Files
Jungfraujoch/receiver/JFJochReceiverFPGA.cpp
2025-10-20 20:43:44 +02:00

664 lines
28 KiB
C++

// SPDX-FileCopyrightText: 2024 Filip Leonarski, Paul Scherrer Institute <filip.leonarski@psi.ch>
// SPDX-License-Identifier: GPL-3.0-only
#include "JFJochReceiverFPGA.h"
#include <thread>
#include "ImageMetadata.h"
#include "../common/CUDAWrapper.h"
JFJochReceiverFPGA::JFJochReceiverFPGA(const DiffractionExperiment &in_experiment,
const PixelMask &in_pixel_mask,
const JFCalibration *in_calibration,
AcquisitionDeviceGroup &in_aq_device,
ImagePusher &in_image_sender,
Logger &in_logger, int64_t in_forward_and_sum_nthreads,
const NUMAHWPolicy &in_numa_policy,
const SpotFindingSettings &in_spot_finding_settings,
PreviewImage &in_preview_image,
JFJochReceiverCurrentStatus &in_current_status,
JFJochReceiverPlots &in_plots,
ImageBuffer &in_send_buf_ctrl,
ZMQPreviewSocket *in_zmq_preview_socket,
ZMQMetadataSocket *in_zmq_metadata_socket,
IndexerThreadPool *indexing_thread_pool)
: JFJochReceiver(in_experiment,
in_send_buf_ctrl,
in_image_sender,
in_preview_image,
in_current_status,
in_plots,
in_spot_finding_settings,
in_logger,
in_numa_policy,
in_pixel_mask,
in_zmq_preview_socket,
in_zmq_metadata_socket,
indexing_thread_pool),
calibration(nullptr),
acquisition_device(in_aq_device),
ndatastreams(experiment.GetDataStreamsNum()),
frame_transformation_nthreads(
in_forward_and_sum_nthreads),
pedestal_nthreads((experiment.GetStorageCellNumber() > 2) ? 1 : 4),
summation_nthreads(2),
frame_transformation_ready((experiment.GetImageNum() > 0) ? frame_transformation_nthreads : 0),
data_acquisition_ready(ndatastreams) {
for (int m = 0; m < experiment.GetModulesNum(); m++)
adu_histogram_module.emplace_back(std::make_unique<ADUHistogram>());
roi_map = experiment.ExportROIMap();
if (experiment.GetDetectorSetup().GetDetectorType() == DetectorType::JUNGFRAU)
calibration = in_calibration;
if (acquisition_device.size() < ndatastreams)
throw JFJochException(JFJochExceptionCategory::InputParameterInvalid,
"Number of acquisition devices has to match data streams");
if (frame_transformation_nthreads <= 0)
throw JFJochException(JFJochExceptionCategory::InputParameterInvalid,
"Number of threads must be more than zero");
logger.Info("NUMA policy: {}", numa_policy.GetName());
expected_packets_per_image = 0;
for (int d = 0; d < ndatastreams; d++) {
acquisition_device[d].PrepareAction(experiment);
acquisition_device[d].SetSpotFinderParameters(spot_finding_settings);
expected_packets_per_image += acquisition_device[d].Counters().GetExpectedPacketsPerImage();
logger.Debug("Acquisition device {} prepared", d);
}
if (experiment.IsCPUSummation())
expected_packets_per_image *= experiment.GetSummation();
logger.Info("Data acquisition devices ready");
if ((experiment.GetDetectorMode() == DetectorMode::PedestalG0)
|| (experiment.GetDetectorMode() == DetectorMode::PedestalG1)
|| (experiment.GetDetectorMode() == DetectorMode::PedestalG2)) {
if (experiment.GetImageNum() > 0) {
throw JFJochException(JFJochExceptionCategory::InputParameterInvalid,
"Saving and calculating pedestal is not supported for the time being");
}
switch (experiment.GetDetectorMode()) {
case DetectorMode::PedestalG1:
only_2nd_sc_pedestal = !experiment.IsFixedGainG1() && (experiment.GetStorageCellNumber() == 2);
break;
case DetectorMode::PedestalG2:
only_2nd_sc_pedestal = (experiment.GetStorageCellNumber() == 2);
break;
default:
only_2nd_sc_pedestal = false;
break;
}
int64_t pedestal_count = (only_2nd_sc_pedestal)
? experiment.GetModulesNum()
: experiment.GetModulesNum() * experiment.GetStorageCellNumber();
for (int i = 0; i < pedestal_count; i++)
pedestal.emplace_back(std::make_unique<JFPedestalCalc>(experiment));
for (int s = 0; s < experiment.GetStorageCellNumber(); s++) {
