################################################################################################### # Multiple Gaussians peak search with mathutils.py ################################################################################################### from mathutils import estimate_peak_indexes, fit_gaussians, create_fit_point_list import java.awt.Color as Color start = 0 end = 50 step_size = 0.2 result= lscan(ao1,ai1,start,end,[step_size,]) readable = result.getReadable(0) positions = result.getPositions(0) threshold = (min(readable) + max(readable))/2 min_peak_distance = 5.0 peaks = estimate_peak_indexes(readable, positions, threshold, min_peak_distance) print "Peak indexes: " + str(peaks) print "Peak x: " + str(map(lambda x:positions[x], peaks)) print "Peak y: " + str(map(lambda x:readable[x], peaks)) gaussians = fit_gaussians(readable, positions, peaks) plots = plot([readable],["sin"],[positions], title="Data" ) for i in range(len(peaks)): peak = peaks[i] (normalization, mean_val, sigma) = gaussians[i] if abs(mean_val - positions[peak]) < min_peak_distance: print "Peak -> " + str(mean_val) plots[0].addMarker(mean_val, None, "N="+str(round(normalization,2)), Color(210,0,0)) else: print "Invalid gaussian fit: " + str(mean_val)