Files
sics/site_ansto/safetyplc.c
Douglas Clowes e284d5f09b Improve timeout handling, implement list command and all print remaining items
r1615 | dcl | 2007-03-08 16:25:30 +1100 (Thu, 08 Mar 2007) | 2 lines
2012-11-15 13:05:08 +11:00

478 lines
13 KiB
C

/*
* S A F E T Y P L C
*
* Douglas Clowes, February 2007
*
*/
#include <netinet/tcp.h>
#include <sys/time.h>
#include <sics.h>
#include "network.h"
#include "multichan.h"
#include "nwatch.h"
#include "safetyplc.h"
extern int DMC2280MotionControl;
#define KEY_ENABLED_BIT (1 << 0)
#define KEY_DISABLED_BIT (1 << 1)
#define SEC_OPENED_BIT (1 << 2)
#define SEC_CLOSED_BIT (1 << 3)
#define TER_OPENED_BIT (1 << 4)
#define TER_CLOSED_BIT (1 << 5)
#define MOTOR_ENABLED_BIT (1 << 6)
#define MOTOR_DISABLED_BIT (1 << 7)
#define ACCESS_LOCKED_BIT (1 << 8)
#define ACCESS_UNLOCKED_BIT (1 << 9)
#define DC_POWEROK_BIT (1 << 10)
#define EXIT_INPROGRESS_BIT (1 << 11)
#define SAFETY_TRIPPED_BIT (1 << 12)
#define SAFETY_MALFUNCTION_BIT (1 << 13)
#define TER_OPERATE_BIT (1 << 14)
#define RELAY_ENABLED_BIT (1 << 15)
#define INST_READY_BIT (1 << 16)
#define LAMP_TEST_BIT (1 << 17)
#define KEY_BOTH_BITS (KEY_ENABLED_BIT | KEY_DISABLED_BIT)
#define SEC_BOTH_BITS (SEC_OPENED_BIT | SEC_CLOSED_BIT)
#define TER_BOTH_BITS (TER_OPENED_BIT | TER_CLOSED_BIT)
#define MOTOR_BOTH_BITS (MOTOR_ENABLED_BIT | MOTOR_DISABLED_BIT)
#define ACCESS_BOTH_BITS (ACCESS_LOCKED_BIT | ACCESS_UNLOCKED_BIT)
typedef struct __SafetyPLCController SafetyPLCController, *pSafetyPLCController;
struct __SafetyPLCController {
pObjectDescriptor pDes;
pMultiChan mcc; /* associated MultiChan object */
int iGetOut;
int iValue;
pNWTimer nw_tmr; /* NetWait timer handle */
int timeout;
struct timeval tvSend;
};
typedef struct __command Command, *pCommand;
typedef int (*CommandCallback)(void* ctx, const char* resp, int resp_len);
struct __command {
pSafetyPLCController plc;
int cstate;
int lstate;
char* out_buf;
int out_len;
int out_idx;
char* inp_buf;
int inp_len;
int inp_idx;
CommandCallback func;
void* cntx;
};
static int PLC_Tx(void* ctx)
{
int iRet = 1;
pCommand myCmd = (pCommand) ctx;
if (myCmd) {
gettimeofday(&myCmd->plc->tvSend, NULL); /* refresh */
iRet = MultiChanWrite(myCmd->plc->mcc, myCmd->out_buf, myCmd->out_len);
/* TODO handle errors */
if (iRet < 0) { /* TODO: EOF */
iRet = MultiChanReconnect(myCmd->plc->mcc);
if (iRet == 0)
return 0;
}
}
return 1;
}
static int PLC_Rx(void* ctx, int rxchar)
{
int iRet = 1;
pCommand myCmd = (pCommand) ctx;
switch (myCmd->cstate) {
case 0: /* first character */
/* normal data */
myCmd->cstate = 1;
/* note fallthrough */
case 1: /* receiving reply */
if (myCmd->inp_idx < myCmd->inp_len)
myCmd->inp_buf[myCmd->inp_idx++] = rxchar;
if (rxchar == 0x0D)
myCmd->cstate = 2;
break;
case 2: /* received CR and looking for LF */
if (myCmd->inp_idx < myCmd->inp_len)
myCmd->inp_buf[myCmd->inp_idx++] = rxchar;
if (rxchar == 0x0A) {
myCmd->cstate = 99;
/* end of line */
}
else
myCmd->cstate = 1;
break;
}
if (myCmd->cstate == 99) {
myCmd->inp_buf[myCmd->inp_idx] = '\0';
if (myCmd->func)
