minor updates and bug fixes in angle scan processing and data explorer

This commit is contained in:
muntwiler_m 2019-02-10 14:31:06 +01:00
parent b2f4816629
commit 3235d52212
6 changed files with 594 additions and 36 deletions

View File

@ -0,0 +1,368 @@
/*! @page pag_anglescan_processing Angle-scan processing
@tableofcontents
\section sec_intro Introduction
This page describes the data processing steps of angle-scans using the PEARL Procedures.
The description relies on using the command line regardless of available GUIs.
\section sec_import Data reduction
The goal of this step is to import raw data and at the same time eliminate the energy dimension.
We want a two-dimensional wave
where the first dimension is the angle axis of the detector
and the second dimension is the sequence of measurements,
scanning one or multiple manipulator angles.
The second dimension requires additional one-dimensional waves
that describe the polar, tilt and azimuthal angle setting of the manipulator
for each dimension index.
The processing steps depend on the complexity of the measured spectrum.
The user may have to adopt one of the predefined or a custom procedure accordingly.
Here, we describe two procedures that may cover many generic cases
or that can serve as a starting point for a refined, customized procedure.
However, any procedure that produces the datasets mentioned above is, of course, a valid approach.
For instance, you could load the complete three-dimensional ScientaImage dataset,
and generate the two-dimensional dataset using your own procedures.
\subsection sec_import_basics Basic steps
The central import functions are @ref psh5_load_reduced and @ref psh5_load_dataset_reduced.
The first form is sufficient if the file contains just one scan and region.
Further regions/scans need to be loaded using the second form.
The first form is also exposed in the PEARL data explorer window.
The functions require a data reduction function and processing parameters as arguments.
Some particular reduction functions are described further below.
More can be found in the source code (or obtained from other users).
A list of functions that look like reduction functions can be got from @ref adh5_list_reduction_funcs.
The basic call sequence looks as follows.
Substitute the arguments in angle brackets as necessary.
You may have to analyse a reference spectrum or the complete ScientaImage
to figure out the processing parameters beforehand.
First form:
@code{.ipf}
setdatafolder root:
string sparam
sparam = "<param1=1.5;param2=test;>"
psh5_load_reduced("<igor-datafolder>", "<igor-filepath>", "<filename>", <reduction_function>, sparam)
@endcode
Second form:
@code{.ipf}
// open the file
setdatafolder root: // or other parent folder
variable fid
string sparam
fid = psh5_open_file("<igor-datafolder>", "<igor-filepath>", "<filename>")
// load metadata for scaling
psh5_load_scan_meta(fileID, "<scan 1>")
newdatafolder /s /o attr
psh5_load_scan_attrs(fileID, "<scan 1>")
setdatafolder ::
// load and reduce dataset
sparam = "<param1=1.5;param2=test;>"
psh5_load_dataset_reduced(fid, "<scan 1/region1>", "<ScientaImage>", <reduction_function>, sparam)
// close the file
psh5_close_file(fid)
fid = 0
@endcode
\subsection sec_import_intlinbg Peak integration over linear background
The @ref int_linbg_reduction function converts a two-dimensional Scienta image I(angle, energy)
into a one-dimensional angle distribution I(angle).
For each angle slice, it calculates a linear background.
Then, it integrates the difference between the original data and the background over a specified interval.
The function requires the following, fixed parameters:
Parameter | Description | Typical value
----------|-------------|--------------
Lcrop | size of the low-energy cropping region | 0.11 (fixed mode)
Lsize | size of the low-energy background region | 0.2
Hcrop | size of the high-energy cropping region | 0.11
Hsize | size of the high-energy background region | 0.2
Cpos | position of the peak center | 0.5
Csize | size of the center region | 0.3
All parameters are relative to the size of the image (length of the energy interval)
and must be in the range from 0 to 1.
The cropping region is cut away from the image for the rest of the processing.
This is necessary to remove the dark corners in fixed mode
but can be neglected in swept mode (cropping size = 0).
The low and high background regions are adjacent to the cropping regions on either side.