bool ignore = only_2nd_sc_pedestal && (s == 0);
for (int d = 0; d < ndatastreams; d++)
for (int m = 0; m < experiment.GetModulesNum(d); m++)
for (int n = 0; n < pedestal_nthreads; n++)
frame_transformation_futures.emplace_back(std::async(std::launch::async,
&JFJochReceiverFPGA::MeasurePedestalThread,
this, d, m, s, n, ignore));
}
logger.Info("Pedestal threads ready ({} threads/module*SC)", pedestal_nthreads);
} else if (experiment.GetImageNum() > 0) {
SendStartMessage();
SendCalibration();
for (int i = 0; i < experiment.GetImageNum(); i++)
images_to_go.Put(i);
// Setup frames summation and forwarding
for (uint32_t i = 0; i < frame_transformation_nthreads; i++) {
auto handle = std::async(std::launch::async, &JFJochReceiverFPGA::FrameTransformationThread,
this, i);
frame_transformation_futures.emplace_back(std::move(handle));
}
logger.Info("Image compression/forwarding threads started");
frame_transformation_ready.wait();
logger.Info("Image compression/forwarding threads ready");
}
for (int d = 0; d < ndatastreams; d++)
data_acquisition_futures.emplace_back(std::async(std::launch::async, &JFJochReceiverFPGA::AcquireThread,
this, d));
data_acquisition_ready.wait();
start_time = std::chrono::system_clock::now();
measurement = std::async(std::launch::async, &JFJochReceiverFPGA::FinalizeMeasurement, this);
logger.Info("Receiving data started");
}
void JFJochReceiverFPGA::SendPedestal(const std::string &prefix, const std::vector<uint8_t> &v, int gain, int sc) {
size_t xpixel = RAW_MODULE_COLS;
size_t ypixel = experiment.GetModulesNum() * RAW_MODULE_LINES;
std::string channel;
if (experiment.GetStorageCellNumber() > 1)
channel = fmt::format("{:s}_g{:d}_sc{:d}", prefix, gain, sc);
else
channel = fmt::format("{:s}_g{:d}", prefix, gain);
CompressedImage image(v.data(), v.size(), xpixel, ypixel, CompressedImageMode::Uint32,
CompressionAlgorithm::BSHUF_LZ4, channel);
image_pusher.SendCalibration(image);
}
void JFJochReceiverFPGA::SendCalibration() {
if ((calibration == nullptr) || !experiment.GetSaveCalibration() || !push_images_to_writer)
return;
JFJochBitShuffleCompressor compressor(CompressionAlgorithm::BSHUF_LZ4);
for (int sc = 0; sc < experiment.GetStorageCellNumber(); sc++) {
for (int gain = 0; gain < 3; gain++) {
if (experiment.IsFixedGainG1() && (gain != 1))
continue;
SendPedestal("pedestal", compressor.Compress(calibration->GetPedestal(gain, sc)), gain, sc);
SendPedestal("pedestal_rms", compressor.Compress(calibration->GetPedestalRMS(gain, sc)), gain, sc);
}
}
}
void JFJochReceiverFPGA::AcquireThread(uint16_t data_stream) {
try {
NUMAHWPolicy::RunOnNode(acquisition_device[data_stream].GetNUMANode());
} catch (const JFJochException &e) {
logger.Warning("NUMA bind error {} for device thread {} - continuing without binding", e.what(), data_stream);
}
try {
LoadCalibrationToFPGA(data_stream);
frame_transformation_ready.wait();
logger.Debug("Device thread {} start FPGA action", data_stream);
acquisition_device[data_stream].StartAction(experiment);
} catch (const JFJochException &e) {
Cancel(e);
data_acquisition_ready.count_down();
logger.ErrorException(e);
logger.Warning("Device thread {} done due to an error", data_stream);
return;
}
data_acquisition_ready.count_down();
try {
logger.Debug("Device thread {} wait for FPGA action complete", data_stream);
acquisition_device[data_stream].WaitForActionComplete();
} catch (const JFJochException &e) {
logger.ErrorException(e);
Cancel(e);
logger.ErrorException(e);
logger.Warning("Device thread {} done due to an error", data_stream);
return;
}
logger.Info("Device thread {} done", data_stream);
}
void JFJochReceiverFPGA::MeasurePedestalThread(uint16_t data_stream, uint16_t module_number, uint16_t storage_cell,
