183 lines
6.6 KiB
C++
183 lines
6.6 KiB
C++
// SPDX-FileCopyrightText: 2024 Filip Leonarski, Paul Scherrer Institute <filip.leonarski@psi.ch>
|
|
// SPDX-License-Identifier: GPL-3.0-only
|
|
|
|
#include "ImageAnalysisCPU.h"
|
|
#include "../common/AzimuthalIntegrationProfile.h"
|
|
#include "../common/CUDAWrapper.h"
|
|
#include "StrongPixelSet.h"
|
|
#include "../compression/JFJochDecompress.h"
|
|
|
|
ImageAnalysisCPU::ImageAnalysisCPU(const DiffractionGeometry &geom,
|
|
const AzimuthalIntegrationSettings &azint_settings,
|
|
const SpotFindingSettings &spot_finding_settings,
|
|
const ROIMap &rmap,
|
|
const std::optional<UnitCell> &uc,
|
|
const std::vector<uint32_t> &mask,
|
|
size_t width, size_t height)
|
|
: geom(geom),
|
|
rois(rmap),
|
|
integration(geom, azint_settings, mask, width, height),
|
|
settings(spot_finding_settings),
|
|
npixels(width * height),
|
|
xpixels(width),
|
|
mask_1byte(npixels, 0),
|
|
spotFinder(integration) {
|
|
|
|
roi_count = rmap.size();
|
|
roi_map = rmap.GetROIMap(geom, width, height);
|
|
roi_names = rmap.GetROINameMap();
|
|
|
|
for (int i = 0; i < npixels; i++)
|
|
mask_1byte[i] = (mask[i] != 0);
|
|
|
|
if (uc && (get_gpu_count() > 0)) {
|
|
try {
|
|
indexer = std::make_unique<IndexerWrapper>();
|
|
indexer->Setup(uc.value());
|
|
} catch (const std::exception &e) {
|
|
throw JFJochException(JFJochExceptionCategory::GPUCUDAError, e.what());
|
|
}
|
|
}
|
|
}
|
|
|
|
void ImageAnalysisCPU::Analyze(DataMessage &output, std::vector<uint8_t> &image) {
|
|
if ((output.image.xpixel != xpixels)
|
|
|| (output.image.xpixel * output.image.ypixel != npixels))
|
|
throw JFJochException(JFJochExceptionCategory::InputParameterInvalid,
|
|
"Mismatch in pixel size");
|
|
|
|
image.resize(output.image.xpixel * output.image.ypixel * output.image.pixel_depth_bytes);
|
|
|
|
JFJochDecompressPtr(image.data(),
|
|
output.image.algorithm,
|
|
output.image.data,
|
|
output.image.size,
|
|
output.image.xpixel * output.image.ypixel,
|
|
output.image.pixel_depth_bytes);
|
|
|
|
if (output.image.pixel_is_signed) {
|
|
if (output.image.pixel_depth_bytes == 1)
|
|
Analyze<int8_t>(output, image.data(), INT8_MIN, INT8_MAX);
|
|
else if (output.image.pixel_depth_bytes == 2)
|
|
Analyze<int16_t>(output, image.data(), INT16_MIN, INT16_MAX);
|
|
else if (output.image.pixel_depth_bytes == 4)
|
|
Analyze<int32_t>(output, image.data(), INT32_MIN, INT32_MAX);
|
|
} else {
|
|
if (output.image.pixel_depth_bytes == 1)
|
|
Analyze<uint8_t>(output, image.data(), UINT8_MAX, UINT8_MAX);
|
|
else if (output.image.pixel_depth_bytes == 2)
|
|
Analyze<uint16_t>(output, image.data(), UINT16_MAX, UINT16_MAX);
|
|
else if (output.image.pixel_depth_bytes == 4)
|
|
Analyze<uint32_t>(output, image.data(), UINT32_MAX, UINT32_MAX);
|
|
}
|
|
}
|
|
|
|
template <class T>
|
|
void ImageAnalysisCPU::Analyze(DataMessage &output,
|
|
const uint8_t *in_image,
|
|
T err_pixel_val,
|
|
T sat_pixel_val) {
|
|
|
|
auto image = (T *) in_image;
|
|
|
|
std::vector<ROIMessage> roi(roi_count);
