Separate motor states for move, backlash and creep

This commit is contained in:
Douglas Clowes
2013-07-11 17:17:13 +10:00
parent 6c220b4b55
commit 1a64c0a4a9

View File

@@ -207,6 +207,7 @@ struct __MoDriv {
double fPreseek; /**< preseek target when preseek is active */
int settle; /**< motor settling time in milliseconds */
struct timeval time_settle_done; /**< time when settling will be over */
bool doSettle; /**< flag to request settle after move, autoreset */
int debug;
int stepCount; /**< number of step operations for this move cycle */
float creep_offset; /**< last little bit to creep in units */
@@ -220,6 +221,7 @@ struct __MoDriv {
int timerValue; /**< save for debug printing */
StateFunc myState; /**< pointer to state action method */
StateFunc myPrevState; /**< save for debug printing */
StateFunc myMoveCallerReturn; /**< state to return to */
int subState; /**< tracks substate within state method */
bool waitResponse; /**< true is a message sent and we wait for response */
pNWTimer state_timer; /**< motor state timer */
@@ -237,6 +239,7 @@ struct __MoDriv {
int bias_bits; /**< number of bits to mask */
int bias_bias; /**< bias to add to encoder value */
char ao_id[256];
bool testing; /**< flag for testing new code */
};
int DMC2280MotionControl = 1; /* defaults to enabled */
@@ -1632,6 +1635,10 @@ static void DMCState_Idle(pDMC2280Driv self, pEvtEvent event);
static void DMCState_MotorStart(pDMC2280Driv self, pEvtEvent event);
static void DMCState_MotorOn(pDMC2280Driv self, pEvtEvent event);
static void DMCState_Moving(pDMC2280Driv self, pEvtEvent event);
static void DMCState_StepMove(pDMC2280Driv self, pEvtEvent event);
static void DMCState_SimpleMove(pDMC2280Driv self, pEvtEvent event);
static void DMCState_Backlash(pDMC2280Driv self, pEvtEvent event);
static void DMCState_Creeping(pDMC2280Driv self, pEvtEvent event);
static void DMCState_MotorHalt(pDMC2280Driv self, pEvtEvent event);
static void DMCState_OffTimer(pDMC2280Driv self, pEvtEvent event);
static void DMCState_MotorStop(pDMC2280Driv self, pEvtEvent event);
@@ -1644,6 +1651,10 @@ static char* state_name(StateFunc func) {
if (func == DMCState_MotorStart) return "DMCState_MotorStart";
if (func == DMCState_MotorOn) return "DMCState_MotorOn";
if (func == DMCState_Moving) return "DMCState_Moving";
if (func == DMCState_StepMove) return "DMCState_StepMove";
if (func == DMCState_SimpleMove) return "DMCState_SimpleMove";
if (func == DMCState_Backlash) return "DMCState_Backlash";
if (func == DMCState_Creeping) return "DMCState_Creeping";
if (func == DMCState_MotorHalt) return "DMCState_MotorHalt";
if (func == DMCState_OffTimer) return "DMCState_OffTimer";
if (func == DMCState_MotorStop) return "DMCState_MotorStop";
@@ -2412,6 +2423,18 @@ static void DMCState_MotorOn(pDMC2280Driv self, pEvtEvent event) {
cmdAccel(self); /* No Response */
cmdDecel(self); /* No Response */
#endif
if (self->testing) {
self->myMoveCallerReturn = NULL;
if (self->backlash_offset != 0) {
change_state(self, DMCState_Backlash);
return;
} else if (self->creep_offset != 0) {
change_state(self, DMCState_Creeping);
return;
}
change_state(self, DMCState_SimpleMove);
return;
}
set_lastMotion(self, self->currSteps, self->currCounts);
/* compute position for PA command */
target = self->fTarget;
@@ -2512,6 +2535,433 @@ static void DMCState_MotorOn(pDMC2280Driv self, pEvtEvent event) {
return;
}
/*
* This state moves the motor from its current position to fTarget.
* There is no backlash and no creep.