uint32_t threadid, bool ignore) {
try {
NUMAHWPolicy::RunOnNode(acquisition_device[data_stream].GetNUMANode());
} catch (const JFJochException &e) {
logger.Error("HW bind error {}", e.what());
}
JFPedestalCalc pedestal_calc(experiment);
uint64_t starting_frame = storage_cell + threadid * experiment.GetStorageCellNumber();
uint64_t frame_stride = experiment.GetStorageCellNumber() * pedestal_nthreads;
uint32_t storage_cell_header = UINT32_MAX;
try {
for (size_t frame = starting_frame; frame < experiment.GetFrameNum(); frame += frame_stride) {
// Frame will be processed only if one already collects frame+2
acquisition_device[data_stream].Counters().WaitForFrame(frame + 2, module_number);
if (acquisition_device[data_stream].Counters().IsFullModuleCollected(frame, module_number) && !ignore) {
auto output = acquisition_device[data_stream].GetDeviceOutput(frame, module_number);
// Partial packets will bring more problems, than benefit
pedestal_calc.AnalyzeImage((uint16_t *) output->pixels);
storage_cell_header = (output->module_statistics.debug >> 8) & 0xF;
}
acquisition_device[data_stream].FrameBufferRelease(frame, module_number);
UpdateMaxDelay(acquisition_device[data_stream].Counters().CalculateDelay(frame, module_number));
current_status.SetProgress(GetProgress());
current_status.SetStatus(GetStatus());
}
uint64_t offset = experiment.GetFirstModuleOfDataStream(data_stream) + module_number;
if (!only_2nd_sc_pedestal)
offset += experiment.GetModulesNum() * storage_cell;
if (!ignore)
*pedestal[offset] += pedestal_calc;
} catch (const JFJochException &e) {
Cancel(e);
}
logger.Debug("Pedestal calculation thread for data stream {} module {} storage cell {} -> header {} done",
data_stream, module_number, storage_cell, storage_cell_header);
}
int64_t JFJochReceiverFPGA::SummationThread(uint16_t data_stream,
int64_t image_number,
uint16_t module_number,
uint32_t threadid,
ModuleSummation &summation) {
try {
NUMAHWPolicy::RunOnNode(acquisition_device[data_stream].GetNUMANode());
} catch (const JFJochException &e) {
logger.Error("HW bind error {}", e.what());
}
ModuleSummation local_summation(experiment);
int64_t starting_frame = image_number * experiment.GetSummation();
for (int64_t i = threadid; i < experiment.GetSummation(); i += summation_nthreads) {
const int64_t frame = starting_frame + i;
// Frame will be processed only if one already collects frame+2
acquisition_device[data_stream].Counters().WaitForFrame(frame + 2, module_number);
if (acquisition_device[data_stream].Counters().IsAnyPacketCollected(frame, module_number)) {
const auto output = acquisition_device[data_stream].GetDeviceOutput(frame, module_number);
local_summation.AddFPGAOutput(*output);
} else
local_summation.AddEmptyOutput();
acquisition_device[data_stream].FrameBufferRelease(frame, module_number);
UpdateMaxDelay(acquisition_device[data_stream].Counters().CalculateDelay(frame, module_number));
current_status.SetProgress(GetProgress());
current_status.SetStatus(GetStatus());
}
if (!summation.empty())
summation.AddFPGAOutput(local_summation.GetOutput(), 4);
return 0;
}
void JFJochReceiverFPGA::FrameTransformationThread(uint32_t threadid) {
std::unique_ptr<MXAnalysisAfterFPGA> analyzer;
try {
numa_policy.Bind(threadid);
analyzer = std::make_unique<MXAnalysisAfterFPGA>(experiment);
analyzer->SetIndexer(indexer_thread_pool);
} catch (const JFJochException &e) {
frame_transformation_ready.count_down();
logger.Error("Thread setup error {}", e.what());
Cancel(e);
return;
}
FrameTransformation transformation(experiment);
frame_transformation_ready.count_down();
uint16_t az_int_min_bin = std::floor(az_int_mapping.QToBin(experiment.GetLowQForBkgEstimate_recipA()));
uint16_t az_int_max_bin = std::ceil(az_int_mapping.QToBin(experiment.GetHighQForBkgEstimate_recipA()));