The function calculates two fix points of the linear background in the center of each background region.
The intensity value of each fix point is the average intensity in the background region.
The peak region is integrated over the integral given by the Csize parameter centered at Cpos.
The background-subtracted peak integral is returned in ReducedData1.
ReducedData2 receives the error estimate of the peak integral (assuming Poisson statistics).
\subsection sec_import_peakfit Peak fitting
The @ref gauss4_reduction function converts a two-dimensional Scienta image I(angle, energy)
into a one-dimensional angle distribution I(angle).
For each angle slice, it performs a Gaussian curve fit with up to four components on a linear background.
To improve the stability of the fit, the peak positions and widths are kept fixed
while the amplitudes of the peaks and the background parameters are variable
but constrained to reasonable values (positive amplitude).
Furthermore, the function can optionally do a box averaging over three slices.
The function requires the following, fixed parameters:
Parameter | Description
----------|------------
rngl | lower limit of the fit interval
rngh | upper limit of the fit interval
npeaks | number of components
pos1 | center energy of peak 1
wid1 | width of peak 1
pos2 | center energy of peak 2
wid2 | width of peak 2
pos3 | center energy of peak 3
wid3 | width of peak 3
pos4 | center energy of peak 3
wid4 | width of peak 3
ybox | box size of slice averaging (1 or 3)
The peak parameters should be determined beforehand from fitting a reference spectrum,
or the angle-scan integrated over all angles.
Peak positions and widths have to be specified only up to the given number of peaks.
The data reduction procedure returns the peak integrals
(amplitude times width times square root of 2) in waves
named ReducedDataN where N is a numeric index from 1 to npeaks.
The waves starting with an index of npeaks+1
contain the corresponding error estimate of the peak integral.
\subsection sec_import_custom Custom reduction functions
See the documentation and source code of @ref int_linbg_reduction, @ref gauss4_reduction and
@ref adh5_default_reduction for help on writing custom reduction functions.
To integrate your function with the PEARL data explorer,
you have to provide an additional function that prompts for reduction parameters
such as @ref prompt_int_linbg_reduction, for example.
Since reduction functions cannot be called from the command line,
it is redommended to also write an adapter function for testing.
\section sec_norm Normalization
The goal of the data normalization is to get a (still two-dimensional) dataset
that ideally contains intensity variations due to diffraction features and statistical fluctuations only.
In particular, instrumental variations should be removed.
In some cases, it may be necessary to preserve the overall polar dependence of the intensity.
Note that this latter case is not properly treated with the methods described here.
Depending on the quality of the measured data,
only some of the following processing steps are necessary.
Use your own judgement.
\subsection sec_norm_prep Preparations
Start by creating a new copy of the data and inspecting it:
@code{.ipf}
duplicate ReducedData1, NormData1
ad_display_profiles(NormData1)
@endcode
To update the display after changes to NormData1:
@code{.ipf}
ad_update_profiles(NormData1)
@endcode
\subsection sec_norm_crop Detector angle range
Crop the detector angle axis to a useful range (usually about -25 to +25 degrees):
@code{.ipf}
crop_strip(NormData1, -25, 25)
@endcode
\subsection sec_norm_angle Normalize detector angle
Remove inhomogeneity of the detector in the detector angle axis.
This component may also include a contribution from the sample.
If your raw data shows a flat distribution, this step is not necessary.
@code{.ipf}
normalize_strip_x(NormData1, smooth_method=4, smooth_factor=0.15, check=2)
@endcode
Note that the argument <code>check=2</code> causes the function to generate
two check waves but not to modify the original data.
To inspect the check waves:
@code{.ipf}
display check_dist, check_smoo
ModifyGraph rgb(check_dist)=(0,0,0)
@endcode
Vary the <code>smooth_factor</code> (between 0.1 and 1.0)
until it follows the instrumental curve
but does not affect diffraction features.
Then set <code>check=1</code> to apply the normalization to <code>NormData1</code>.
