early exit 2

This commit is contained in:
2024-08-08 16:09:36 +02:00
parent a7327ddbf7
commit 93f0702c41

View File

@ -14,33 +14,33 @@ def calc_force_send(results, data, pixel_mask_pf, image, n_aggregated_images, da
data_summed = None
n_aggregated_images = 1
if apply_threshold or apply_aggregation:
if apply_threshold and all(k in results for k in ("threshold_min", "threshold_max")):
threshold_min = float(results["threshold_min"])
threshold_max = float(results["threshold_max"])
data[data < threshold_min] = 0.0
if threshold_max > threshold_min:
data[data > threshold_max] = 0.0
if apply_aggregation and "aggregation_max" in results:
if data_summed is not None:
data += data_summed
n_aggregated_images += 1
data_summed = data.copy()
data_summed[data == -np.nan] = -np.nan #TODO: this does nothing
results["aggregated_images"] = n_aggregated_images
results["worker"] = 1 #TODO: keep this for backwards compatibility?
if n_aggregated_images >= results["aggregation_max"]:
force_send_visualisation = True
data_summed = None
n_aggregated_images = 1
if pixel_mask_pf is not None:
data[~pixel_mask_pf] = np.nan
else:
if not apply_threshold and not apply_aggregation:
data = image
return data, force_send_visualisation, n_aggregated_images, data_summed
if apply_threshold and all(k in results for k in ("threshold_min", "threshold_max")):
threshold_min = float(results["threshold_min"])
threshold_max = float(results["threshold_max"])
data[data < threshold_min] = 0.0
if threshold_max > threshold_min:
data[data > threshold_max] = 0.0
if apply_aggregation and "aggregation_max" in results:
if data_summed is not None:
data += data_summed
n_aggregated_images += 1
data_summed = data.copy()
data_summed[data == -np.nan] = -np.nan #TODO: this does nothing
results["aggregated_images"] = n_aggregated_images
results["worker"] = 1 #TODO: keep this for backwards compatibility?
if n_aggregated_images >= results["aggregation_max"]:
force_send_visualisation = True
data_summed = None
n_aggregated_images = 1
if pixel_mask_pf is not None:
data[~pixel_mask_pf] = np.nan
return data, force_send_visualisation, n_aggregated_images, data_summed