* If there is a fault it transfers out
*/
static void DMCState_SimpleMove(pDMC2280Driv self, pEvtEvent event) {
double target;
int absolute;
switch (event->event_type) {
case eStateEvent:
/*
* If we are the myMoveCallerReturn then continue
*/
if (DMCState_SimpleMove == self->myMoveCallerReturn) {
/* TODO: precision check and retry */
self->myMoveCallerReturn = NULL;
change_state(self, DMCState_OffTimer);
return;
}
target = self->fTarget;
absolute = motAbsol(self, target);
self->doSettle = self->settle > 0;
/* decide if we should be letting the motor settle */
cmdPosition(self, absolute);
return;
case eTimerEvent:
cmdStatus(self);
return;
case eMessageEvent:
if (self->run_flag != 0) {
change_state(self, DMCState_MotorHalt);
return;
}
self->myMoveCallerReturn = DMCState_SimpleMove;
change_state(self, DMCState_StepMove);
return;
case eCommandEvent:
switch (event->event.cmd.cmd_type) {
case CMD_RUN:
/* TODO: FIXME RUN command while running */
if (self->driver_status == HWIdle)
self->driver_status = HWBusy;
self->run_flag = 1;
if (self->waitResponse == false) {
change_state(self, DMCState_MotorHalt);
}
return;
case CMD_HALT:
/* handle halt command, send message */
self->run_flag = -1;
if (self->waitResponse == false) {
change_state(self, DMCState_MotorHalt);
}
return;
}
break;
case eTimeoutEvent:
strncpy(self->lastCmd, event->event.msg.cmd->out_buf, CMDLEN);
self->errorCode = MOTCMDTMO;
self->driver_status = HWFault;
change_state(self, DMCState_MotorHalt);
return;
}
unhandled_event(self, event);
self->errorCode = STATEERROR;
change_state(self, DMCState_Error);
return;
}
/*
* This state moves the motor from its current position to fTarget + backlash_offset.
* There is no creep.
* If there is a fault it transfers out
*/
static void DMCState_Backlash(pDMC2280Driv self, pEvtEvent event) {
double target;
int absolute;
switch (event->event_type) {
case eStateEvent:
/*
* If we are the myMoveCallerReturn then continue
*/
if (DMCState_Backlash == self->myMoveCallerReturn) {
float precision;
/* TODO: precision check and retry */
self->myMoveCallerReturn = NULL;
target = self->fTarget;
self->preseek = 0;
/* take precision into account */
MotorGetPar(self->pMot, "precision", &precision);
if (self->backlash_offset > 0) {
if (target + self->backlash_offset > self->currPosition + precision) {
self->preseek = 1;
target += self->backlash_offset + precision;
if (target > self->fUpper)
target = self->fUpper;
self->fPreseek = target;
}
}
else if (self->backlash_offset < 0) {
if (target + self->backlash_offset < self->currPosition - precision) {
self->preseek = 1;
target += self->backlash_offset - precision;
if (target < self->fLower)
target = self->fLower;
self->fPreseek = target;
}
}
if (self->preseek && self->stepCount > 10) {
/* limit the maximum number of tries */
if (self->debug) {
char line[CMDLEN];
snprintf(line, CMDLEN, "Motor=%s preseek stopped, stepcount = %d",
self->name, self->stepCount);
SICSLogWrite(line, eStatus);
}
self->preseek = 0;
}
} else {
target = self->fTarget;
self->preseek = 0;
if (self->backlash_offset != 0) {
if (self->backlash_offset > 0) {
/*
* We want to be moving from high to low,
* if the target is higher than current
* we must pre-seek to the higher side
*/
if (target > self->currPosition) {
self->preseek = 1;
target += self->backlash_offset;
if (target > self->fUpper)
target = self->fUpper;
}
}
else if (self->backlash_offset < 0) {
/*
* We want to be moving from low to high,
* if the target is lower than current
* we must pre-seek to the lower side
*/
if (target < self->currPosition) {
self->preseek = 1;
target += self->backlash_offset;
if (target < self->fLower)
target = self->fLower;
}
}
}
}
if (self->preseek == 0) {
/* preseek is not required, handle as a simple move */