int64_t image_number;
while (images_to_go.Get(image_number) != 0) {
try {
int64_t expected_frame = image_number;
if (experiment.IsCPUSummation())
expected_frame *= experiment.GetSummation();
logger.Debug("Frame transformation thread - trying to get image {}", expected_frame);
// If data acquisition is finished and fastest frame for the first device is behind
acquisition_device[0].Counters().WaitForFrame(expected_frame);
logger.Debug("Frame transformation thread - frame arrived {}", expected_frame);
if (acquisition_device[0].Counters().IsAcquisitionFinished() &&
(acquisition_device[0].Counters().GetFastestFrameNumber() < expected_frame)) {
logger.Debug("Frame transformation thread - skipping image {}", expected_frame);
continue;
}
DataMessage message{};
message.number = image_number;
message.original_number = image_number;
message.user_data = experiment.GetImageAppendix();
message.run_number = experiment.GetRunNumber();
message.run_name = experiment.GetRunName();
ImageMetadata metadata(experiment);
AzimuthalIntegrationProfile az_int_profile_image(az_int_mapping);
auto local_spot_finding_settings = GetSpotFindingSettings();
if (experiment.IsCPUSummation()) {
std::vector<std::unique_ptr<ModuleSummation>> summation;
for (int i = 0; i < experiment.GetModulesNum(); i++)
summation.emplace_back(std::make_unique<ModuleSummation>(experiment));
std::vector<std::future<int64_t> > futures;
for (int d = 0; d < ndatastreams; d++) {
for (int m = 0; m < experiment.GetModulesNum(d); m++) {
size_t module_abs_number = experiment.GetFirstModuleOfDataStream(d) + m;
for (int i = 0; i < summation_nthreads; i++) {
futures.emplace_back(
std::async(std::launch::async,
&JFJochReceiverFPGA::SummationThread,
this,
d, image_number, m, i,
std::ref(*summation[module_abs_number]))
);
}
}
}
for (auto &f: futures)
f.get();
for (int d = 0; d < ndatastreams; d++) {
for (int m = 0; m < experiment.GetModulesNum(d); m++) {
size_t i = experiment.GetFirstModuleOfDataStream(d) + m;
if (!summation[i]->empty()) {
adu_histogram_module[i]->Add(summation[i]->GetOutput());
transformation.ProcessModule(&summation[i]->GetOutput(), d);
metadata.Process(&summation[i]->GetOutput());
az_int_profile_image.Add(summation[i]->GetOutput());
analyzer->ReadFromCPU(&summation[i]->GetOutput(), GetSpotFindingSettings(), i);
} else
transformation.FillNotCollectedModule(m, d);
}
}
} else {
logger.Debug("Frame transformation thread - processing image from FPGA {}", image_number);
for (int d = 0; d < ndatastreams; d++) {
for (int m = 0; m < experiment.GetModulesNum(d); m++) {
acquisition_device[d].Counters().WaitForFrame(image_number + 2, m);
if (acquisition_device[d].Counters().IsAnyPacketCollected(image_number, m)) {
const DeviceOutput *output = acquisition_device[d].GetDeviceOutput(image_number, m);
metadata.Process(output);
size_t module_abs_number = experiment.GetFirstModuleOfDataStream(d) + m;
adu_histogram_module[module_abs_number]->Add(*output);
az_int_profile_image.Add(*output);
analyzer->ReadFromFPGA(output, local_spot_finding_settings, module_abs_number);
transformation.ProcessModule(output, d);
} else
transformation.FillNotCollectedModule(m, d);
acquisition_device[d].FrameBufferRelease(image_number, m);
}
auto delay = acquisition_device[d].Counters().CalculateDelay(image_number);
UpdateMaxDelay(delay);
if (delay > message.receiver_aq_dev_delay)
message.receiver_aq_dev_delay = delay;
}
}
auto image_start_time = std::chrono::high_resolution_clock::now();
metadata.Export(message, expected_packets_per_image);
if (message.image_collection_efficiency == 0.0f) {
plots.AddEmptyImage(message);
continue;
}
message.image = CompressedImage(transformation.GetImage(),
experiment.GetPixelsNum() * experiment.GetByteDepthImage(),
