Files
sics/site_ansto/hardsup/Monitor/device.c
2014-05-16 17:23:44 +10:00

701 lines
19 KiB
C

/*
* Abstraction of the counter device.
*
*/
#include "device.h"
#include "params.h"
#include "sock.h"
#include "hware.h"
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#define HWARE_TEST(functionCall) \
if( hware_failed(error=(functionCall)) ) \
goto Error; \
else
/*
* get a pointer to the current sample
*/
static SAMPLE* cur_sample(DEVICE* device)
{
return &device->sample_array[device->sample_index];
}
/*
* get a pointer to the num'th previous sample
*/
static SAMPLE* prv_sample(DEVICE* device, int num)
{
int idx = (device->sample_index + SAMPLE_ARRAY_SZ - num) % SAMPLE_ARRAY_SZ;
return &device->sample_array[idx];
}
void make_report(DEVICE* device)
{
dbg_printf(0, "make_report\n");
int i;
SAMPLE* sp = cur_sample(device);
device->report = *sp;
device->report.average_rate = device->report.counter_rate;
device->report.minimum_rate = device->report.counter_rate;
device->report.maximum_rate = device->report.counter_rate;
for (i = 1; i <= device->params.report_period; ++i)
{
SAMPLE* psp;
psp = prv_sample(device, i);
if (psp->valid)
{
device->report.time_delta = time_diff(&sp->timestamp, &psp->timestamp);
device->report.count_delta = sp->count64 - psp->count64;
if (device->report.time_delta > 0.0)
device->report.average_rate = device->report.count_delta
/ device->report.time_delta;
if (i < device->params.report_period)
{
device->report.num_polls += psp->num_polls;
if (psp->counter_rate < device->report.minimum_rate)
device->report.minimum_rate = psp->counter_rate;
if (psp->counter_rate > device->report.maximum_rate)
device->report.maximum_rate = psp->counter_rate;
}
}
}
sp = &device->report;
}
#if 0
/*
* given two samples, compute the count-rate
*/
static double compute_rate(DEVICE* device, SAMPLE* cur, SAMPLE* prv)
{
double result = 0.0;
uInt32 delta_counter;
if (device->params.direction == COUNT_DOWN)
delta_counter = prv->counter_value - cur->counter_value;
else
delta_counter = cur->counter_value - prv->counter_value;
double delta_timer = time_diff(&cur->timestamp, &prv->timestamp);
result = 1.0 * delta_counter / delta_timer;
return result;
}
/*
* given two samples, compute the average rate
*/
static double compute_average(DEVICE* device, SAMPLE* cur, SAMPLE* prv)
{
double result = 0.0;
if (cur == prv)
result = cur->counter_rate;
else
result = compute_rate(device, cur, prv);
return result;
}
#endif
void device_send(DEVICE* device, int n)
{
SAMPLE* sp = cur_sample(device);
BUFFER buffer;
buffer.length = 0;
snprintf(buffer.body, sizeof(buffer.body),
"Time: %s, Count: %10llu, Delta: %6d, Time: %8.6f, Rate: %8.2f, Ave: %8.2f\r\n",
make_timestamp(&sp->timestamp),
sp->counter_value,
sp->count_delta,
sp->time_delta,
sp->counter_rate,
sp->average_rate);
buffer.length = strlen(buffer.body);
