Files
Jungfraujoch/image_analysis/MXAnalysisWithoutFPGA.cpp
2025-10-20 20:43:44 +02:00

180 lines
7.3 KiB
C++

// SPDX-FileCopyrightText: 2024 Filip Leonarski, Paul Scherrer Institute <filip.leonarski@psi.ch>
// SPDX-License-Identifier: GPL-3.0-only
#include "MXAnalysisWithoutFPGA.h"
#include "spot_finding/StrongPixelSet.h"
#include "../compression/JFJochDecompress.h"
#include "SpotAnalyze.h"
#include "spot_finding/ImageSpotFinderFactory.h"
#include "bragg_integration/BraggPredictionFactory.h"
MXAnalysisWithoutFPGA::MXAnalysisWithoutFPGA(const DiffractionExperiment &in_experiment,
const AzimuthalIntegration &in_integration,
const PixelMask &in_mask,
IndexerThreadPool *in_indexer)
: experiment(in_experiment),
integration(in_integration),
roi_map(experiment.ExportROIMap()),
roi_names(experiment.ROI().GetROINameMap()),
roi_count(experiment.ROI().size()),
npixels(experiment.GetPixelsNum()),
xpixels(experiment.GetXPixelsNum()),
mask_1bit(npixels, false),
spotFinder(CreateImageSpotFinder(experiment.GetXPixelsNum(), experiment.GetYPixelsNum())),
indexer(in_indexer),
prediction(CreateBraggPrediction()),
updated_image(spotFinder->GetInputBuffer()),
azint_bins(in_integration.GetBinNumber()),
saturation_limit(experiment.GetSaturationLimit()),
mask(in_mask),
mask_resolution(experiment.GetPixelsNum(), false),
mask_high_res(-1),
mask_low_res(-1) {
for (int i = 0; i < npixels; i++)
mask_1bit[i] = (in_mask.GetMask().at(i) != 0);
}
void MXAnalysisWithoutFPGA::Analyze(DataMessage &output, std::vector<uint8_t> &image,
AzimuthalIntegrationProfile &profile,
const SpotFindingSettings &spot_finding_settings) {
if ((output.image.GetWidth() != xpixels)
|| (output.image.GetWidth() * output.image.GetHeight() != npixels))
throw JFJochException(JFJochExceptionCategory::InputParameterInvalid,
"Mismatch in pixel size");
const uint8_t *image_ptr = output.image.GetUncompressedPtr(image);
switch (output.image.GetMode()) {
case CompressedImageMode::Int8:
Analyze<int8_t>(output, image_ptr, INT8_MIN, INT8_MAX, profile, spot_finding_settings);
break;
case CompressedImageMode::Int16:
Analyze<int16_t>(output, image_ptr, INT16_MIN, INT16_MAX, profile, spot_finding_settings);
break;
case CompressedImageMode::Int32:
Analyze<int32_t>(output, image_ptr, INT32_MIN, INT32_MAX, profile, spot_finding_settings);
break;
case CompressedImageMode::Uint8:
Analyze<uint8_t>(output, image_ptr, UINT8_MAX, UINT8_MAX, profile, spot_finding_settings);
break;
case CompressedImageMode::Uint16:
Analyze<uint16_t>(output, image_ptr, UINT16_MAX, UINT16_MAX, profile, spot_finding_settings);
break;
case CompressedImageMode::Uint32:
Analyze<uint32_t>(output, image_ptr, UINT32_MAX, UINT32_MAX, profile, spot_finding_settings);
break;
default:
throw JFJochException(JFJochExceptionCategory::InputParameterInvalid, "RGB/float mode not supported");
}
}
void MXAnalysisWithoutFPGA::UpdateMaskResolution(const SpotFindingSettings &settings) {
mask_low_res = settings.low_resolution_limit;
mask_high_res = settings.high_resolution_limit;
auto const &resolution_map = integration.Resolution();
for (int i = 0; i < mask_resolution.size(); i++)
mask_resolution[i] = (resolution_map[i] > mask_low_res) || (resolution_map[i] < mask_high_res);
}
template<class T>
void MXAnalysisWithoutFPGA::Analyze(DataMessage &output,
const uint8_t *in_image,
T err_pixel_val,
T sat_pixel_val,
AzimuthalIntegrationProfile &profile,
const SpotFindingSettings &settings) {
auto image = reinterpret_cast<const T *>(in_image);
std::vector<ROIMessage> roi(roi_count);
std::vector<float> azim_sum(azint_bins, 0.0f);
//std::vector<float> azim_sum2(integration.GetBinNumber(), 0.0f);
std::vector<uint32_t> azim_count(azint_bins, 0);
size_t err_pixels = 0;
size_t masked_pixels = 0;
size_t sat_pixels = 0;
int64_t min_value = INT64_MAX;
int64_t max_value = INT64_MIN;
if (sat_pixel_val > saturation_limit)
sat_pixel_val = static_cast<T>(saturation_limit);
auto &pixel_to_bin = integration.GetPixelToBin();
auto &corrections = integration.Corrections();
profile.Clear(integration);
for (int i = 0; i < npixels; i++) {
if (mask_1bit[i] != 0) {
updated_image[i] = INT32_MIN;
++masked_pixels;
} else if (image[i] >= sat_pixel_val) {
updated_image[i] = INT32_MIN;
++sat_pixels;
} else if (std::is_signed<T>::value && (image[i] == err_pixel_val)) {
// Error pixels are possible only for signed types
updated_image[i] = INT32_MIN;
++err_pixels;
} else {
updated_image[i] = static_cast<int32_t>(image[i]);
if (image[i] > max_value)
max_value = image[i];
if (image[i] < min_value)
min_value = image[i];
if (roi_count > 0 && (roi_map[i] != 0)) {
int64_t x = i % xpixels;
int64_t y = i / xpixels;
for (int8_t r = 0; r < roi_count; r++) {
if ((roi_map[i] & (1 << r)) != 0) {
roi[r].sum += image[i];
roi[r].sum_square += image[i] * image[i];
roi[r].pixels += 1;
if (image[i] > roi[r].max_count)
roi[r].max_count = image[i];
roi[r].x_weighted += x * image[i];
roi[r].y_weighted += y * image[i];
}
}
}
const uint16_t bin = pixel_to_bin[i];
if (bin < azint_bins) {
float val = image[i] * corrections[i];
azim_sum[bin] += val;
//azim_sum2[bin] += val * val;
++azim_count[bin];
}
}
}
if (settings.enable) {
// Update resolution mask
if (mask_high_res != settings.high_resolution_limit
|| mask_low_res != settings.low_resolution_limit)
UpdateMaskResolution(settings);
const std::vector<DiffractionSpot> spots = spotFinder->Run(settings, mask_resolution);
SpotAnalyze(experiment, settings, spots,
CompressedImage(updated_image, experiment.GetXPixelsNum(), experiment.GetYPixelsNum()),
*prediction, indexer, output);
}
profile.Add(azim_sum, azim_count);
output.max_viable_pixel_value = max_value;
output.min_viable_pixel_value = min_value;
output.error_pixel_count = err_pixels;
output.saturated_pixel_count = sat_pixels;
output.az_int_profile = profile.GetResult();
output.bkg_estimate = profile.GetBkgEstimate(integration.Settings());
for (const auto &[key, val]: roi_names)
output.roi[key] = roi[val];
}