renamed to be consistent with digital input driver

r1203 | dcl | 2006-10-30 12:22:45 +1100 (Mon, 30 Oct 2006) | 2 lines
This commit is contained in:
Douglas Clowes
2006-10-30 12:22:45 +11:00
parent f9e7f699d0
commit 19fa04ab39
4 changed files with 0 additions and 1738 deletions

View File

@@ -1,683 +0,0 @@
/*
* Abstraction of the counter device.
*
*/
#include "cntr.h"
#include "params.h"
#include "sock.h"
#include "hctr.h"
#include <unistd.h>
#include <stdlib.h>
#include <stdio.h>
#define HCTR_TEST(functionCall) \
if( hctr_failed(error=(functionCall)) ) \
goto Error; \
else
/*
* get a pointer to the current sample
*/
static SAMPLE* cur_sample(COUNTER* cp)
{
return &cp->sample_array[cp->sample_index];
}
/*
* get a pointer to the num'th previous sample
*/
static SAMPLE* prv_sample(COUNTER* cp, int num)
{
int idx = (cp->sample_index + SAMPLE_ARRAY_SZ - num) % SAMPLE_ARRAY_SZ;
return &cp->sample_array[idx];
}
void make_report(COUNTER* cp)
{
dbg_printf(0, "make_report\n");
int i;
SAMPLE* sp = cur_sample(cp);
cp->report = *sp;
cp->report.average_rate = cp->report.counter_rate;
cp->report.minimum_rate = cp->report.counter_rate;
cp->report.maximum_rate = cp->report.counter_rate;
for (i = 1; i <= cp->params.report_period; ++i)
{
SAMPLE* psp;
psp = prv_sample(cp, i);
if (psp->valid)
{
cp->report.time_delta = time_diff(&sp->timestamp, &psp->timestamp);
cp->report.count_delta = sp->count64 - psp->count64;
if (cp->report.time_delta > 0.0)
cp->report.average_rate = cp->report.count_delta
/ cp->report.time_delta;
if (i < cp->params.report_period)
{
cp->report.num_polls += psp->num_polls;
if (psp->counter_rate < cp->report.minimum_rate)
cp->report.minimum_rate = psp->counter_rate;
if (psp->counter_rate > cp->report.maximum_rate)
cp->report.maximum_rate = psp->counter_rate;
}
}
}
sp = &cp->report;
}
#if 0
/*
* given two samples, compute the count-rate
*/
static double compute_rate(COUNTER* cp, SAMPLE* cur, SAMPLE* prv)
{
double result = 0.0;
uInt32 delta_counter;
if (cp->params.direction == COUNT_DOWN)
delta_counter = prv->counter_value - cur->counter_value;
else
delta_counter = cur->counter_value - prv->counter_value;
double delta_timer = time_diff(&cur->timestamp, &prv->timestamp);
result = 1.0 * delta_counter / delta_timer;
return result;
}
/*
* given two samples, compute the average rate
*/
static double compute_average(COUNTER* cp, SAMPLE* cur, SAMPLE* prv)
{
double result = 0.0;
if (cur == prv)
result = cur->counter_rate;
else
result = compute_rate(cp, cur, prv);
return result;
}
#endif
void cntr_send(COUNTER* cp, int n)
{
SAMPLE* sp = cur_sample(cp);
BUFFER buffer;
buffer.length = 0;
snprintf(buffer.body, sizeof(buffer.body),
"Time: %s, Count: %10llu, Delta: %6d, Time: %8.6f, Rate: %8.2f, Ave: %8.2f\r\n",
make_timestamp(&sp->timestamp),
sp->counter_value,
sp->count_delta,
sp->time_delta,
sp->counter_rate,
sp->average_rate);
buffer.length = strlen(buffer.body);
sock_send(n, &buffer);
}
void cntr_read(COUNTER* cp, int n)
{
SAMPLE* sp = cur_sample(cp);
BUFFER buffer;
buffer.length = 0;
snprintf(buffer.body, sizeof(buffer.body),
"READ %c%c%c%c %s %.6f %10llu %8.2f\r\n",
cp->state == counter_idle ? 'I' :
