Merge branch 'master' into '46-elpa-new-build-block'

# Conflicts:
#   MPI/elpa/files/variants.rhel6
This commit is contained in:
2019-09-23 18:36:52 +02:00
11 changed files with 127 additions and 2 deletions

27
Compiler/libint-lmax6/build Executable file
View File

@@ -0,0 +1,27 @@
#!/usr/bin/env modbuild
pbuild::set_download_url "https://github.com/cp2k/libint-cp2k/releases/download/v${V_PKG}/libint-v${V_PKG}-cp2k-lmax-6.tgz"
pbuild::add_to_group 'Compiler'
#pbuild::install_docfiles 'CONTRIBUTING.md'
#pbuild::install_docfiles 'LICENSE.md'
#pbuild::install_docfiles 'README.md'
pbuild::compile_in_sourcetree
pbuild::post_prep() {
sed -i 's/(CXX)/(FC)/g' fortran/Makefile.in
}
pbuild::pre_configure() {
local -a cxxflags=()
cxxflags+=('-O2' '-fPIC' '-g1')
cxxflags+=('-fp-model precise' '-funroll-loops')
cxxflags+=('-traceback' '-xHost')
pbuild::add_configure_args "--with-cxx=${CXX}"
pbuild::add_configure_args "--with-cxx-optflags=${cxxflags[*]}"
pbuild::add_configure_args "--with-fc=ifort"
pbuild::add_configure_args "--enable-fortran"
}

View File

@@ -0,0 +1 @@
libint-lmax6/2.6.0 stable intel/19.4 b:Python/3.7.4

View File

@@ -0,0 +1,11 @@
#%Module1.0
module-whatis "evaluation of molecular integrals of many-body operators over Gaussian functions"
module-url "https://github.com/evaleev/libint"
module-license "GNU LGPL, version 3; GNU GPL, version 3"
module-maintainer "Achim Gsell <achim.gsell@psi.ch>"
module-help "
A library for the evaluation of molecular integrals of many-body
operators over Gaussian functions.
"

32
Compiler/libxc/build Normal file
View File

@@ -0,0 +1,32 @@
#!/usr/bin/env modbuild
pbuild::set_download_url "https://gitlab.com/$P/$P/-/archive/${V_PKG}/$P-${V_PKG}.tar.gz"
pbuild::add_to_group 'Compiler'
pbuild::use_autotools
pbuild::install_docfiles 'AUTHORS'
pbuild::install_docfiles 'COPYING'
pbuild::install_docfiles 'KNOWN_ISSUES'
pbuild::install_docfiles 'NEWS'
pbuild::install_docfiles 'PACKAGING'
pbuild::install_docfiles 'README'
pbuild::install_docfiles 'TODO'
pbuild::post_prep() {
libtoolize
aclocal
autoheader
automake --add-missing
autoconf
}
pbuild::pre_configure() {
local -r cflags="-O2 -fPIC -fp-model precise -funroll-loops -g -traceback -xHost"
local -r fcflags="-O2 -fPIC -fp-model precise -fpp -free -funroll-loops -g -traceback -xHost"
pbuild::add_configure_args "CC=${CC}"
pbuild::add_configure_args "CXX=${CXX}"
pbuild::add_configure_args "FC=${FC}"
pbuild::add_configure_args "CFLAGS=${cflags}"
pbuild::add_configure_args "CXXFLAGS=${cflags}"
pbuild::add_configure_args "FCFLAGS=${fcflags}"
}

View File

@@ -0,0 +1 @@
libxc/4.3.4 stable intel/19.4 b:autoconf/2.69 b:automake/1.16.1 b:libtool/2.4.6-1

13
Compiler/libxc/modulefile Normal file
View File

@@ -0,0 +1,13 @@
#%Module1.0
module-whatis "library of exchange-correlation functionals for density-functional theory"
module-url "https://gitlab.com/libxc/libxc"
module-license "Mozilla Public License Version 2.0"
module-maintainer "Achim Gsell <achim.gsell@psi.ch>"
module-help "
Libxc is a library of exchange-correlation functionals for
density-functional theory. The aim is to provide a portable, well
tested and reliable set of exchange and correlation functionals that
can be used by a variety of programs.
"

19
Compiler/libxsmm/build Executable file
View File

@@ -0,0 +1,19 @@
#!/usr/bin/env modbuild
pbuild::set_download_url "https://github.com/hfp/libxsmm/archive/1.13/libxsmm-1.13.tar.gz"
pbuild::add_to_group 'Compiler'
pbuild::install_docfiles 'CONTRIBUTING.md'
pbuild::install_docfiles 'LICENSE.md'
pbuild::install_docfiles 'README.md'
pbuild::compile_in_sourcetree
pbuild::configure() {
:
}
pbuild::compile() {
make PREFIX="${PREFIX}"
}

View File

@@ -0,0 +1 @@
libxsmm/1.13 stable intel/19.4

View File

@@ -0,0 +1,17 @@
#%Module1.0
module-whatis "specialized dense and sparse matrix operations and deep learning primitives"
module-url "https://github.com/hfp/libxsmm"
module-license "BSD 3-Clause License"
module-maintainer "Achim Gsell <achim.gsell@psi.ch>"
module-help "
LIBXSMM is a library for specialized dense and sparse matrix operations
as well as for deep learning primitives such as small convolutions
targeting Intel Architecture. Small marix multiplication kernels (SMMs)
are generated for Intel SSE, Intel AVX, Intel AVX2, and Intel AVX-512
as found in the Intel Xeon Phi processor family (KNL, KNM) and Intel
Xeon processors (SKX). Highly optimized code for small convolutions
is targeting Intel AVX2 and Intel AVX-512, whereas other targets can
automatically leverage specialized SMMs to perform convolutions.
"

View File

@@ -1,2 +0,0 @@
cuda/8.0.44 stable
cuda/9.2.148 unstable

View File

@@ -0,0 +1,5 @@
cuda/8.0.44 stable
cuda/9.0.176 stable
cuda/9.1.85 stable
cuda/9.2.148 stable
cuda/10.0.130 stable