37 lines
1.3 KiB
Python
Executable File
37 lines
1.3 KiB
Python
Executable File
###################################################################################################
|
|
# Multiple Gaussians peak search with mathutils.py
|
|
###################################################################################################
|
|
|
|
|
|
from mathutils import estimate_peak_indexes, fit_gaussians, create_fit_point_list
|
|
import java.awt.Color as Color
|
|
|
|
start = 0
|
|
end = 50
|
|
step_size = 0.2
|
|
|
|
result= lscan(ao1,ai1,start,end,[step_size,])
|
|
|
|
readable = result.getReadable(0)
|
|
positions = result.getPositions(0)
|
|
|
|
|
|
threshold = (min(readable) + max(readable))/2
|
|
min_peak_distance = 5.0
|
|
|
|
peaks = estimate_peak_indexes(readable, positions, threshold, min_peak_distance)
|
|
print "Peak indexes: " + str(peaks)
|
|
print "Peak x: " + str(map(lambda x:positions[x], peaks))
|
|
print "Peak y: " + str(map(lambda x:readable[x], peaks))
|
|
|
|
gaussians = fit_gaussians(readable, positions, peaks)
|
|
|
|
plots = plot([readable],["sin"],[positions], title="Data" )
|
|
for i in range(len(peaks)):
|
|
peak = peaks[i]
|
|
(normalization, mean_val, sigma) = gaussians[i]
|
|
if abs(mean_val - positions[peak]) < min_peak_distance:
|
|
print "Peak -> " + str(mean_val)
|
|
plots[0].addMarker(mean_val, None, "N="+str(round(normalization,2)), Color(210,0,0))
|
|
else:
|
|
print "Invalid gaussian fit: " + str(mean_val)
|