iRet = myCmd->func(myCmd->cntx, myCmd->inp_buf, myCmd->inp_idx);
else
iRet = 0;
myCmd->cstate = 0;
myCmd->inp_idx = 0;
}
if (iRet == 0) { /* end of command */
free(myCmd->out_buf);
free(myCmd->inp_buf);
free(myCmd);
}
return iRet;
}
static int PLC_SendCmd(pSafetyPLCController self,
char* command, int cmd_len,
CommandCallback callback, void* context, int rsp_len)
{
pCommand myCmd = NULL;
assert(self);
assert(self->mcc);
myCmd = (pCommand) malloc(sizeof(Command));
assert(myCmd);
memset(myCmd, 0, sizeof(Command));
myCmd->out_buf = (char*) malloc(cmd_len + 5);
memcpy(myCmd->out_buf, command, cmd_len);
myCmd->out_len = cmd_len;
if (myCmd->out_len < 2 ||
myCmd->out_buf[myCmd->out_len - 1] != 0x0A ||
myCmd->out_buf[myCmd->out_len - 2] != 0x0D) {
myCmd->out_buf[myCmd->out_len++] = 0x0D;
myCmd->out_buf[myCmd->out_len++] = 0x0A;
}
myCmd->out_buf[myCmd->out_len] = '\0';
myCmd->func = callback;
myCmd->cntx = context;
if (rsp_len == 0)
myCmd->inp_buf = NULL;
else {
myCmd->inp_buf = malloc(rsp_len + 1);
memset(myCmd->inp_buf, 0, rsp_len + 1);
}
myCmd->inp_len = rsp_len;
myCmd->plc = self;
gettimeofday(&self->tvSend, NULL); /* refresh */
return MultiChanEnque(self->mcc, myCmd, PLC_Tx, PLC_Rx);
}
static void PLC_Notify(void* context, int event)
{
pSafetyPLCController self = (pSafetyPLCController) context;
switch (event) {
case MCC_RECONNECT:
do {
mkChannel* sock = MultiChanGetSocket(self->mcc);
int flag = 1;
setsockopt(sock->sockid, /* socket affected */
IPPROTO_TCP, /* set option at TCP level */
TCP_NODELAY, /* name of option */
(char *) &flag, /* the cast is historical cruft */
sizeof(int)); /* length of option value */
return;
} while (0);
}
return;
}
/*
* \brief GetCallback is the callback for the read command.
*/
static int GetCallback(void* ctx, const char* resp, int resp_len)
{
int iRet;
unsigned int iRead;
pSafetyPLCController self = (pSafetyPLCController) ctx;
iRet = sscanf(resp,"READ %x", &iRead);
if(iRet != 1) { // Not a number, probably an error response
self->iValue = 0;
}
else {
if ((iRead & LAMP_TEST_BIT) == 0)
self->iValue = iRead;
}
if ((self->iValue & MOTOR_BOTH_BITS) == 0) /* neither */
DMC2280MotionControl = -1;
else if ((self->iValue & MOTOR_BOTH_BITS) == MOTOR_BOTH_BITS) /* both */
DMC2280MotionControl = -1;
else if ((self->iValue & MOTOR_ENABLED_BIT)) /* enabled */
DMC2280MotionControl = 1;
else /* disabled */
DMC2280MotionControl = 0;
self->iGetOut = 0;
return 0;
}
static int MyTimerCallback(void* context, int mode)
{
pSafetyPLCController self = (pSafetyPLCController) context;
if (self->iGetOut) {
struct timeval now;
gettimeofday(&now, NULL);
/* TODO error handling */
if (((now.tv_sec - self->tvSend.tv_sec) * 1000
+ (now.tv_usec / 1000)
- (self->tvSend.tv_usec / 1000)) < self->timeout)
return 1;
DMC2280MotionControl = -1;
}
self->iGetOut = 1;
PLC_SendCmd(self, "READ", 4, GetCallback, self, 132);
return 1;
}
static int PLC_Print(SConnection *pCon, SicsInterp *pSics,
void *pData, char *name, char *param)
{
char line[132];
pSafetyPLCController self = (pSafetyPLCController) pData;
if (strcasecmp(param, "key") == 0) {
