||||
@@ -222,6 +223,7 @@ function motCell=identifyFxFyStage(mode)
|
||||
% +-----------+
|
||||
s=tf1.InputName{1};tf1.InputName{1}='iqMeas';
|
||||
mot.ss_c1=connect(tfc,tf1,'iqCmd',{'iqMeas','actVel','actPos'});
|
||||
mot.ss_c1.Name='without resonance';
|
||||
chkCtrlObsv(mot.ss_c1,'ss_c1 fyStage');
|
||||
tf1.InputName{1}=s;%restore
|
||||
|
||||
@@ -234,6 +236,7 @@ function motCell=identifyFxFyStage(mode)
|
||||
% +-----------+
|
||||
s=tf1.InputName{1};tf1.InputName{1}='iqMeas';
|
||||
mot.ss_d1=connect(tfd,tf1,'iqCmd',{'iqMeas','actVel','actPos'});
|
||||
mot.ss_d1.Name='simplified current, without resonance';
|
||||
chkCtrlObsv(mot.ss_d1,'ss_d1 fyStage');
|
||||
tf1.InputName{1}=s;%restore
|
||||
|
||||
@@ -244,6 +247,7 @@ function motCell=identifyFxFyStage(mode)
|
||||
% | 2|-------> actPos
|
||||
% +-----------+
|
||||
mot.ss_1=ss(tf1);
|
||||
mot.ss_1.Name='no current loop, no resonance';
|
||||
chkCtrlObsv(mot.ss_1,'ss_1 fyStage');
|
||||
|
||||
|
||||
@@ -253,6 +257,7 @@ function motCell=identifyFxFyStage(mode)
|
||||
% | 2|-------> actPos
|
||||
% +-----------+
|
||||
mot.ss_0=ss(tf0);
|
||||
mot.ss_0.Name='simplified mechanics, no current loop, no resonance';
|
||||
chkCtrlObsv(mot.ss_0,'ss_0 fyStage');
|
||||
|
||||
%h=bodeplot(mot.meas,'r',mot.tf4_2,'b',mot.tf6_4,'g');
|
||||
|
||||
Binary file not shown.
Binary file not shown.
Binary file not shown.
Reference in New Issue
Block a user