|
|
|
|
size_t err_pixels = 0;
|
|
size_t masked_pixels = 0;
|
|
size_t sat_pixels = 0;
|
|
int64_t min_value = INT64_MAX;
|
|
int64_t max_value = INT64_MIN;
|
|
|
|
auto &pixel_to_bin = integration.GetPixelToBin();
|
|
auto &corrections = integration.Corrections();
|
|
auto nbins = integration.GetBinNumber();
|
|
|
|
std::vector<float> sum(nbins);
|
|
std::vector<float> sum2(nbins);
|
|
std::vector<uint32_t> count(nbins);
|
|
|
|
for (int i = 0; i < npixels; i++) {
|
|
auto bin = pixel_to_bin[i];
|
|
auto value = image[i] * corrections[i];
|
|
|
|
if (mask_1byte[i] != 0)
|
|
++masked_pixels;
|
|
else if (image[i] == sat_pixel_val)
|
|
++sat_pixels;
|
|
else if (image[i] == err_pixel_val)
|
|
++err_pixels;
|
|
else {
|
|
if (image[i] > max_value)
|
|
max_value = image[i];
|
|
if (image[i] < min_value)
|
|
min_value = image[i];
|
|
|
|
if (roi_count > 0 && (roi_map[i] != 0)) {
|
|
int64_t x = i % xpixels;
|
|
int64_t y = i / xpixels;
|
|
|
|
for (int8_t r = 0; r < roi_count; r++) {
|
|
if ((roi_map[i] & (1<<r)) != 0) {
|
|
roi[r].sum += image[i];
|
|
roi[r].sum_square += image[i] * image[i];
|
|
roi[r].pixels += 1;
|
|
if (image[i] > roi[r].max_count)
|
|
roi[r].max_count = image[i];
|
|
roi[r].x_weighted += x * image[i];
|
|
roi[r].y_weighted += y * image[i];
|
|
}
|
|
}
|
|
}
|
|
if (bin < nbins) {
|
|
sum[bin] += value;
|
|
sum2[bin] += value * value;
|
|
count[bin] += 1;
|
|
}
|
|
}
|
|
}
|
|
AzimuthalIntegrationProfile azint_profile(integration);
|
|
azint_profile.Add(sum, count);
|
|
|
|
std::vector<DiffractionSpot> spots;
|
|
if (settings.enable)
|
|
spots = spotFinder.Run(image, GetSpotFindingSettings());
|
|
|
|
std::vector<DiffractionSpot> spots_out;
|
|
FilterSpotsByCount(max_spot_count, spots, spots_out);
|
|
|
|
for (const auto &spot: spots_out)
|
|
output.spots.push_back(spot);
|
|
|
|
output.indexing_result = false;
|
|
|
|
if (indexer && settings.indexing)
|
|
indexer->Run(output, spots_out, geom, settings.indexing_tolerance);
|
|
|
|
output.max_viable_pixel_value = max_value;
|
|
output.min_viable_pixel_value = min_value;
|
|
output.error_pixel_count = err_pixels;
|
|
output.saturated_pixel_count = sat_pixels;
|
|
output.az_int_profile = azint_profile.GetResult();
|
|
output.bkg_estimate = azint_profile.GetBkgEstimate(integration.Settings());
|
|
|
|
for (const auto &[key, val]: roi_names)
|
|
output.roi[key] = roi[val];
|
|
}
|
|
|
|
void ImageAnalysisCPU::FillStartMessage(StartMessage &msg) {
|
|
msg.rois = rois.ExportMetadata();
|
|
msg.az_int_bin_to_q = integration.GetBinToQ();
|
|
msg.az_int_bin_number = integration.GetBinNumber();
|
|
msg.max_spot_count = max_spot_count;
|
|
}
|
|
|
|
void ImageAnalysisCPU::SetSpotFindingSettings(const SpotFindingSettings &in_settings) {
|
|
std::unique_lock ul(spot_finding_settings_mutex);
|
|
settings = in_settings;
|
|
}
|
|
|
|
SpotFindingSettings ImageAnalysisCPU::GetSpotFindingSettings() const {
|
|
std::unique_lock ul(spot_finding_settings_mutex);
|
|
return settings;
|
|
}
|