""" @package tests.test_genetic unit tests for pmsco.optimizers.genetic the purpose of these tests is to help debugging the code. to run the tests, change to the directory which contains the tests directory, and execute =nosetests=. @pre nose must be installed (python-nose package on Debian). @author Matthias Muntwiler, matthias.muntwiler@psi.ch @copyright (c) 2018 by Paul Scherrer Institut @n Licensed under the Apache License, Version 2.0 (the "License"); @n you may not use this file except in compliance with the License. You may obtain a copy of the License at http://www.apache.org/licenses/LICENSE-2.0 """ from __future__ import absolute_import from __future__ import division from __future__ import print_function import math import numpy as np import os import os.path import random import shutil import tempfile import unittest import pmsco.optimizers.genetic as mo import pmsco.project as mp POP_SIZE = 6 class TestPopulation(unittest.TestCase): def setUp(self): random.seed(0) self._test_dir = "" self.model_space = mp.ModelSpace() self.model_space.add_param('A', 1.5, 1.0, 2.0, 0.1) self.model_space.add_param('B', 2.5, 2.0, 3.0, 0.1) self.model_space.add_param('C', 3.5, 3.0, 4.0, 0.1) self.expected_names = ('_gen', '_model', '_particle', '_rfac', 'A', 'B', 'C') self.size = POP_SIZE self.pop = mo.GeneticPopulation() self.optimum1 = {'A': 1.045351, 'B': 2.346212, 'C': 3.873627} self.optimum2 = {'A': 1.045351, 'B': 2.346212, 'C': 4.873627} def tearDown(self): # after each test method self.pop = None if self._test_dir: shutil.rmtree(self._test_dir) @property def test_dir(self): if not self._test_dir: self._test_dir = tempfile.mkdtemp() return self._test_dir @classmethod def setup_class(cls): # before any methods in this class pass @classmethod def teardown_class(cls): # teardown_class() after any methods in this class pass def rfactor1(self, pos): r = (pos['A'] - self.optimum1['A']) ** 2 \ + (pos['B'] - self.optimum1['B']) ** 2 \ + (pos['C'] - self.optimum1['C']) ** 2 r /= 3.0 return r def rfactor2(self, pos): """ R-factor function with multiple local minima global minimum R = 0.0138591 at A = 1.745, B = 2.395, C = 3.755. domain A = 1.0:2.0, B = 2.0:3.0, C = 3.0:4.0 @param pos: dict-like position with keys 'A', 'B' and 'C'. @return: R-factor """ xa = (pos['A'] - pos['B']) * 12 xb = (pos['B'] - pos['C']) * 15 xc = (pos['C'] - pos['A']) * 18 da = pos['A'] - 1.8 db = pos['B'] - 2.3 dc = pos['C'] - 3.8 aa = 1.0 ab = 1.0 ac = 1.0 ba = 0.4 bb = 0.8 bc = 1.2 r = aa * math.sin(xa) + ab * math.sin(xb) + ac * math.sin(xc) r += ba * da**2 + bb * db**2 + bc * dc**2 + 3.0 return r def test_setup(self): self.pop.setup(self.size, self.model_space) self.assertEqual(self.pop.pos.dtype.names, self.expected_names) self.assertEqual(self.pop.pos.shape, (POP_SIZE,)) np.testing.assert_array_equal(np.arange(POP_SIZE), self.pop.pos['_particle']) np.testing.assert_array_equal(np.zeros(POP_SIZE), self.pop.pos['_gen']) np.testing.assert_array_equal(np.arange(POP_SIZE), self.pop.pos['_model']) self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][0], 3) self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][1], 3) self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][2], 3) self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][3], 3) self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][4], 3) self.assertEqual(0, self.pop.generation) self.assertEqual(POP_SIZE, self.pop.model_count) def test_setup_with_results(self): data_dir = os.path.dirname(os.path.abspath(__file__)) data_file = os.path.join(data_dir, "test_swarm.setup_with_results.1.dat") self.pop.setup(self.size, self.model_space, seed_file=data_file, recalc_seed=False) self.assertEqual(self.pop.pos.dtype.names, self.expected_names) self.assertEqual(self.pop.pos.shape, (POP_SIZE,)) self.assertEqual(self.pop.generation, 0) self.assertEqual(self.pop.model_count, POP_SIZE) np.testing.assert_array_equal(self.pop.pos['_particle'], np.arange(POP_SIZE)) np.testing.assert_array_equal(self.pop.pos['_gen'], [0, 0, -1, 0, 0, 0]) np.testing.assert_array_equal(self.pop.pos['_model'], np.arange(POP_SIZE)) self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][0], 3) self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][1], 3) self.assertAlmostEqual(0.6, self.pop.pos['_rfac'][2], 