\subsection sec_norm_wobble Azimuthal variation (wobble)
Reduce the effect of azimuthal wobble (misaligned surface) on intensity.
A misaligned surface may cause a sinusoidal variation of the intensity as a function of azimuthal angle with a 360&degree; period.
A strong azimuthal variation may affect the polar normalization in the next step.
The azimuthal normalization can be based on a restricted range of polar angles (theta range).
You have to find out which value works best for your sample.
@code{.ipf}
normalize_strip_phi(NormData1, :attr:ManipulatorTheta, :attr:ManipulatorPhi, theta_offset=-8.8, theta_range=10, check=2)
@endcode
Note, however, that his function does not correct for angle shifts induced by the misalignment!
\subsection sec_norm_theta Polar dependence
Remove the polar angle dependence (matrix element and excitation/detection geometry).
@code{.ipf}
normalize_strip_theta(NormData1, :attr:ManipulatorTheta, theta_offset=-8.8, smooth_method=4, smooth_factor=0.5, check=2)
@endcode
Use the check waves and the <code>check</code> argument as described above.
\section sec_plot Binning and plotting
\subsection sec_plot_basics Basic steps
You can bin and plot the data in one step:
@code{.ipf}
pizza_service(NormData1, "Nickname1", -8.8, 0.5, 6)
@endcode
or two steps:
@code{.ipf}
pizza_service(NormData1, "Nickname2", -8.8, 0.5, 6, nograph=1)
display_hemi_scan("Nickname2")
@endcode
The benefit of the latter is that you have more control over the graph through optional arguments.
In particular, you can select the projection or hide the ticks and grids.
See @ref display_hemi_scan for details.
The @ref pizza_service function requires the waves with manipulator positions
in a specific place, namely <code>:attr:ManipulatorTheta</code> (for the polar angle),
and the normal emission values as function arguments.
If you have moved the waves, or if you have subtracted the offsets yourself,
use the alternative @ref pizza_service_2 function.
Additional parameters of the @ref pizza_service function allow for rotational averaging,
larger angle steps (default 1 degree),
or the creation of metadata including a notebook for xpdPlot.
Note there is currently a bug in the nick name argument of some of the following functions.
If the lines shown below do not work,
try to switch to the data folder that contains the generated polar plot data,
and call the function with an empty nickname <code>""</code>.
\subsection sec_plot_refine Refinements
To remove high polar angles above &theta; = 80 from the plot (and data):
@code{.ipf}
trim_hemi_scan("Nickname1", 80)
@endcode
Modify the pseudocolor scale by changing the <code>polarY0</code> trace:
@code{.ipf}
ModifyGraph zColor(polarY0)={mod_values, *, *, BlueGreenOrange, 0}
ModifyGraph zColor(polarY0)={mod_values, -0.2, 0.2, BlueGreenOrange, 0}
@endcode
To set the contrast to clip specified percentiles of the data points,
use the @arg set_contrast function:
@code{.ipf}
set_contrast(2, 2, graphname="graph_Nickname1", colortable="BlueGreenOrange")
@endcode
\subsection sec_plot_interp Interpolation
Polar plots can also be interpolated to a rectangular matrix,
which may in some cases produce nicer images:
@code{.ipf}
interpolate_hemi_scan("Nickname1")
display_hemi_scan("Nickname1", graphtype=3, graphname="intp")
matrix = sqrt(x^2 + y^2) <= calc_graph_radius(80) ? matrix : nan
ModifyImage matrix ctab= {*,*,BlueGreenOrange,0}
@endcode
The <code>matrix =</code> line optionally removes artefacts at high polar angles.
Replace the cut-off angle with your own.
\subsection sec_modulation Modulation function
To calculate the modulation function and substitute it in the graph:
@code{.ipf}
setdatafolder Nickname1
calc_modulation(values, factor1=pol, factor2=az)
ModifyGraph zColor(polarY0)={mod_values,-0.2,0.2,BlueGreenOrange,0}
@endcode
\section sec_export Data export
\subsection sec_export_plot Export picture
The following line is an example of how to export a graph window.