if (self->creep_offset != 0) {
change_state(self, DMCState_Creeping);
} else {
change_state(self, DMCState_SimpleMove);
}
return;
}
self->fPreseek = target;
absolute = motAbsol(self, target);
/* decide if we should be letting the motor settle */
self->doSettle = self->settle > 0;
cmdPosition(self, absolute);
return;
case eTimerEvent:
cmdStatus(self);
return;
case eMessageEvent:
if (self->run_flag != 0) {
change_state(self, DMCState_MotorHalt);
return;
}
self->myMoveCallerReturn = DMCState_Backlash;
change_state(self, DMCState_StepMove);
return;
case eCommandEvent:
switch (event->event.cmd.cmd_type) {
case CMD_RUN:
/* TODO: FIXME RUN command while running */
if (self->driver_status == HWIdle)
self->driver_status = HWBusy;
self->run_flag = 1;
if (self->waitResponse == false) {
change_state(self, DMCState_MotorHalt);
}
return;
case CMD_HALT:
/* handle halt command, send message */
self->run_flag = -1;
if (self->waitResponse == false) {
change_state(self, DMCState_MotorHalt);
}
return;
}
break;
case eTimeoutEvent:
strncpy(self->lastCmd, event->event.msg.cmd->out_buf, CMDLEN);
self->errorCode = MOTCMDTMO;
self->driver_status = HWFault;
change_state(self, DMCState_MotorHalt);
return;
}
unhandled_event(self, event);
self->errorCode = STATEERROR;
change_state(self, DMCState_Error);
return;
}
/*
* This state moves the motor from its current position to fTarget by creeping.
* There is no backlash.
* If there is a fault it transfers out
*/
static void DMCState_Creeping(pDMC2280Driv self, pEvtEvent event) {
double target;
int absolute;
switch (event->event_type) {
case eStateEvent:
/*
* If we are the myMoveCallerReturn then continue
*/
if (DMCState_Creeping == self->myMoveCallerReturn) {
self->myMoveCallerReturn = NULL;
if (self->preseek == 0) {
/* it is finished */
change_state(self, DMCState_OffTimer);
return;
}
} else {
/* first time, initialize */
self->creep_val = 0;
}
target = self->fTarget;
self->preseek = 0;
absolute = motCreep(self, target);
if (self->preseek == 0) {
/* it is finished */
change_state(self, DMCState_OffTimer);
return;
}
/* decide if we should be letting the motor settle */
self->doSettle = self->settle > 0;
if (self->doSettle) {
if (abs(absolute - self->currSteps) > fabs(self->creep_offset * self->stepsPerX))
self->doSettle = false;
if (self->creep_precision > 0.0)
if (abs(absolute - self->currSteps) > 10.0 * fabs(self->creep_precision * self->stepsPerX))
self->doSettle = false;
}
self->fPreseek = target;
cmdPosition(self, absolute);
return;
case eTimerEvent:
cmdStatus(self);
return;
case eMessageEvent:
if (self->run_flag != 0) {
change_state(self, DMCState_MotorHalt);
return;
}
self->myMoveCallerReturn = DMCState_Creeping;
change_state(self, DMCState_StepMove);
return;
case eCommandEvent:
switch (event->event.cmd.cmd_type) {
case CMD_RUN:
/* TODO: FIXME RUN command while running */
if (self->driver_status == HWIdle)
self->driver_status = HWBusy;
self->run_flag = 1;
if (self->waitResponse == false) {
change_state(self, DMCState_MotorHalt);
}
return;
case CMD_HALT:
/* handle halt command, send message */
self->run_flag = -1;
if (self->waitResponse == false) {
change_state(self, DMCState_MotorHalt);
}
return;
}
break;
case eTimeoutEvent:
strncpy(self->lastCmd, event->event.msg.cmd->out_buf, CMDLEN);
self->errorCode = MOTCMDTMO;
self->driver_status = HWFault;
change_state(self, DMCState_MotorHalt);
return;
}
unhandled_event(self, event);
self->errorCode = STATEERROR;
change_state(self, DMCState_Error);
return;
}
/*
* This state moves the motor one step from its current position to the current destination
* set by PA (or PR) by the caller in myMoveCallerReturn.
* If there is a fault it transfers out, otherwise it returns to the previous
* state when the move is successfully completed.
