pmsco-public/tests/test_genetic.py

382 lines
15 KiB
Python

"""
@package tests.test_genetic
unit tests for pmsco.optimizers.genetic
the purpose of these tests is to help debugging the code.
to run the tests, change to the directory which contains the tests directory, and execute =nosetests=.
@pre nose must be installed (python-nose package on Debian).
@author Matthias Muntwiler, matthias.muntwiler@psi.ch
@copyright (c) 2018 by Paul Scherrer Institut @n
Licensed under the Apache License, Version 2.0 (the "License"); @n
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import math
import numpy as np
import os
import os.path
import random
import shutil
import tempfile
import unittest
import pmsco.optimizers.genetic as mo
import pmsco.project as mp
POP_SIZE = 6
class TestPopulation(unittest.TestCase):
def setUp(self):
random.seed(0)
self._test_dir = ""
self.model_space = mp.ModelSpace()
self.model_space.add_param('A', 1.5, 1.0, 2.0, 0.1)
self.model_space.add_param('B', 2.5, 2.0, 3.0, 0.1)
self.model_space.add_param('C', 3.5, 3.0, 4.0, 0.1)
self.expected_names = ('_gen', '_model', '_particle', '_rfac', 'A', 'B', 'C')
self.size = POP_SIZE
self.pop = mo.GeneticPopulation()
self.optimum1 = {'A': 1.045351, 'B': 2.346212, 'C': 3.873627}
self.optimum2 = {'A': 1.045351, 'B': 2.346212, 'C': 4.873627}
def tearDown(self):
# after each test method
self.pop = None
if self._test_dir:
shutil.rmtree(self._test_dir)
@property
def test_dir(self):
if not self._test_dir:
self._test_dir = tempfile.mkdtemp()
return self._test_dir
@classmethod
def setup_class(cls):
# before any methods in this class
pass
@classmethod
def teardown_class(cls):
# teardown_class() after any methods in this class
pass
def rfactor1(self, pos):
r = (pos['A'] - self.optimum1['A']) ** 2 \
+ (pos['B'] - self.optimum1['B']) ** 2 \
+ (pos['C'] - self.optimum1['C']) ** 2
r /= 3.0
return r
def rfactor2(self, pos):
"""
R-factor function with multiple local minima
global minimum R = 0.0138591 at A = 1.745, B = 2.395, C = 3.755.
domain A = 1.0:2.0, B = 2.0:3.0, C = 3.0:4.0
@param pos: dict-like position with keys 'A', 'B' and 'C'.
@return: R-factor
"""
xa = (pos['A'] - pos['B']) * 12
xb = (pos['B'] - pos['C']) * 15
xc = (pos['C'] - pos['A']) * 18
da = pos['A'] - 1.8
db = pos['B'] - 2.3
dc = pos['C'] - 3.8
aa = 1.0
ab = 1.0
ac = 1.0
ba = 0.4
bb = 0.8
bc = 1.2
r = aa * math.sin(xa) + ab * math.sin(xb) + ac * math.sin(xc)
r += ba * da**2 + bb * db**2 + bc * dc**2 + 3.0
return r
def test_setup(self):
self.pop.setup(self.size, self.model_space)
self.assertEqual(self.pop.pos.dtype.names, self.expected_names)
self.assertEqual(self.pop.pos.shape, (POP_SIZE,))
np.testing.assert_array_equal(np.arange(POP_SIZE), self.pop.pos['_particle'])
np.testing.assert_array_equal(np.zeros(POP_SIZE), self.pop.pos['_gen'])
np.testing.assert_array_equal(np.arange(POP_SIZE), self.pop.pos['_model'])
self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][0], 3)
self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][1], 3)
self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][2], 3)
self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][3], 3)
self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][4], 3)