Click on the desired graph window, then issue the following command,
substituting the file path and file name as appropriate.
@code{.ipf}
SavePICT/P=home/E=-5/B=144/O as "some_filename.png"
@endcode
\subsection sec_export_data Export processed data
The following line saves the dataset to an Igor text file.
The file contains all data necessary to recreate a polar plot without further processing.
@code{.ipf}
save_hemi_scan("Nickname1", "home", "some_filename")
@endcode
For structural optimization using the PMSCO software,
it is necessary to generate an ETPI file.
There is currently no special function for this.
Instead, you have to create and set an energy wave,
@code{.ipf}
duplicate pol, en
en = 123.4 // kinetic energy of the photoelectron
@endcode
and write the four waves <code>en, pol, az, values</code> to a general text file.
Be careful about the ordering of the waves!
You will also have to rename the file to the <code>.etpi</code> extension
because Igor always saves with <code>.txt</code> extension.
If you have a wave with statistical errors, add a fifth column and use the <code>.etpis</code> extension.
@code{.ipf}
Save /G /M="\n" /O /P=home en, pol, az, values, sig as "Nickname1.etpis.txt"
@endcode
*/

View File

@ -1,4 +1,7 @@
/*! @mainpage Introduction
@tableofcontents
\section sec_intro Introduction
PEARL Procedures is a suite of Igor Pro procedures developed for data acquisition and data processing at the PEARL beamline at the Swiss Light Source.

View File

@ -537,7 +537,7 @@ end
/// calculate the output using all enabled processing filters.
///
/// the diffractogram is calculated, to display the graph, call @ref asp_display_graph.
/// the diffractogram is calculated, to display the graph, call @ref asp_display_output.
///
function asp_calculate_output()
dfref saveDF = GetDataFolderDFR()
@ -552,6 +552,7 @@ function asp_calculate_output()
nvar folding=output_folding
nvar horizon=output_horizon
nvar graph_mode
do_init_process(0)
do_crop_alpha(0)
@ -569,25 +570,57 @@ function asp_calculate_output()
values = pol <= horizon ? values : nan
endif
interpolate_hemi_scan("")
SetDataFolder saveDF
end
/// display the output diffractogram in a new graph
/// display the output diffractogram
///
function asp_display_output()
dfref df = $(package_path)
/// this function either displays the current working data from the angle scan panel data folder,
/// or hologram data from a specified other data folder.
/// in either case, the graph is displayed using the current projection, mode, color table and contrast settings of the angle scan panel.
///
/// @param data_df data folder where the diffractogram data is located.
/// default: the folder of the angle scan panel package.
///
/// @param data_name name of the diffractogram data.
/// this is normally the name of a sub-folder that contains the data.
/// default: the name specified in the output_name variable in the package data folder.
///
function /s asp_display_output([data_df, data_name])
dfref data_df
string data_name
dfref pkg_df = $(package_path)
svar /sdfr=pkg_df output_name
svar /sdfr=pkg_df output_graphname
nvar /sdfr=pkg_df graph_projection
nvar /sdfr=pkg_df graph_mode
svar /sdfr=pkg_df graph_colortable
nvar /sdfr=pkg_df graph_contrast
svar /sdfr=df output_name
svar /sdfr=df output_graphname
nvar /sdfr=df graph_projection
nvar /sdfr=df graph_mode
if (ParamIsDefault(data_df))
dfref data_df = pkg_df
endif
if (ParamIsDefault(data_name))
data_name = output_name
endif
dfref saveDF = GetDataFolderDFR()
setdatafolder $(package_path)
output_graphname = output_name
output_graphname = display_hemi_scan(output_name, projection=graph_projection, graphtype=graph_mode, graphname=output_graphname)
setdatafolder data_df
string graphname = data_name
graphname = display_hemi_scan(data_name, projection=graph_projection, graphtype=graph_mode, graphname=graphname)
if (ParamIsDefault(data_df))
output_graphname = graphname
endif
SetDataFolder saveDF
asp_update_graph()
if (strlen(graphname) && (wintype(graphname) == 1))
set_contrast(graph_contrast, graph_contrast, graphname=graphname, colortable=graph_colortable)
endif
return graphname
end
/// update graphs with new color table or contrast
@ -647,9 +680,19 @@ end
/// the destination folder does not need to exist.