char* state = "unknown(low)";
if ((self->iValue & KEY_BOTH_BITS) == KEY_BOTH_BITS)
state = "invalid(high)";
else if (self->iValue & KEY_ENABLED_BIT)
state = "enabled";
else if (self->iValue & KEY_DISABLED_BIT)
state = "disabled";
snprintf(line, 132, "%s.Key = %s", name, state);
SCWrite(pCon, line, eStatus);
return OKOK;
}
if (strcasecmp(param, "secondary") == 0) {
char* state = "unknown(low)";
if ((self->iValue & SEC_BOTH_BITS) == SEC_BOTH_BITS)
state = "invalid(high)";
if (self->iValue & SEC_OPENED_BIT)
state = "opened";
else if (self->iValue & SEC_CLOSED_BIT)
state = "closed";
snprintf(line, 132, "%s.Secondary = %s", name, state);
SCWrite(pCon, line, eStatus);
return OKOK;
}
if (strcasecmp(param, "tertiary") == 0) {
char* state = "unknown(low)";
if ((self->iValue & TER_BOTH_BITS) == TER_BOTH_BITS)
state = "invalid(high)";
if (self->iValue & TER_OPENED_BIT)
state = "opened";
else if (self->iValue & TER_CLOSED_BIT)
state = "closed";
snprintf(line, 132, "%s.Tertiary = %s", name, state);
SCWrite(pCon, line, eStatus);
return OKOK;
}
if (strcasecmp(param, "motioncontrol") == 0) {
char* state = "unknown(low)";
if ((self->iValue & MOTOR_BOTH_BITS) == MOTOR_BOTH_BITS)
state = "invalid(high)";
else if (self->iValue & MOTOR_ENABLED_BIT)
state = "enabled";
else if (self->iValue & MOTOR_DISABLED_BIT)
state = "disabled";
snprintf(line, 132, "%s.MotionControl = %s", name, state);
SCWrite(pCon, line, eStatus);
return OKOK;
}
if (strcasecmp(param, "access") == 0) {
char* state = "unknown(low)";
if ((self->iValue & ACCESS_BOTH_BITS) == ACCESS_BOTH_BITS)
state = "invalid(high)";
else if (self->iValue & ACCESS_LOCKED_BIT)
state = "locked";
else if (self->iValue & ACCESS_UNLOCKED_BIT)
state = "unlocked";
snprintf(line, 132, "%s.Access = %s", name, state);
SCWrite(pCon, line, eStatus);
return OKOK;
}
if (strcasecmp(param, "dc") == 0) {
char* state = "false";
if (self->iValue & DC_POWEROK_BIT)
state = "true";
snprintf(line, 132, "%s.DC = %s", name, state);
SCWrite(pCon, line, eStatus);
return OKOK;
}
if (strcasecmp(param, "exit") == 0) {
char* state = "false";
if (self->iValue & EXIT_INPROGRESS_BIT)
state = "true";
snprintf(line, 132, "%s.Exit = %s", name, state);
SCWrite(pCon, line, eStatus);
return OKOK;
}
if (strcasecmp(param, "trip") == 0) {
char* state = "false";
if (self->iValue & SAFETY_TRIPPED_BIT)
state = "true";
snprintf(line, 132, "%s.Trip = %s", name, state);
SCWrite(pCon, line, eStatus);
return OKOK;
}
if (strcasecmp(param, "fault") == 0) {
char* state = "false";
if (self->iValue & SAFETY_MALFUNCTION_BIT)
state = "true";
snprintf(line, 132, "%s.Fault = %s", name, state);
SCWrite(pCon, line, eStatus);
return OKOK;
}
if (strcasecmp(param, "operate") == 0) {
char* state = "false";
if (self->iValue & TER_OPERATE_BIT)
state = "true";
snprintf(line, 132, "%s.Operate = %s", name, state);
SCWrite(pCon, line, eStatus);
return OKOK;
}
if (strcasecmp(param, "relay") == 0) {
char* state = "false";
if (self->iValue & RELAY_ENABLED_BIT)
state = "true";
snprintf(line, 132, "%s.Relay = %s", name, state);
SCWrite(pCon, line, eStatus);