self.assertEqual(0, self.pop.generation)
self.assertEqual(POP_SIZE, self.pop.model_count)
def test_setup_with_results(self):
data_dir = os.path.dirname(os.path.abspath(__file__))
data_file = os.path.join(data_dir, "test_swarm.setup_with_results.1.dat")
self.pop.setup(self.size, self.model_space, seed_file=data_file, recalc_seed=False)
self.assertEqual(self.pop.pos.dtype.names, self.expected_names)
self.assertEqual(self.pop.pos.shape, (POP_SIZE,))
self.assertEqual(self.pop.generation, 0)
self.assertEqual(self.pop.model_count, POP_SIZE)
np.testing.assert_array_equal(self.pop.pos['_particle'], np.arange(POP_SIZE))
np.testing.assert_array_equal(self.pop.pos['_gen'], [0, 0, -1, 0, 0, 0])
np.testing.assert_array_equal(self.pop.pos['_model'], np.arange(POP_SIZE))
self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][0], 3)
self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][1], 3)
self.assertAlmostEqual(0.6, self.pop.pos['_rfac'][2], 3)
self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][3], 3)
self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][4], 3)
self.assertAlmostEqual(1.3, self.pop.pos['A'][1], 3)
self.assertAlmostEqual(1.1, self.pop.pos['A'][2], 3)
self.assertAlmostEqual(1.5, self.pop.pos['A'][0], 3)
self.assertAlmostEqual(2.3, self.pop.pos['B'][1], 3)
self.assertAlmostEqual(2.1, self.pop.pos['B'][2], 3)
self.assertAlmostEqual(2.5, self.pop.pos['B'][0], 3)
self.assertGreaterEqual(4.0, self.pop.pos['C'][1], 3)
self.assertAlmostEqual(3.1, self.pop.pos['C'][2], 3)
self.assertAlmostEqual(3.5, self.pop.pos['C'][0], 3)
def test_setup_with_results_recalc(self):
data_dir = os.path.dirname(os.path.abspath(__file__))
data_file = os.path.join(data_dir, "test_swarm.setup_with_results.1.dat")
self.pop.setup(self.size, self.model_space, seed_file=data_file, recalc_seed=True)
self.assertEqual(self.pop.pos.dtype.names, self.expected_names)
self.assertEqual(self.pop.pos.shape, (POP_SIZE,))
self.assertEqual(self.pop.generation, 0)
self.assertEqual(self.pop.model_count, POP_SIZE)
np.testing.assert_array_equal(self.pop.pos['_particle'], np.arange(POP_SIZE))
np.testing.assert_array_equal(self.pop.pos['_gen'], [0, 0, 0, 0, 0, 0])
np.testing.assert_array_equal(self.pop.pos['_model'], np.arange(POP_SIZE))
self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][0], 3)
self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][1], 3)
self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][2], 3)
self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][3], 3)
self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][4], 3)
self.assertAlmostEqual(1.3, self.pop.pos['A'][1], 3)
self.assertAlmostEqual(1.1, self.pop.pos['A'][2], 3)
self.assertAlmostEqual(1.5, self.pop.pos['A'][0], 3)
self.assertAlmostEqual(2.3, self.pop.pos['B'][1], 3)
self.assertAlmostEqual(2.1, self.pop.pos['B'][2], 3)
self.assertAlmostEqual(2.5, self.pop.pos['B'][0], 3)
self.assertGreaterEqual(4.0, self.pop.pos['C'][1], 3)
self.assertAlmostEqual(3.1, self.pop.pos['C'][2], 3)
self.assertAlmostEqual(3.5, self.pop.pos['C'][0], 3)
def test_pos_gen(self):
self.pop.setup(self.size, self.model_space)
for index, item in enumerate(self.pop.pos_gen()):