/// existing data in the destination folder is overwritten.
///
function asp_duplicate_output(dest_name)
/// @param do_graph switch to duplicate the graph window as well (1).
/// default: 0 (do not create a graph)
///
/// @return name of the graph window
///
function /s asp_duplicate_output(dest_name, [do_graph])
string dest_name
variable do_graph
if (ParamIsDefault(do_graph))
do_graph = 0
endif
dfref df = $(package_path)
svar /sdfr=df source_path
svar /sdfr=df output_name
@ -657,14 +700,20 @@ function asp_duplicate_output(dest_name)
wave raw_data = $source_path
dfref saveDF = GetDataFolderDFR()
dfref dest_df = GetWavesDataFolderDFR(raw_data)
setdatafolder dest_df
dfref raw_df = GetWavesDataFolderDFR(raw_data)
setdatafolder raw_df
newdatafolder /o /s $dest_name
dfref dest_df = GetDataFolderDFR()
setdatafolder df
duplicate_hemi_scan(output_name, dest_df, "")
string graphname = ""
if (do_graph)
graphname = asp_display_output(data_df=raw_df, data_name=dest_name)
endif
SetDataFolder saveDF
return graphname
end
/// save the output diffractogram to an igor text file
@ -777,12 +826,14 @@ function asp_show_panel()
return 0
endif
NewPanel /K=1 /N=anglescan_panel /W=(200,100,479,1027) as "angle scan processing"
NewPanel /K=1 /N=anglescan_panel /W=(200,100,479,854) as "angle scan processing"
panel_name = s_name
GroupBox gb_source, title="data source"
Button b_source_select, size={50,20},proc=PearlAnglescanPanel#bp_source_select,title="select..."
Button b_source_select, help={"select the source wave, e.g. ReducedData1. it must be in the original scan data folder along with the attr folder and the manipulator positions."}
Button b_source_select, help={"select the source wave, e.g. ReducedData1. it must be in the scan or region data folder. the attr folder with the manipulator waves must be in the same folder or one level up."}
Button b_source_update, size={50,20},proc=PearlAnglescanPanel#bp_source_update,title="update"
Button b_source_update, help={"reload the process data from the previous source (link displayed below)"}
TitleBox tb_source_path, size={240,21}
TitleBox tb_source_path,variable= root:packages:pearl_anglescan_panel:source_path
@ -799,6 +850,10 @@ function asp_show_panel()
SetVariable sv_alpha_offset, size={90,16},bodyWidth=60,title="alpha"
SetVariable sv_alpha_offset,value= root:packages:pearl_anglescan_panel:alpha_offset
SetVariable sv_alpha_offset, help={"alpha value that corresponds to normal emission (if the sample normal is properly aligned)."}
Button b_save_prefs, size={80,20},proc=PearlAnglescanPanel#bp_save_prefs,title="save prefs"
Button b_save_prefs, help={"save settings as preferences."}
Button b_load_prefs, size={80,20},proc=PearlAnglescanPanel#bp_load_prefs,title="load prefs"
Button b_load_prefs, help={"load settings from preferences."}
GroupBox gb_crop_alpha, title="crop alpha"
CheckBox cb_crop_alpha_enable, size={50,14}, title="enable"
@ -878,8 +933,8 @@ function asp_show_panel()
PopupMenu pm_graph_projection, mode=2, popvalue="stereographic", value= #"\"equidistant;stereographic;equal area;gnomonic;orthographic;\""
PopupMenu pm_graph_projection, help={"projection (theta mapping) mode"}
PopupMenu pm_graph_mode, size={129,21}, bodyWidth=100, proc=PearlAnglescanPanel#pmp_graph_mode,title="mode"
PopupMenu pm_graph_mode, mode=2, popvalue="polar plot", value= #"\"none;polar plot;none;image;\""
PopupMenu pm_graph_mode, help={"graph mode"}
PopupMenu pm_graph_mode, mode=2, popvalue="dots", value= #"\"none;dots;none;image;\""
PopupMenu pm_graph_mode, help={"graph type: dots = coloured dots on circles; image = interpolated matrix"}
Button b_output_calc, size={80,20}, proc=PearlAnglescanPanel#bp_output_calc, title="calc + display"
Button b_output_calc, help={"execute data processing with the enabled filters and display the diffractogram."}
Button b_output_duplicate, size={80,20}, proc=PearlAnglescanPanel#bp_output_duplicate, title="duplicate ..."