sock_send(n, &buffer);
}
void device_read(DEVICE* device, int n)
{
SAMPLE* sp = cur_sample(device);
BUFFER buffer;
buffer.length = 0;
snprintf(buffer.body, sizeof(buffer.body),
"READ %c%c%c%c %s %.6f %10llu %8.2f\r\n",
device->state == device_idle ? 'I' :
device->state == device_stopped ? 'S' :
device->state == device_running ? 'R' :
device->state == device_paused ? 'P' : '?',
device->terminal_due ? 'T' : ' ',
device->range_error == 0 ? ' ' : 'R',
device->range_gated ? 'G' : ' ',
make_timestamp(&sp->timestamp),
device->accumulated.tv_sec + .000001 * device->accumulated.tv_usec,
sp->counter_value,
sp->counter_rate);
buffer.length = strlen(buffer.body);
sock_send(n, &buffer);
}
void device_print(DEVICE* device, FILE* fd)
{
SAMPLE* sp = cur_sample(device);
fprintf(fd, "Time: %s, Count: %10llu, Delta: %6d, Time: %8.6f, Rate: %8.2f, Ave: %8.2f\r\n",
make_timestamp(&sp->timestamp),
sp->counter_value,
sp->count_delta,
sp->time_delta,
sp->counter_rate,
sp->average_rate);
fflush(fd);
}
/*
* Finalise the current sample and move on to the next
*/
void device_sample(DEVICE* device)
{
SAMPLE* psp = cur_sample(device);
dbg_printf(0, "device_sample: %4d\r\n"
" polls: %4d\r\n"
" time: %4s\r\n"
" counter: %10llu\r\n"
" count64: %10llu\r\n"
" c_delta: %d\r\n"
" t_delta: %6.3f\r\n"
" rate: %10g\n",
device->sample_index,
psp->num_polls,
make_timestamp(&psp->timestamp),
psp->counter_value,
psp->count64,
psp->count_delta,
psp->time_delta,
psp->counter_rate);
device->sample_timer = device->current_time;
++device->sample_counter;
if (++device->sample_index >= SAMPLE_ARRAY_SZ)
device->sample_index = 0;
SAMPLE* sp = cur_sample(device);
*sp = *psp;
sp->valid = true;
sp->num_polls = 0;
sp->sample_counter = device->sample_counter;
sp->poll_counter = device->poll_counter;
}
void device_report(DEVICE* device)
{
dbg_printf(0, "device_report\n");
/*
* Set the time for this report
*/
device->report_timer = device->current_time;
BUFFER buffer;
SAMPLE* sp;
sp = &device->report;
char* str = make_timestamp(&sp->timestamp);
snprintf(buffer.body, sizeof(buffer.body),
"%s (%6.3f), %10llu (%8d), %8.2f (%8.2f,%8.2f,%8.2f)\r\n",
str,
sp->time_delta,
sp->counter_value,
sp->count_delta,
sp->counter_rate,
sp->minimum_rate,
sp->average_rate,
sp->maximum_rate);
buffer.length = strlen(buffer.body);
//fputs(buffer.body, stdout);
sock_report(&buffer, 1, device);
snprintf(buffer.body, sizeof(buffer.body),
"REPORT %s %10llu %8.2f (%8.2f,%8.2f,%8.2f)\r\n",
str,
sp->counter_value,
sp->counter_rate,
sp->minimum_rate,
sp->average_rate,
sp->maximum_rate);
buffer.length = strlen(buffer.body);
//fputs(buffer.body, stdout);
sock_report(&buffer, 2, device);
}
/**
* Initialise the counter
*
* Initialise all of the control data associated with the logical counter.
*
* Create a 64-bit physical counter and start it.