self.assertIsInstance(item, dict)
self.assertEqual(set(item.keys()), set(self.expected_names))
self.assertEqual(item['_particle'], index)
def test_randomize(self):
self.pop.setup(self.size, self.model_space)
self.pop.randomize()
self.assertTrue(np.all(self.pop.pos['A'] >= self.model_space.min['A']))
self.assertTrue(np.all(self.pop.pos['A'] <= self.model_space.max['A']))
self.assertGreater(np.std(self.pop.pos['A']), self.model_space.step['A'])
def test_seed(self):
self.pop.setup(self.size, self.model_space)
self.pop.seed(self.model_space.start)
self.assertAlmostEqual(self.pop.pos['A'][0], self.model_space.start['A'], delta=0.001)
def test_add_result(self):
self.pop.setup(self.size, self.model_space)
i_sample = 1
i_result = 0
result = self.pop.pos[i_sample]
self.pop.add_result(result, 0.0)
self.assertEqual(self.pop.results.shape[0], 1)
self.assertEqual(self.pop.results[i_result], result)
self.assertEqual(self.pop.best[i_sample], result)
def test_is_converged(self):
self.pop.setup(self.size, self.model_space)
self.assertFalse(self.pop.is_converged())
i_sample = 0
result = self.pop.pos[i_sample]
for i in range(POP_SIZE):
rfac = 1.0 - float(i) / POP_SIZE
self.pop.add_result(result, rfac)
self.assertFalse(self.pop.is_converged())
for i in range(POP_SIZE):
rfac = (1.0 - float(i) / POP_SIZE) / 1000.0
self.pop.add_result(result, rfac)
self.assertTrue(self.pop.is_converged())
def test_save_population(self):
self.pop.setup(self.size, self.model_space)
filename = os.path.join(self.test_dir, "test_save_population.pop")
self.pop.save_population(filename)
def test_save_results(self):
self.pop.setup(self.size, self.model_space)
i_sample = 1
result = self.pop.pos[i_sample]
self.pop.add_result(result, 1.0)
filename = os.path.join(self.test_dir, "test_save_results.dat")
self.pop.save_results(filename)
def test_save_array(self):
self.pop.setup(self.size, self.model_space)
filename = os.path.join(self.test_dir, "test_save_array.pos")
self.pop.save_array(filename, self.pop.pos)
def test_load_array(self):
n = 3
filename = os.path.join(self.test_dir, "test_load_array")
self.pop.setup(self.size, self.model_space)
# expected array
dt_exp = self.pop.get_pop_dtype(self.model_space.start)
a_exp = np.zeros((n,), dtype=dt_exp)
a_exp['A'] = np.linspace(0, 1, n)
a_exp['B'] = np.linspace(1, 2, n)
a_exp['C'] = np.linspace(3, 4, n)
a_exp['_rfac'] = np.linspace(5, 6, n)
a_exp['_gen'] = np.array([3, 4, 7])
a_exp['_particle'] = np.array([1, 0, 2])
a_exp['_model'] = np.array([3, 6, 1])
# test array is a expected array with different column order
dt_test = [('A', 'f4'), ('_particle', 'i4'), ('_rfac', 'f4'), ('C', 'f4'), ('_gen', 'i4'), ('B', 'f4'),
('_model', 'i4')]
names_test = [a[0] for a in dt_test]
a_test = np.zeros((n,), dtype=dt_test)
for name in names_test:
a_test[name] = a_exp[name]
header = " ".join(names_test)
np.savetxt(filename, a_test, fmt='%g', header=header)
result = np.zeros((n,), dtype=dt_exp)
result = self.pop.load_array(filename, result)
self.assertEqual(result.dtype.names, a_exp.dtype.names)
for name in a_exp.dtype.names:
np.testing.assert_almost_equal(result[name], a_exp[name], err_msg=name)
def test_mate_parents(self):
