booleans
This commit is contained in:
@ -145,7 +145,7 @@ def main():
|
||||
results["number_of_spots"] = 0
|
||||
results["is_hit_frame"] = False
|
||||
|
||||
daq_rec = results.get("daq_rec",0)
|
||||
daq_rec = results.get("daq_rec", 0)
|
||||
event_laser = bool((daq_rec >> 16) & 1)
|
||||
event_darkshot = bool((daq_rec >> 17) & 1)
|
||||
# event_fel = bool((daq_rec >> 18) & 1)
|
||||
@ -155,7 +155,7 @@ def main():
|
||||
results["laser_on"] = event_laser
|
||||
|
||||
# Filter only ppicker events, if requested; skipping all other events
|
||||
select_only_ppicker_events = results.get("select_only_ppicker_events", 0)
|
||||
select_only_ppicker_events = results.get("select_only_ppicker_events", False)
|
||||
if select_only_ppicker_events and not event_ppicker:
|
||||
continue
|
||||
|
||||
@ -197,7 +197,7 @@ def main():
|
||||
pixel_mask_pf = None
|
||||
|
||||
# add additional mask at the edge of modules for JF06T08
|
||||
apply_additional_mask = (results.get("apply_additional_mask", 0) == 1)
|
||||
apply_additional_mask = results.get("apply_additional_mask", False)
|
||||
if detector == "JF06T08V04" and apply_additional_mask:
|
||||
# edge pixels
|
||||
pixel_mask_pf[67:1097,1063] = 0
|
||||
@ -262,9 +262,9 @@ def main():
|
||||
results["saturated_pixels_y"] = saturated_pixels_coordinates[0].tolist()
|
||||
|
||||
# pump probe analysis
|
||||
do_radial_integration = results.get("do_radial_integration", 0)
|
||||
do_radial_integration = results.get("do_radial_integration", False)
|
||||
|
||||
if do_radial_integration != 0:
|
||||
if do_radial_integration:
|
||||
|
||||
data_copy_1 = np.copy(data)
|
||||
|
||||
@ -278,9 +278,9 @@ def main():
|
||||
r_min_max = [int(np.min(r_radial_integration)), int(np.max(r_radial_integration)) + 1]
|
||||
|
||||
|
||||
apply_threshold = results.get("apply_threshold", 0)
|
||||
apply_threshold = results.get("apply_threshold", False)
|
||||
|
||||
if apply_threshold != 0 and all(k in results for k in ("threshold_min", "threshold_max")):
|
||||
if apply_threshold and all(k in results for k in ("threshold_min", "threshold_max")):
|
||||
threshold_min = float(results["threshold_min"])
|
||||
threshold_max = float(results["threshold_max"])
|
||||
data_copy_1[data_copy_1 < threshold_min] = np.nan
|
||||
@ -314,10 +314,10 @@ def main():
|
||||
if pixel_mask_pf is not None:
|
||||
d[pixel_mask_pf != 1] = np.nan
|
||||
|
||||
apply_threshold = results.get("apply_threshold", 0)
|
||||
apply_threshold = results.get("apply_threshold", False)
|
||||
threshold_value_choice = results.get("threshold_value", "NaN")
|
||||
threshold_value = 0 if threshold_value_choice == "0" else np.nan
|
||||
if apply_threshold != 0 and all(k in results for k in ("threshold_min", "threshold_max")):
|
||||
if apply_threshold and all(k in results for k in ("threshold_min", "threshold_max")):
|
||||
threshold_min = float(results["threshold_min"])
|
||||
threshold_max = float(results["threshold_max"])
|
||||
d[d < threshold_min] = threshold_value
|
||||
@ -355,9 +355,9 @@ def main():
|
||||
results["roi_intensities_normalised"] = [float(r) for r in roi_results_normalised ]
|
||||
|
||||
# SPI analysis
|
||||
do_spi_analysis = results.get("do_spi_analysis", 0)
|
||||
do_spi_analysis = results.get("do_spi_analysis", False)
|
||||
|
||||
if (do_spi_analysis != 0) and "roi_intensities_normalised" in results and len(results["roi_intensities_normalised"]) >= 2:
|
||||
if do_spi_analysis and "roi_intensities_normalised" in results and len(results["roi_intensities_normalised"]) >= 2:
|
||||
|
||||
if "spi_limit" in results and len(results["spi_limit"]) == 2:
|
||||
|
||||
@ -372,8 +372,8 @@ def main():
|
||||
results["is_hit_frame"] = True
|
||||
|
||||
# in case all needed parameters are present, make peakfinding
|
||||
do_peakfinder_analysis = results.get("do_peakfinder_analysis", 0)
|
||||
if do_peakfinder_analysis != 0 and pixel_mask_pf is not None and all(k in results for k in ("beam_center_x", "beam_center_y", "hitfinder_min_snr", "hitfinder_min_pix_count", "hitfinder_adc_thresh")):
|
||||
do_peakfinder_analysis = results.get("do_peakfinder_analysis", False)
|
||||
if do_peakfinder_analysis and pixel_mask_pf is not None and all(k in results for k in ("beam_center_x", "beam_center_y", "hitfinder_min_snr", "hitfinder_min_pix_count", "hitfinder_adc_thresh")):
|
||||
x_beam = results["beam_center_x"] - 0.5 # to coordinates where position of first pixel/point is 0.5, 0.5
|
||||
y_beam = results["beam_center_y"] - 0.5 # to coordinates where position of first pixel/point is 0.5, 0.5
|
||||
hitfinder_min_snr = results["hitfinder_min_snr"]
|
||||
@ -430,19 +430,19 @@ def main():
|
||||
|
||||
forceSendVisualisation = False
|
||||
if data.dtype != np.uint16:
|
||||
apply_threshold = results.get("apply_threshold", 0)
|
||||
apply_aggregation = results.get("apply_aggregation", 0)
|
||||
if apply_aggregation == 0:
|
||||
apply_threshold = results.get("apply_threshold", False)
|
||||
apply_aggregation = results.get("apply_aggregation", False)
|
||||
if not apply_aggregation:
|
||||
data_summed = None
|
||||
n_aggregated_images = 1
|
||||
if apply_threshold != 0 or apply_aggregation != 0:
|
||||
if apply_threshold != 0 and all(k in results for k in ("threshold_min", "threshold_max")):
|
||||
if apply_threshold or apply_aggregation:
|
||||
if apply_threshold and all(k in results for k in ("threshold_min", "threshold_max")):
|
||||
threshold_min = float(results["threshold_min"])
|
||||
threshold_max = float(results["threshold_max"])
|
||||
data[data < threshold_min] = 0.0
|
||||
if threshold_max > threshold_min:
|
||||
data[data > threshold_max] = 0.0
|
||||
if (apply_aggregation != 0 ) and "aggregation_max" in results:
|
||||
if apply_aggregation and "aggregation_max" in results:
|
||||
if data_summed is not None:
|
||||
data += data_summed
|
||||
n_aggregated_images += 1
|
||||
@ -465,7 +465,7 @@ def main():
|
||||
|
||||
accumulator_socket.send_json(results, FLAGS)
|
||||
|
||||
if (apply_aggregation != 0 ) and "aggregation_max" in results:
|
||||
if apply_aggregation and "aggregation_max" in results:
|
||||
if forceSendVisualisation:
|
||||
visualisation_socket.send_json(results, FLAGS | zmq.SNDMORE)
|
||||
visualisation_socket.send(data, FLAGS, copy=True, track=True)
|
||||
|
Reference in New Issue
Block a user