*/
int device_init(DEVICE** cpp, char* name)
{
int error = 0;
char errBuff[2048]={'\0'};
SAMPLE* sp = NULL;
DEVICE* device = (DEVICE*) malloc(sizeof(DEVICE));
*cpp = device;
memset(device, 0, sizeof(DEVICE));
strncpy(device->name, name, sizeof(device->name));
device->params.poll_period = 1; /* milliseconds between polls */
device->params.sample_period = 1000; /* polls between sample calcs */
device->params.report_period = 3; /* samples between reports */
device->state = device_stopped;
struct timeval now;
gettimeofday(&now, NULL);
device->current_time = now;
device->previous_time = now;
device->sample_timer = now;
device->report_timer = now;
HWARE_TEST(hware_ctor(name, &device->private_data));
sp = cur_sample(device);
sp->timestamp = now;
sp->counter_value = device->current_count;
sp->valid = true;
device_sample(device);
return 0;
Error:
hware_errmsg(errBuff, sizeof(errBuff));
printf("DAQmx Error: %s\n", errBuff);
return error;
return 0;
}
/**
* Start the logical counter
*
* Read the value of the physical counter and set the state to running
*/
int device_start(DEVICE *device)
{
int error = 0;
char errBuff[2048]={'\0'};
struct timeval now;
int value;
SAMPLE* sp = NULL;
SAMPLE* psp = NULL;
PARAMETERS* pp = &device->params;
/* start the counter object */
gettimeofday(&now, NULL);
device->current_time = now;
device->start_time = device->current_time;
device->current_count = device->params.initial_count;
device->accumulated.tv_sec = 0;
device->accumulated.tv_usec = 0;
device->poll_counter = 0;
device->sample_counter = 0;
device->terminal_due = false;
device->state = device_running;
device->previous_time = device->current_time;
dbg_printf(0, "Setting input line to %d\n", pp->source);
HWARE_TEST(hware_source(device->private_data, pp->source));
device->source = pp->source;
HWARE_TEST(hware_read(device->private_data, &device->count64));
sp = cur_sample(device);
sp->timestamp = device->current_time;
sp->counter_value = device->current_count;
psp = prv_sample(device, 1);
psp->timestamp = device->current_time;
psp->counter_value = device->current_count;
make_report(device);
if (pp->output_line == 1)
value = 1;
else if (pp->output_line == 2)
value = 0;
else
value = -1;
dbg_printf(0, "Setting output line to %d\n", value);
HWARE_TEST(hware_outp(device->private_data, value));
return error;
Error:
device_errmsg(errBuff, sizeof(errBuff));
printf("DAQmx Error: %s\n", errBuff);
return error;
}
int device_stop(DEVICE *device)
{
int error = 0;
char errBuff[2048]={'\0'};
PARAMETERS* pp = &device->params;
int value;
device->stop_time = device->current_time;
device->state = device_stopped;
if (pp->output_line == 1)
value = 0;
else if (pp->output_line == 2)
value = 1;
else
value = -1;
dbg_printf(0, "Setting output line to %d\n", value);
HWARE_TEST(hware_outp(device->private_data, value));
dbg_printf(0, "Setting input line to %d\n", pp->source);
HWARE_TEST(hware_source(device->private_data, pp->source));
device->source = pp->source;
return error;
Error:
device_errmsg(errBuff, sizeof(errBuff));
printf("DAQmx Error: %s\n", errBuff);
return error;
}
int device_pause(DEVICE *device)
{
if (device->state == device_running)
device->state = device_paused;
return 0;
}
int device_resume(DEVICE *device)
{
if (device->state == device_paused)
device->state = device_running;
return 0;
}
int device_command(void* counter, const char* command)
{
DEVICE* device = static_cast<DEVICE*>(counter);
if (strncasecmp(command, "pause", 5) == 0)
return device_pause(device);
else if (strncasecmp(command, "continue", 8) == 0)
return device_resume(device);
else if (strncasecmp(command, "resume", 6) == 0)
return device_resume(device);
else if (strncasecmp(command, "start", 6) == 0)
return device_start(device);
else if (strncasecmp(command, "stop", 4) == 0)
return device_stop(device);
return 0;
}
static void device_event(DEVICE *device, const char* event)
{
BUFFER buffer;
sprintf(buffer.body, "EVENT %s %s\r\n",
make_timestamp(&device->current_time),