@ -910,9 +965,9 @@ static function arrange_controls()
svar /sdfr=df panel_name
variable gb_space = 2
variable gb_internal_top = 20
variable gb_internal_bot = 8
variable line_space = 26
variable gb_internal_top = 16
variable gb_internal_bot = 4
variable line_space = 22
variable cb_adj = 2
variable sv_adj = 2
@ -933,6 +988,7 @@ static function arrange_controls()
GroupBox gb_source,pos={4,gb_top}
gb_ht = gb_internal_top
Button b_source_select,pos={17, gb_top + gb_ht + b_adj},size={50,20}
Button b_source_update, pos={67, gb_top + gb_ht + b_adj},size={50,20}
gb_ht += line_space
TitleBox tb_source_path,pos={18, gb_top + gb_ht + tb_adj},size={240,21}
gb_ht += line_space
@ -943,8 +999,10 @@ static function arrange_controls()
GroupBox gb_offsets,pos={4,gb_top}
gb_ht = gb_internal_top
SetVariable sv_theta_offset,pos={46, gb_top + gb_ht + sv_adj},size={88,16}
Button b_save_prefs,pos={186, gb_top + gb_ht + b_adj},size={80,20}
gb_ht += line_space
SetVariable sv_tilt_offset,pos={60, gb_top + gb_ht + sv_adj},size={74,16}
Button b_load_prefs,pos={186, gb_top + gb_ht + b_adj},size={80,20}
gb_ht += line_space
SetVariable sv_phi_offset,pos={56, gb_top + gb_ht + sv_adj},size={78,16}
gb_ht += line_space
@ -1047,6 +1105,9 @@ static function arrange_controls()
gb_ht += line_space
gb_ht += gb_internal_bot
GroupBox gb_graph, size={272,gb_ht}
gb_top += gb_ht + gb_space
//MoveWindow 200, 100, 479, 100 + gb_top
end
/// update the popup menus to reflect the values of the global variables
@ -1077,6 +1138,34 @@ static function update_menus()
endif
end
static function bp_load_prefs(ba) : ButtonControl
STRUCT WMButtonAction &ba
switch( ba.eventCode )
case 2: // mouse up
load_prefs()
break
case -1: // control being killed
break
endswitch
return 0
End
static function bp_save_prefs(ba) : ButtonControl
STRUCT WMButtonAction &ba
switch( ba.eventCode )
case 2: // mouse up
save_prefs()
break
case -1: // control being killed
break
endswitch
return 0
End
static function bp_source_select(ba) : ButtonControl
STRUCT WMButtonAction &ba
@ -1103,6 +1192,27 @@ static function bp_source_select(ba) : ButtonControl
return 0
End
static function bp_source_update(ba) : ButtonControl
STRUCT WMButtonAction &ba
switch( ba.eventCode )
case 2: // mouse up
dfref packdf = $package_path
svar /sdfr=packdf source_path
wave /z w = $source_path
if (waveexists(w))
asp_import_raw(w)
else
DoAlert 0, "can't find source data."