return OKOK;
}
if (strcasecmp(param, "ready") == 0) {
char* state = "false";
if (self->iValue & INST_READY_BIT)
state = "true";
snprintf(line, 132, "%s.Ready = %s", name, state);
SCWrite(pCon, line, eStatus);
return OKOK;
}
return 0;
}
static int PLC_Action(SConnection *pCon, SicsInterp *pSics,
void *pData, int argc, char *argv[])
{
char line[132];
pSafetyPLCController self = (pSafetyPLCController) pData;
if (argc == 1) {
snprintf(line, 132, "%s.iValue = %06X", argv[0], self->iValue & 0xffffff);
SCWrite(pCon, line, eStatus);
return OKOK;
}
else if (argc == 2) {
if (strcmp(argv[1], "list") == 0) {
PLC_Print(pCon, pSics, pData, argv[0], "key");
PLC_Print(pCon, pSics, pData, argv[0], "secondary");
PLC_Print(pCon, pSics, pData, argv[0], "tertiary");
PLC_Print(pCon, pSics, pData, argv[0], "motioncontrol");
PLC_Print(pCon, pSics, pData, argv[0], "access");
PLC_Print(pCon, pSics, pData, argv[0], "dc");
PLC_Print(pCon, pSics, pData, argv[0], "exit");
PLC_Print(pCon, pSics, pData, argv[0], "trip");
PLC_Print(pCon, pSics, pData, argv[0], "fault");
PLC_Print(pCon, pSics, pData, argv[0], "operate");
PLC_Print(pCon, pSics, pData, argv[0], "relay");
PLC_Print(pCon, pSics, pData, argv[0], "ready");
return OKOK;
}
if (PLC_Print(pCon, pSics, pData, argv[0], argv[1]))
return OKOK;
}
/* TODO: handle private stuff */
return MultiChanAction(pCon, pSics, self->mcc, argc, argv);
}
static pSafetyPLCController PLC_Create(const char* pName, int port)
{
pSafetyPLCController self = NULL;
self = (pSafetyPLCController) malloc(sizeof(SafetyPLCController));
if (self == NULL)
return NULL;
memset(self, 0, sizeof(SafetyPLCController));
if (MultiChanCreate(pName, &self->mcc) == 0) {
free(self);
return NULL;
}
MultiChanSetNotify(self->mcc, self, PLC_Notify);
self->pDes = CreateDescriptor("SafetyPLC");
return self;
}
static int PLC_Init(pSafetyPLCController self)
{
/* TODO: Init the controller */
if (self->nw_tmr != NULL)
NetWatchRemoveTimer(self->nw_tmr);
NetWatchRegisterTimerPeriodic(&self->nw_tmr,
1000, 100,
MyTimerCallback,
self);
self->timeout=30000;
return 1;
}
static void PLC_Kill(void* pData)
{
pSafetyPLCController self = (pSafetyPLCController) pData;
if (self->nw_tmr)
NetWatchRemoveTimer(self->nw_tmr);
free(self);
return;
}
int SafetyPLCFactory(SConnection *pCon, SicsInterp *pSics,
void *pData, int argc, char *argv[])
{
pSafetyPLCController pNew = NULL;
int iRet, status;
char pError[256];
if(argc < 4)
{
SCWrite(pCon,"ERROR: insufficient no of arguments to SafetyPLCFactory",
eError);
return 0;
}
/*
create data structure and open port
*/
pNew = PLC_Create(argv[2], atoi(argv[3]));
if(!pNew)
{
SCWrite(pCon,"ERROR: failed to create SafetyPLC in SafetyPLCFactory",eError);
return 0;
}
status = PLC_Init(pNew);
if(status != 1)
{
sprintf(pError,"ERROR: failed to connect to %s",argv[2]);
SCWrite(pCon,pError,eError);
}
/*
create the command
*/
iRet = AddCommand(pSics, argv[1], PLC_Action, PLC_Kill, pNew);
if(!iRet)
{
sprintf(pError,"ERROR: duplicate command %s not created", argv[1]);
SCWrite(pCon,pError,eError);
PLC_Kill(pNew);
return 0;
}
return 1;
}