event);
buffer.length = strlen(buffer.body);
dbg_printf(0, "%s", buffer.body);
//sock_report(&buffer, 0);
sock_report(&buffer, 1, device);
sock_report(&buffer, 2, device);
}
static void device_range_check(DEVICE* device, int mode)
{
PARAMETERS* pp = &device->params;
if (pp->range_check_enable)
{
if (pp->range_mode == mode)
{
double test;
SAMPLE* sp = cur_sample(device);
if (mode == 1)
test = sp->counter_rate;
else if (mode == 2)
test = sp->counter_rate;
else
test = device->report.average_rate;
if (pp->range_low > 0 && pp->range_low > test)
{
if (device->range_error != 1)
device_event(device, "RANGE OUT LOW");
device->range_error = 1;
if (pp->range_gate_enable)
device->range_gated = true;
else
device->range_gated = false;
}
else if (pp->range_high > 0 && pp->range_high < test)
{
if (device->range_error != 2)
device_event(device, "RANGE OUT HIGH");
device->range_error = 2;
if (pp->range_gate_enable)
device->range_gated = true;
else
device->range_gated = false;
}
else
{
if (device->range_error != 0)
device_event(device, "RANGE IN");
device->range_error = 0;
device->range_gated = false;
}
}
}
else
{
/* If range check has been disabled while in error - reset */
if (device->range_error != 0)
device_event(device, "RANGE IN");
device->range_error = 0;
device->range_gated = false;
}
}
static void device_test_term(DEVICE* device)
{
PARAMETERS* pp = &device->params;
SAMPLE* sp = cur_sample(device);
SAMPLE* psp = prv_sample(device, 1);
if (!device->terminal_due)
{
if (pp->terminal_check_type == 1)
{
if (pp->direction == COUNT_DOWN)
{
/*
* decremented to or through terminal
*/
// TODO FIXME improve wraparound handling
if ((sp->counter_value <= pp->terminal_count &&
psp->counter_value > pp->terminal_count) ||
(sp->counter_value > psp->counter_value &&
psp->counter_value > pp->terminal_count))
{
device->terminal_due = true;
}
}
else
{
/*
* incremented to or through terminal
*/
// TODO FIXME improve wraparound handling
if (
#if 1
sp->counter_value >= pp->terminal_count
#else
(sp->counter_value >= pp->terminal_count &&
psp->counter_value < pp->terminal_count) ||
(sp->counter_value < psp->counter_value &&
psp->counter_value > pp->terminal_count)
#endif
)
{
device->terminal_due = true;
}
}
}
else if (pp->terminal_check_type == 2)
{
if ((uint64) device->accumulated.tv_sec >= pp->terminal_count)
device->terminal_due = true;
}
if (device->terminal_due)
{
device_event(device, "TERMINAL");
make_report(device);
device_stop(device);
}
}
}
/*
* poll the physical counter
*/
int device_poll(DEVICE* device)
{
PARAMETERS* pp = &device->params;
char errBuff[2048]={'\0'};
unsigned long long current_count_local;
int count_delta_local;
int error=0;
SAMPLE* sp = NULL;
SAMPLE* psp = NULL;
#if 0
dbg_printf(0, "%d:-%s %s %.3f %s %.3f %4d\n",
idx,
make_timestamp(&device->current_time),
make_timestamp(&device->sample_timer),
device_time_to_next_sample(device),
make_timestamp(&device->report_timer),
device_time_to_next_report(device),
device->sample_index);
#endif
/* read the value from the hardware counter to a temp */
++device->poll_counter;
HWARE_TEST(hware_read(device->private_data, &current_count_local));
dbg_printf(0, "device_poll = %llu @ %s\n",
current_count_local,
make_timestamp(&device->current_time));
sp = cur_sample(device);
psp = prv_sample(device, 1);
/* calculate the number since last time and save new value */
count_delta_local = current_count_local - device->count64;
device->count64 = current_count_local;
sp->num_polls += 1;
/*
* If the counter is running and not gated increment the count and runtime
*/
if (device->state == device_running &&
!(device->params.range_gate_enable && device->range_gated))
{
if (device->params.direction == COUNT_DOWN)
{
device->current_count -= count_delta_local;
}
else
{
device->current_count += count_delta_local;
}
/*
* Add the time difference to the accumulated time
*/
device->accumulated.tv_sec += device->current_time.tv_sec - sp->timestamp.tv_sec;