endif
break
case -1: // control being killed
break
endswitch
return 0
End
static function bp_norm_alpha_check(ba) : ButtonControl
STRUCT WMButtonAction &ba
@ -1250,10 +1360,12 @@ static function bp_output_duplicate(ba) : ButtonControl
switch( ba.eventCode )
case 2: // mouse up
string dest_folder
variable do_graph = 1
prompt dest_folder, "destination folder name (relative to data source)"
doprompt "duplicate", dest_folder
prompt do_graph, "duplicate graph (yes = 1, no = 0)"
doprompt "duplicate", dest_folder, do_graph
if (!v_flag)
asp_duplicate_output(dest_folder)
asp_duplicate_output(dest_folder, do_graph=do_graph)
endif
break
case -1: // control being killed

View File

@ -160,6 +160,8 @@ end
/// this is a simple way to remove the effect of the angle-dependence of the analyser transmission function.
/// the strip is normalized in place, previous data is overwritten.
///
/// the function can handle sparse NaNs.
///
/// @param[in,out] strip 2D data, X-axis = analyser angle, Y-axis = arbitrary manipulator scan
///
/// @param[in] smooth_method smoothing method
@ -205,12 +207,20 @@ function normalize_strip_x(strip, [smooth_method, smooth_factor, check])
endif
// average over all scan positions
wave dist = ad_profile_x(strip, -inf, inf, "")
wave raw_dist = ad_profile_x(strip, -inf, inf, "")
// remove nans
extract /free /indx raw_dist, clean_index, numtype(raw_dist) == 0
duplicate /free raw_dist, dist, dist_x
redimension /n=(numpnts(clean_index)) dist, dist_x
dist = raw_dist[clean_index[p]]
dist_x = pnt2x(raw_dist, clean_index[p])
variable div = mean(dist)
dist /= div
if (check)
duplicate /o dist, check_dist
duplicate /o raw_dist, check_dist
check_dist = numtype(raw_dist) == 0 ? interp(x, dist_x, dist) : nan
endif
// smooth distribution function
@ -223,21 +233,24 @@ function normalize_strip_x(strip, [smooth_method, smooth_factor, check])
break
case 3:
make /n=1 /d /free fit_params
fit_scienta_ang_transm(dist, fit_params)
fit_scienta_ang_transm(raw_dist, fit_params)
duplicate /free raw_dist, dist, dist_x
dist_x = x
dist = scienta_ang_transm(fit_params, x)
break
case 4:
loess /smth=(smooth_factor) srcWave=dist
loess /smth=(smooth_factor) srcWave=dist, factors={dist_x}
break
endswitch
if (check)
duplicate /o dist, check_smoo
duplicate /o raw_dist, check_smoo
check_smoo = interp(x, dist_x, dist)
endif
// divide
if (check != 2)
strip /= dist[p]
strip /= interp(x, dist_x, dist)
endif
end
@ -1660,6 +1673,17 @@ function /s display_hemi_scan(nickname, [projection, graphtype, do_ticks, do_gri
endif
string s_trace
DoWindow $graphname
if (v_flag)
if (str2num(GetUserData(graphname, "", "graphtype")) == graphtype)
// graph exists and will update automatically - do not recreate
graphtype = 0
else
// graph exists - but needs recreating
killwindow $graphname
endif
endif
switch(graphtype)
case 1:
graphname = display_polar_graph(graphname, angle_offset=azim_offset, do_ticks=do_ticks)
@ -1673,6 +1697,7 @@ function /s display_hemi_scan(nickname, [projection, graphtype, do_ticks, do_gri
ColorScale /W=$graphname /C /N=text0 nticks=2, minor=1, tickLen=4.00, tickThick=0.50
SetWindow $graphname, userdata(projection)=num2str(projection)
SetWindow $graphname, userdata(graphtype)=num2str(graphtype)
draw_hemi_axes(graphname, do_grids=do_grids)
break
case 3:
@ -1687,6 +1712,7 @@ function /s display_hemi_scan(nickname, [projection, graphtype, do_ticks, do_gri
ColorScale /W=$graphname /C /N=text0 nticks=2, minor=1, tickLen=4.00, tickThick=0.50
SetWindow $graphname, userdata(projection)=num2str(projection)
SetWindow $graphname, userdata(graphtype)=num2str(graphtype)
draw_hemi_axes(graphname, do_grids=do_grids)
break
endswitch

View File

@ -79,7 +79,7 @@ static function init_package()
string /g s_reduction_params = "" // recently used reduction parameters
string /g s_preview_pvs = "" // semicolon-separated list of EPICS PVs to display in preview.