experiment.GetXPixelsNum(),
experiment.GetYPixelsNum(),
experiment.GetImageMode(),
CompressionAlgorithm::NO_COMPRESSION);
analyzer->Process(message, local_spot_finding_settings);
message.receiver_free_send_buf = image_buffer.GetAvailSlots();
message.az_int_profile = az_int_profile_image.GetResult();
message.bkg_estimate = az_int_profile_image.GetBkgEstimate(experiment.GetAzimuthalIntegrationSettings());
plots.Add(message, az_int_profile_image);
scan_result.Add(message);
auto image_end_time = std::chrono::high_resolution_clock::now();
std::chrono::duration<float> duration = image_end_time - image_start_time;
message.processing_time_s = duration.count();
// Store overload/error pixel count
if (message.image_collection_efficiency == 1.0f) {
saturated_pixels.Add(message.saturated_pixel_count);
error_pixels.Add(message.error_pixel_count);
if (message.roi.contains("beam")) {
roi_beam_npixel.Add(message.roi["beam"].pixels);
roi_beam_sum.Add(message.roi["beam"].sum);
}
}
++images_collected;
uncompressed_size += experiment.GetModulesNum() * RAW_MODULE_SIZE * experiment.GetByteDepthImage();
if (!serialmx_filter.ApplyFilter(message))
++images_skipped;
else {
auto loc = image_buffer.GetImageSlot();
if (loc == nullptr) {
// No free buffer locations - continue
writer_queue_full = true;
continue;
}
auto writer_buffer = (uint8_t *) loc->GetImage();
CBORStream2Serializer serializer(writer_buffer, experiment.GetImageBufferLocationSize());
message.image = CompressedImage(nullptr, 0,
experiment.GetXPixelsNum(),
experiment.GetYPixelsNum(),
experiment.GetImageMode(),
experiment.GetCompressionAlgorithm());
serializer.SerializeImage(message);
if (experiment.GetImageBufferLocationSize() - serializer.GetImageAppendOffset()
< experiment.GetMaxCompressedSize())
throw JFJochException(JFJochExceptionCategory::ArrayOutOfBounds,
"Not enough memory to save image");
size_t image_size = transformation.CompressImage(writer_buffer + serializer.GetImageAppendOffset());
serializer.AppendImage(image_size);
compressed_size += image_size;
loc->SetImageNumber(image_number);
loc->SetImageSize(serializer.GetBufferSize());
loc->SetIndexed(message.indexing_result.value_or(false));
if (zmq_preview_socket != nullptr)
zmq_preview_socket->SendImage(writer_buffer, serializer.GetBufferSize());
if (zmq_metadata_socket != nullptr)
zmq_metadata_socket->AddDataMessage(message);
if (push_images_to_writer) {
image_pusher.SendImage(*loc);
++images_sent; // Handle case when image not sent properly
} else
loc->release();
UpdateMaxImageSent(message.number);
}
logger.Debug("Frame transformation thread - done sending image {} / {}", image_number, message.number);
current_status.SetProgress(GetProgress());
current_status.SetStatus(GetStatus());
} catch (const JFJochException &e) {
logger.ErrorException(e);
Cancel(e);
}
}
logger.Debug("Sum&compression thread done");
}
float JFJochReceiverFPGA::GetEfficiency() const {
uint64_t expected_packets;
if (experiment.GetImageNum() == 0)
expected_packets = expected_packets_per_image * experiment.GetFrameNum();
else
expected_packets = expected_packets_per_image * experiment.GetImageNum();
uint64_t received_packets = 0;
for (int d = 0; d < ndatastreams; d++) {
received_packets += acquisition_device[d].Counters().GetTotalPackets();
}
if ((expected_packets == received_packets) || (expected_packets == 0))
return 1.0;
return received_packets / static_cast<double>(expected_packets);
}
void JFJochReceiverFPGA::Cancel(bool silent) {
JFJochReceiver::Cancel(silent);
for (int d = 0; d < ndatastreams; d++)
acquisition_device[d].Cancel();
}
void JFJochReceiverFPGA::Cancel(const JFJochException &e) {
JFJochReceiver::Cancel(e);
for (int d = 0; d < ndatastreams; d++)
acquisition_device[d].Cancel();
}