self.pop.setup(self.size, self.model_space)
pos1 = self.pop.pos.copy()
parents = self.pop.mate_parents(pos1)
self.assertEqual(len(parents), pos1.shape[0] / 2)
def test_crossover(self):
self.pop.setup(self.size, self.model_space)
p1 = self.pop.pos[2].copy()
p2 = self.pop.pos[3].copy()
c1, c2 = self.pop.crossover(p1, p2)
self.assertIsInstance(c1, np.void)
self.assertIsInstance(c2, np.void)
self.assertEqual(c1['_particle'], p1['_particle'])
self.assertEqual(c2['_particle'], p2['_particle'])
for name in self.model_space.start:
self.assertAlmostEqual(c1[name] + c2[name], p1[name] + p2[name], msg=name)
def test_mutate_weak(self):
self.pop.setup(self.size, self.model_space)
p1 = self.pop.pos[3].copy()
c1 = p1.copy()
self.pop.mutate_weak(c1, 1.0)
self.assertEqual(c1['_particle'], p1['_particle'])
self.assertNotAlmostEqual(c1['A'], p1['A'])
self.assertNotAlmostEqual(c1['B'], p1['B'])
self.assertNotAlmostEqual(c1['C'], p1['C'])
def test_mutate_strong(self):
self.pop.setup(self.size, self.model_space)
p1 = self.pop.pos[3].copy()
c1 = p1.copy()
self.pop.mutate_strong(c1, 1.0)
self.assertEqual(c1['_particle'], p1['_particle'])
self.assertNotAlmostEqual(c1['A'], p1['A'])
self.assertNotAlmostEqual(c1['B'], p1['B'])
self.assertNotAlmostEqual(c1['C'], p1['C'])
def test_advance_population(self):
self.pop.setup(self.size, self.model_space)
p1 = {'A': np.linspace(1.0, 2.0, POP_SIZE),
'B': np.linspace(2.0, 3.0, POP_SIZE),
'C': np.linspace(3.0, 4.0, POP_SIZE)}
self.pop.pos['A'] = p1['A']
self.pop.pos['B'] = p1['B']
self.pop.pos['C'] = p1['C']
for pos in self.pop.pos:
pos['_rfac'] = self.rfactor1(pos)
self.pop._hold_once = False
self.pop.weak_mutation_probability = 1.
self.pop.strong_mutation_probability = 0.
self.pop.advance_population()
for name, value in p1.items():
self.assertTrue(np.any(abs(self.pop.pos[name] - value) >= 0.001), msg=name)
def test_convergence_1(self):
self.pop.setup(self.size, self.model_space)
self.pop.pos['A'] = np.linspace(1.0, 2.0, POP_SIZE)
self.pop.pos['B'] = np.linspace(2.0, 3.0, POP_SIZE)
self.pop.pos['C'] = np.linspace(3.0, 4.0, POP_SIZE)
self.pop.pos['_rfac'] = np.linspace(2.0, 1.0, POP_SIZE)
best_rfactors = []
for i in range(10):
self.pop.advance_population()
for pos in self.pop.pos:
self.pop.add_result(pos, self.rfactor1(pos))
best_rfactors.append(self.pop.best['_rfac'].min())
self.assertLess(best_rfactors[-1], best_rfactors[0])
def optimize_rfactor_2(self, pop_size, iterations):
self.size = pop_size
self.pop.setup(self.size, self.model_space)
for i in range(iterations):
self.pop.advance_population()
for pos in self.pop.pos:
self.pop.add_result(pos, self.rfactor2(pos))
@unittest.skip("test_convergence_2 is unreliable")
def test_convergence_2(self):
"""
there is a certain probability that this test fails.
@return:
"""
self.pop.weak_mutation_probability = 1.
self.pop.strong_mutation_probability = 0.01
self.optimize_rfactor_2(10, 200)
ibest = self.pop.results['_rfac'].argmin()
best = self.pop.results[ibest]
self.assertLess(best['_rfac'], 0.2)
self.assertAlmostEqual(best['A'], 1.745, delta=0.1)
self.assertAlmostEqual(best['B'], 2.395, delta=0.1)
self.assertAlmostEqual(best['C'], 3.755, delta=0.1)
if __name__ == '__main__':
unittest.main()