// the list items can contain wildcards for StringMatch
s_preview_pvs = "*OP:CURRENT*;*Stats*Total*;*CADC*"
s_preview_pvs = "*OP:CURRENT*;*Stats*Total*;*KEITHLEY*READOUT;*CADC*"
// non-persistent strings and variables
string /g s_preview_file = "" // file or folder name of the current preview
@ -392,6 +392,25 @@ static function /wave preview_hdf_file(filename)
return preview_image
end
/// load the preview of a general ITX file.
///
/// the function is designed for PEARL OTF and EPICS scan data converted from MDA files.
/// the function picks the first wave whose PV note matches one from the global string s_preview_pvs
/// (see @ref preview_datafolder and @ref init_package).
///
/// the preview is loaded to the preview_image wave in the pearl_explorer data folder.
/// the s_file_info string is updated with information about the scan dimensions.
///
/// @note: the ITX files should load their waves into the current data folder (a "free" data folder).
/// some early versions of PEARL ITX data files created a data folder of their own.
/// both ways are allowed, while the first one is preferred.
/// on return, the current data folder must point to either the original free folder or the newly created one.
///
/// @param filename name of a file in the directory specified by the pearl_explorer_filepath path object.
///
/// @return wave reference of the preview trace.
/// empty wave reference if the function failed.
///
static function /wave preview_itx_file(filename)
string filename
@ -401,10 +420,6 @@ static function /wave preview_itx_file(filename)
svar s_preview_source
wave preview_image
// note: some versions of PEARL data files save data to a new data folder,
// and leave the newly created folder as the current folder.
// the free data folder is used by those files which don't create their own data folder.
// this is the new recommended behaviour
dfref dataDF = newfreedatafolder()
setdatafolder dataDF
LoadWave /t/p=pearl_explorer_filepath/q filename

View File

@ -90,6 +90,40 @@ threadsafe function MultiGaussLinBG_AO(pw, yw, xw) : FitFunc
endfor
end
/// doublet gaussian peaks on a linear background fit function (all at once).
///
/// this fits two gaussian peaks.
/// peak positions are specified by center and distance rather than individually.
/// amplitude and width are specified as absolute values for the upper peak (in x),
/// and relative values for the lower peak.
///
/// @note FWHM = width * 2 * sqrt(ln(2)) = width * 1.665
///
/// @param pw shape parameters.
/// the length of the wave defines the number of peaks.
/// @arg pw[0] = constant coefficient of background
/// @arg pw[1] = linear coefficient of background
/// @arg pw[2] = amplitude of peak 1 (higher x)
/// @arg pw[3] = amplitude of peak 2 relative to peak 1
/// @arg pw[4] = center position
/// @arg pw[5] = distance between peaks (splitting)
/// @arg pw[6] = width of peak 1 (see note)
/// @arg pw[7] = width of peak 2 relative to peak 1
///
/// @param yw y (dependent) values.
///
/// @param xw x (independent) independent values.
///
threadsafe function DoubletGaussLinBG_AO(pw, yw, xw) : FitFunc
wave pw
wave yw
wave xw
yw = pw[0] + xw[p] * pw[1]
yw += pw[2] * exp( -( (xw[p] - pw[4] - pw[5] /2) / pw[6] )^2 )
yw += pw[2] * pw[3] * exp( -( (xw[p] - pw[4] + pw[5] /2) / pw[6] / pw[7] )^2 )
end
//------------------------------------------------------------------------------
// Voigt shapes
//------------------------------------------------------------------------------
@ -581,7 +615,7 @@ function Au4f(w, x): fitfunc
// otherwise only the constant background.
variable x
variable np = 15
variable np = numpnts(w)
variable ip, ip0
variable bg = w[0]