3) self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][3], 3) self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][4], 3) self.assertAlmostEqual(1.3, self.pop.pos['A'][1], 3) self.assertAlmostEqual(1.1, self.pop.pos['A'][2], 3) self.assertAlmostEqual(1.5, self.pop.pos['A'][0], 3) self.assertAlmostEqual(2.3, self.pop.pos['B'][1], 3) self.assertAlmostEqual(2.1, self.pop.pos['B'][2], 3) self.assertAlmostEqual(2.5, self.pop.pos['B'][0], 3) self.assertGreaterEqual(4.0, self.pop.pos['C'][1], 3) self.assertAlmostEqual(3.1, self.pop.pos['C'][2], 3) self.assertAlmostEqual(3.5, self.pop.pos['C'][0], 3) def test_setup_with_results_recalc(self): data_dir = os.path.dirname(os.path.abspath(__file__)) data_file = os.path.join(data_dir, "test_swarm.setup_with_results.1.dat") self.pop.setup(self.size, self.model_space, seed_file=data_file, recalc_seed=True) self.assertEqual(self.pop.pos.dtype.names, self.expected_names) self.assertEqual(self.pop.pos.shape, (POP_SIZE,)) self.assertEqual(self.pop.generation, 0) self.assertEqual(self.pop.model_count, POP_SIZE) np.testing.assert_array_equal(self.pop.pos['_particle'], np.arange(POP_SIZE)) np.testing.assert_array_equal(self.pop.pos['_gen'], [0, 0, 0, 0, 0, 0]) np.testing.assert_array_equal(self.pop.pos['_model'], np.arange(POP_SIZE)) self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][0], 3) self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][1], 3) self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][2], 3) self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][3], 3) self.assertAlmostEqual(2.1, self.pop.pos['_rfac'][4], 3) self.assertAlmostEqual(1.3, self.pop.pos['A'][1], 3) self.assertAlmostEqual(1.1, self.pop.pos['A'][2], 3) self.assertAlmostEqual(1.5, self.pop.pos['A'][0], 3) self.assertAlmostEqual(2.3, self.pop.pos['B'][1], 3) self.assertAlmostEqual(2.1, self.pop.pos['B'][2], 3) self.assertAlmostEqual(2.5, self.pop.pos['B'][0], 3) self.assertGreaterEqual(4.0, self.pop.pos['C'][1], 3) self.assertAlmostEqual(3.1, self.pop.pos['C'][2], 3) self.assertAlmostEqual(3.5, self.pop.pos['C'][0], 3) def test_pos_gen(self): self.pop.setup(self.size, self.model_space) for index, item in enumerate(self.pop.pos_gen()): self.assertIsInstance(item, dict) self.assertEqual(set(item.keys()), set(self.expected_names)) self.assertEqual(item['_particle'], index) def test_randomize(self): self.pop.setup(self.size, self.model_space) self.pop.randomize() self.assertTrue(np.all(self.pop.pos['A'] >= self.model_space.min['A'])) self.assertTrue(np.all(self.pop.pos['A'] <= self.model_space.max['A'])) self.assertGreater(np.std(self.pop.pos['A']), self.model_space.step['A']) def test_seed(self): self.pop.setup(self.size, self.model_space) self.pop.seed(self.model_space.start) self.assertAlmostEqual(self.pop.pos['A'][0], self.model_space.start['A'], delta=0.001) def test_add_result(self): self.pop.setup(self.size, self.model_space) i_sample = 1 i_result = 0 result = self.pop.pos[i_sample] self.pop.add_result(result, 0.0) self.assertEqual(self.pop.results.shape[0], 1) self.assertEqual(self.pop.results[i_result], result) self.assertEqual(self.pop.best[i_sample], result) def test_is_converged(self): self.pop.setup(self.size, self.model_space) self.assertFalse(self.pop.is_converged()) i_sample = 0 result = self.pop.pos[i_sample] for i in range(POP_SIZE): rfac = 1.0 - float(i) / POP_SIZE self.pop.add_result(result, rfac) self.assertFalse(self.pop.is_converged()) for i in range(POP_SIZE): rfac = (1.0 - float(i) / POP_SIZE) / 1000.0 self.pop.add_result(result, rfac) self.assertTrue(self.pop.is_converged()) def test_save_population(self): self.pop.setup(self.size, self.model_space) filename = os.path.join(self.test_dir, "test_save_population.pop") self.pop.save_population(filename) def test_save_results(self): self.pop.setup(self.size, self.model_space) i_sample = 1 result = self.pop.pos[i_sample] self.pop.add_result(result, 1.0) filename = os.path.join(self.test_dir, "test_save_results.dat") self.pop.save_results(filename) def test_save_array(self): self.pop.setup(self.size, self.model_space) filename = os.path.join(self.test_dir, "test_save_array.pos") self.pop.save_array(filename, self.pop.pos) def test_load_array(self): n = 3 filename = os.path.join(self.test_dir, "test_load_array") self.pop.setup(self.size, self.model_space) # expected array dt_exp = self.pop.get_pop_dtype(self.model_space.start) a_exp = np.zeros((n,), dtype=dt_exp) a_exp['A'] = np.linspace(0, 1, n) a_exp['B'] = np.linspace(1, 2, n) a_exp['C'] = np.linspace(3, 4, n) a_exp['_rfac'] = np.linspace(5, 6, n) a_exp['_gen'] = np.array([3, 4, 7]) a_exp['_particle'] = np.array([1, 0, 2]) a_exp['_model'] = np.array([3, 6, 1]) # test array is a expected array with different column order dt_test = [('A', 'f4'), ('_particle', 'i4'), ('_rfac', 'f4'), ('C', 'f4'), ('_gen', 'i4'), ('B', 'f4'), ('_model', 'i4')] names_test = [a[0] for a in dt_test] a_test = np.zeros((n,), dtype=dt_test) for name in names_test: a_test[name] = a_exp[name] header = " ".join(names_test) np.savetxt(filename, a_test, fmt='%g', header=header) result = np.zeros((n,), dtype=dt_exp) result = self.pop.load_array(filename, result) self.assertEqual(result.dtype.names, a_exp.dtype.names) for name in a_exp.dtype.names: np.testing.assert_almost_equal(result[name], a_exp[name], err_msg=name) def test_mate_parents(self): self.pop.setup(self.size, self.model_space) pos1 = self.pop.pos.copy() parents = self.pop.mate_parents(pos1) self.assertEqual(len(parents), pos1.shape[0] / 2) def test_crossover(self): self.pop.setup(self.size, self.model_space) p1 = self.pop.pos[2].copy() p2 = self.pop.pos[3].copy() c1, c2 = self.pop.crossover(p1, p2) self.assertIsInstance(c1, np.void) self.assertIsInstance(c2, np.void) self.assertEqual(c1['_particle'], p1['_particle']) self.assertEqual(c2['_particle'], p2['_particle']) for name in self.model_space.start: self.assertAlmostEqual(c1[name] + c2[name], p1[name] + p2[name], msg=name) def test_mutate_weak(self): self.pop.setup(self.size, self.model_space) p1 = self.pop.pos[3].copy() c1 = p1.copy() self.pop.mutate_weak(c1, 1.0) self.assertEqual(c1['_particle'], p1['_particle']) self.assertNotAlmostEqual(c1['A'], p1['A']) self.assertNotAlmostEqual(c1['B'], p1['B']) self.assertNotAlmostEqual(c1['C'], p1['C']) def test_mutate_strong(self): self.pop.setup(self.size, self.model_space) p1 = self.pop.pos[3].copy() c1 = p1.copy() self.pop.mutate_strong(c1, 1.0) self.assertEqual(c1['_particle'], p1['_particle']) self.assertNotAlmostEqual(c1['A'], p1['A']) self.assertNotAlmostEqual(c1['B'], p1['B']) self.assertNotAlmostEqual(c1['C'], p1['C']) def test_advance_population(self): self.pop.setup(self.size, self.model_space) p1 = {'A': np.linspace(1.0, 2.0, POP_SIZE), 'B': np.linspace(2.0, 3.0, POP_SIZE), 'C': np.linspace(3.0, 4.0, POP_SIZE)} self.pop.pos['A'] = p1['A'] self.pop.pos['B'] = p1['B'] self.pop.pos['C'] = p1['C'] for pos in self.pop.pos: pos['_rfac'] = self.rfactor1(pos) self.pop._hold_once = False self.pop.weak_mutation_probability = 1. self.pop.strong_mutation_probability = 0. self.pop.advance_population() for name, value in p1.items(): self.assertTrue(np.any(abs(self.pop.pos[name] - value) >= 0.001), msg=name) def test_convergence_1(self): self.pop.setup(self.size, self.model_space) self.pop.pos['A'] = np.linspace(1.0, 2.0, POP_SIZE) self.pop.pos['B'] = np.linspace(2.0, 3.0, POP_SIZE) self.pop.pos['C'] = np.linspace(3.0, 4.0, POP_SIZE) self.pop.pos['_rfac'] = np.linspace(2.0, 1.0, POP_SIZE) best_rfactors = [] for i in range(10): self.pop.advance_population() for pos in self.pop.pos: self.pop.add_result(pos, self.rfactor1(pos)) best_rfactors.append(self.pop.best['_rfac'].min()) self.assertLess(best_rfactors[-1], best_rfactors[0]) def optimize_rfactor_2(self, pop_size, iterations): self.size = pop_size self.pop.setup(self.size, self.model_space) for i in range(iterations): self.pop.advance_population() for pos in self.pop.pos: self.pop.add_result(pos, self.rfactor2(pos)) @unittest.skip("test_convergence_2 is unreliable") def test_convergence_2(self): """ there is a certain probability that this test fails. @return: """ self.pop.weak_mutation_probability = 1. self.pop.strong_mutation_probability = 0.01 self.optimize_rfactor_2(10, 200) ibest = self.pop.results['_rfac'].argmin() best = self.pop.results[ibest] self.assertLess(best['_rfac'], 0.2) self.assertAlmostEqual(best['A'], 1.745, delta=0.1) self.assertAlmostEqual(best['B'], 2.395, delta=0.1) self.assertAlmostEqual(best['C'], 3.755, delta=0.1) if __name__ == '__main__': unittest.main()