/* prevent negative tv_usec by borrowing one second in microseconds */
device->accumulated.tv_usec += 1000000;
device->accumulated.tv_usec += device->current_time.tv_usec;
device->accumulated.tv_usec -= sp->timestamp.tv_usec;
if (device->accumulated.tv_usec >= 1000000)
{
/* carry the seconds */
device->accumulated.tv_sec += device->accumulated.tv_usec / 1000000;
device->accumulated.tv_usec %= 1000000;
}
/* pay back the borrowed second */
device->accumulated.tv_sec -= 1;
}
/* calculate and check the count-rate between polls */
sp->count_delta = device->count64 - sp->count64;
sp->time_delta = time_diff(&device->current_time, &sp->timestamp);
sp->counter_rate = (double) sp->count_delta / sp->time_delta;
device_range_check(device, 2); /* poll range check */
device->previous_time = device->current_time;
/* save counter values in the sample */
sp->counter_value = device->current_count;
sp->count64 = device->count64;
sp->timestamp = device->current_time;
/* calculate the count-rate for this sample so far */
sp->count_delta = sp->count64 - psp->count64;
sp->time_delta = time_diff(&sp->timestamp, &psp->timestamp);
sp->counter_rate = (double) sp->count_delta / sp->time_delta;
/* test for the occurrence of a terminal event */
device_test_term(device);
/* check if it is time to roll the sample */
if (device_time_to_next_sample(device) <= 0)
{
/* check if it is time to roll the report */
if (device_time_to_next_report(device) <= 0)
{
make_report(device);
device_range_check(device, 0); /* report range check */
device_report(device);
}
device_range_check(device, 1); /* sample range check */
device_sample(device);
}
/* set the source line */
if (device->source != pp->source)
{
device->source = pp->source;
HWARE_TEST(hware_source(device->private_data, device->source));
}
/* set the line filter */
if (device->filter != pp->filter)
{
device->filter = pp->filter;
HWARE_TEST(hware_filter(device->private_data, device->filter));
}
/* drive the output line */
if (device->output_line != pp->output_line)
{
int value;
device->output_line = pp->output_line;
if (pp->output_line == 1)
{
if (device->state == device_running || device->state == device_paused)
value = 1;
else
value = 0;
}
else if (pp->output_line == 2)
{
if (device->state == device_running || device->state == device_paused)
value = 0;
else
value = 1;
}
else
value = -1;
HWARE_TEST(hware_outp(device->private_data, value));
}
return error;
Error:
device_errmsg(errBuff, sizeof(errBuff));
printf("DAQmx Error: %s\n", errBuff);
return error;
}
void device_term(DEVICE* device)
{
if (device->private_data)
{
hware_dtor(&device->private_data);
device->private_data = NULL;
}
device->state = device_idle;
}
bool device_fatal(int error)
{
return hware_failed(error);
}
void device_errmsg(char* buff, int len)
{
hware_errmsg(buff, len);
}
double device_time_to_next_report(DEVICE* device)
{
uint64 last_report;
uint64 timeofday;
int timeout;
struct timeval now;
now = device->current_time;
last_report = 1000 * (uint64) device->report_timer.tv_sec;
last_report += (uint64) device->report_timer.tv_usec / 1000;
timeofday = 1000 * (uint64) now.tv_sec;
timeofday += (uint64) now.tv_usec / 1000;
timeout = device->params.poll_period * device->params.sample_period *
device->params.report_period;
if ((last_report / timeout) != (timeofday / timeout))
return 0.0;
timeout = timeout - timeofday % timeout;
return 0.001 * timeout;
}
double device_time_to_next_sample(DEVICE* device)
{
uint64 last_sample;
uint64 timeofday;
int timeout;
struct timeval now;
now = device->current_time;
last_sample = 1000 * (uint64) device->sample_timer.tv_sec;
last_sample += (uint64) device->sample_timer.tv_usec / 1000;
timeofday = 1000 * (uint64) now.tv_sec;
timeofday += (uint64) now.tv_usec / 1000;
timeout = device->params.poll_period * device->params.sample_period;
if ((last_sample / timeout) != (timeofday / timeout))
return 0.0;
timeout = timeout - timeofday % timeout;
return 0.001 * timeout;
}