float JFJochReceiverFPGA::GetProgress() const {
int64_t frames = experiment.GetImageNum();
if (experiment.IsCPUSummation())
frames *= experiment.GetSummation();
if (frames == 0)
frames = experiment.GetFrameNum();
if ((frames == 0) || (acquisition_device[0].Counters().IsAcquisitionFinished()))
return 1.0;
return static_cast<float>(acquisition_device[0].Counters().GetSlowestFrameNumber()) / static_cast<float>(frames);
}
void JFJochReceiverFPGA::FinalizeMeasurement() {
if (!frame_transformation_futures.empty()) {
for (auto &future: frame_transformation_futures)
future.get();
logger.Info("All processing threads done");
}
current_status.SetProgress(1.0);
current_status.SetStatus(GetStatus());
SendEndMessage();
if (experiment.GetImageNum() > 0) {
for (int d = 0; d < ndatastreams; d++)
acquisition_device[d].Cancel();
}
end_time = std::chrono::system_clock::now();
for (auto &future: data_acquisition_futures)
future.get();
logger.Info("Devices stopped");
if (!image_buffer.CheckIfBufferReturned(std::chrono::seconds(10))) {
logger.Error("Send commands not finalized in 10 seconds");
throw JFJochException(JFJochExceptionCategory::ZeroMQ, "Send commands not finalized in 10 seconds");
}
logger.Info("Receiving data done");
if (push_images_to_writer)
writer_error = image_pusher.Finalize();
current_status.SetProgress({});
current_status.SetStatus(GetStatus());
logger.Info("Writing process finalized");
}
void JFJochReceiverFPGA::SetSpotFindingSettings(const SpotFindingSettings &in_spot_finding_settings) {
std::unique_lock ul(spot_finding_settings_mutex);
DiffractionExperiment::CheckDataProcessingSettings(in_spot_finding_settings);
spot_finding_settings = in_spot_finding_settings;
for (int i = 0; i < ndatastreams; i++)
acquisition_device[i].SetSpotFinderParameters(spot_finding_settings);
}
void JFJochReceiverFPGA::StopReceiver() {
if (measurement.valid()) {
measurement.get();
logger.Info("Receiver stopped");
}
}
JFJochReceiverFPGA::~JFJochReceiverFPGA() {
if (measurement.valid())
measurement.get();
}
JFJochReceiverOutput JFJochReceiverFPGA::GetFinalStatistics() const {
JFJochReceiverOutput ret = JFJochReceiver::GetFinalStatistics();
for (int d = 0; d < ndatastreams; d++) {
for (int m = 0; m < acquisition_device[d].Counters().GetModuleNumber(); m++) {
if (experiment.IsCPUSummation())
ret.expected_packets.push_back(acquisition_device[d].Counters().GetTotalExpectedPacketsPerModule() * experiment.GetSummation());
else
ret.expected_packets.push_back(acquisition_device[d].Counters().GetTotalExpectedPacketsPerModule());
ret.received_packets.push_back(acquisition_device[d].Counters().GetTotalPackets(m));
}
}
RetrievePedestal(ret.pedestal_result);
return ret;
}
void JFJochReceiverFPGA::RetrievePedestal(std::vector<JFModulePedestal> &output) const {
time_t curr_time = std::chrono::system_clock::to_time_t(start_time);
for (const auto &pc: pedestal) {
JFModulePedestal mp;
if (experiment.GetDetectorMode() == DetectorMode::PedestalG0)
pc->Export(mp, PEDESTAL_G0_WRONG_GAIN_ALLOWED_COUNT);
else
pc->Export(mp);
mp.SetCollectionTime(curr_time);
output.emplace_back(std::move(mp));
}
}
void JFJochReceiverFPGA::LoadCalibrationToFPGA(uint16_t data_stream) {
if (experiment.IsPedestalRun()) {
acquisition_device[data_stream].InitializeEmptyPixelMask(experiment);
return; // No calibration loaded for pedestal
}
if (calibration != nullptr)
acquisition_device[data_stream].InitializeCalibration(experiment, *calibration);
// Initialize pixel_mask
acquisition_device[data_stream].InitializePixelMask(experiment, pixel_mask);
// Initialize roi_map
acquisition_device[data_stream].InitializeROIMap(experiment, roi_map);
// Initialize data processing
acquisition_device[data_stream].InitializeDataProcessing(experiment, az_int_mapping);
}