*/
static void DMCState_StepMove(pDMC2280Driv self, pEvtEvent event) {
switch (event->event_type) {
/*
* The PA has already been confirmed by the caller, now do the move
*/
case eStateEvent:
/* save pre-motion values for logging */
set_lastMotion(self, self->currSteps, self->currCounts);
self->origTime = DoubleTime();
self->origPosition = self->currPosition;
self->origCounts = self->currCounts;
self->origSteps = self->currSteps;
self->minRatio = 0.0;
self->maxRatio = 0.0;
/* begin moving */
cmdBegin(self);
self->stepCount = 1;
self->subState = 1;
return;
case eTimerEvent:
/*
* Find out how the motor is travelling,
* Note that the substate has already been set
*/
cmdStatus(self);
return;
case eMessageEvent:
if (self->run_flag != 0) {
change_state(self, DMCState_MotorHalt);
return;
}
do {
pAsyncTxn pCmd = event->event.msg.cmd;
if (self->subState == 1) { /* BG */
/* Check if BG worked (reply != '?') */
if (pCmd->inp_buf[0] == '?') {
/* TODO: what happens when BGx fails? */
self->errorCode = BADCMD;
self->faultPending = true; /* defer fault */
change_state(self, DMCState_MotorHalt);
return;
}
self->subState = 2;
DMC_SetTimer(self, self->motorPollFast);
return;
} else if (self->subState == 2) { /* Status */
int iRet;
/* parse the status response and set error codes */
iRet = rspStatus(self, pCmd->inp_buf);
/* if the parse failed break out of here */
if (iRet == 0)
break;
/* if the status response can be handled here, return */
if (motorHandleStatus(self))
return;
/*
* We get here when the motor stops normally
*/
if (self->doSettle) {
self->doSettle = false;
DMC_SetTimer(self, self->settle);
return;
}
if (true /*self->debug*/) {
double units = self->currPosition - self->origPosition;
long int steps = self->currSteps - self->origSteps;
long int counts = self->currCounts - self->origCounts;
double time = DoubleTime() - self->origTime;
char line[CMDLEN];
snprintf(line, CMDLEN, "Motor=%s stopped: units=%.6f,"
" steps=%ld, counts=%ld, stepsPerX=%.6f,"
" ratio=(%.6f-%.6f), time=%.3f",
self->name,
units,
steps,
counts,
(double) steps / units,
self->minRatio,
self->maxRatio,
time);
SICSLogWrite(line, eStatus);
}
change_state(self, self->myMoveCallerReturn);
return;
}
} while (0);
break;
case eCommandEvent:
switch (event->event.cmd.cmd_type) {
case CMD_RUN:
/* TODO: FIXME RUN command while running */
if (self->driver_status == HWIdle)
self->driver_status = HWBusy;
self->run_flag = 1;
if (self->waitResponse == false) {
change_state(self, DMCState_MotorHalt);
}
return;
case CMD_HALT:
/* handle halt command, send message */
self->run_flag = -1;
if (self->waitResponse == false) {
change_state(self, DMCState_MotorHalt);
}
return;
}
break;
case eTimeoutEvent:
strncpy(self->lastCmd, event->event.msg.cmd->out_buf, CMDLEN);
self->errorCode = MOTCMDTMO;
self->driver_status = HWFault;
change_state(self, DMCState_MotorHalt);
return;
}
unhandled_event(self, event);
self->errorCode = STATEERROR;
change_state(self, DMCState_Error);
return;
}
static void DMCState_Moving(pDMC2280Driv self, pEvtEvent event) {
/*
* Substates:
@@ -4469,6 +4919,17 @@ int DMC2280Action(SConnection *pCon, SicsInterp *pSics, void *pData,
SCWrite(pCon, line, eValue);
return 1;
}
else if(strcasecmp("testing", argv[1]) == 0) {
if (argc > 2 && strcasecmp("on", argv[2]) == 0) {
self->testing = true;
SCWrite(pCon, "TESTING ON", eValue);
}
else {
self->testing = false;
SCWrite(pCon, "TESTING OFF", eValue);
}
return 1;
}
else if(strcasecmp("trace", argv[1]) == 0) {
if (argc > 2 && strcasecmp("on", argv[2]) == 0) {
self->trace = SCCopyConnection(pCon);