cp->state == counter_stopped ? 'S' :
cp->state == counter_running ? 'R' :
cp->state == counter_paused ? 'P' : '?',
cp->terminal_due ? 'T' : ' ',
cp->range_error == 0 ? ' ' : 'R',
cp->range_gated ? 'G' : ' ',
make_timestamp(&sp->timestamp),
cp->accumulated.tv_sec + .000001 * cp->accumulated.tv_usec,
sp->counter_value,
sp->counter_rate);
buffer.length = strlen(buffer.body);
sock_send(n, &buffer);
}
void cntr_print(COUNTER* cp, FILE* fd)
{
SAMPLE* sp = cur_sample(cp);
fprintf(fd, "Time: %s, Count: %10llu, Delta: %6d, Time: %8.6f, Rate: %8.2f, Ave: %8.2f\r\n",
make_timestamp(&sp->timestamp),
sp->counter_value,
sp->count_delta,
sp->time_delta,
sp->counter_rate,
sp->average_rate);
fflush(fd);
}
/*
* Finalise the current sample and move on to the next
*/
void cntr_sample(COUNTER* cp)
{
SAMPLE* psp = cur_sample(cp);
dbg_printf(0, "cntr_sample: %4d\r\n"
" polls: %4d\r\n"
" time: %4s\r\n"
" counter: %10llu\r\n"
" count64: %10llu\r\n"
" c_delta: %d\r\n"
" t_delta: %6.3f\r\n"
" rate: %10g\n",
cp->sample_index,
psp->num_polls,
make_timestamp(&psp->timestamp),
psp->counter_value,
psp->count64,
psp->count_delta,
psp->time_delta,
psp->counter_rate);
cp->sample_timer = cp->current_time;
++cp->sample_counter;
if (++cp->sample_index >= SAMPLE_ARRAY_SZ)
cp->sample_index = 0;
SAMPLE* sp = cur_sample(cp);
*sp = *psp;
sp->valid = true;
sp->num_polls = 0;
sp->sample_counter = cp->sample_counter;
sp->poll_counter = cp->poll_counter;
}
void cntr_report(COUNTER* cp)
{
dbg_printf(0, "cntr_report\n");
/*
* Set the time for this report
*/
cp->report_timer = cp->current_time;
BUFFER buffer;
SAMPLE* sp;
sp = &cp->report;
char* str = make_timestamp(&sp->timestamp);
snprintf(buffer.body, sizeof(buffer.body),
"%s (%6.3f), %10llu (%8d), %8.2f (%8.2f,%8.2f,%8.2f)\r\n",
str,
sp->time_delta,
sp->counter_value,
sp->count_delta,
sp->counter_rate,
sp->minimum_rate,
sp->average_rate,
sp->maximum_rate);
buffer.length = strlen(buffer.body);
//fputs(buffer.body, stdout);
sock_report(&buffer, 1);
snprintf(buffer.body, sizeof(buffer.body),
"REPORT %s %10llu %8.2f (%8.2f,%8.2f,%8.2f)\r\n",
str,
sp->counter_value,
sp->counter_rate,
sp->minimum_rate,
sp->average_rate,
sp->maximum_rate);
buffer.length = strlen(buffer.body);
//fputs(buffer.body, stdout);
sock_report(&buffer, 2);
}
/**
* Initialise the counter
*
* Initialise all of the control data associated with the logical counter.
*
* Create a 64-bit physical counter and start it.
*/
int cntr_init(COUNTER** cpp, char* name)
{
int error = 0;
char errBuff[2048]={'\0'};
SAMPLE* sp = NULL;
COUNTER* cp = (COUNTER*) malloc(sizeof(COUNTER));
*cpp = cp;
memset(cp, 0, sizeof(COUNTER));
strncpy(cp->name, name, sizeof(cp->name));
cp->params.poll_period = 1000; /* milliseconds between polls */
cp->params.sample_period = 10; /* polls between sample calcs */
cp->params.report_period = 3; /* samples between reports */
cp->state = counter_stopped;
struct timeval now;
gettimeofday(&now, NULL);
cp->current_time = now;
cp->previous_time = now;
cp->sample_timer = now;
cp->report_timer = now;
HCTR_TEST(hctr_ctor(name, &cp->private_data));
sp = cur_sample(cp);
sp->timestamp = now;
sp->counter_value = cp->current_count;
sp->valid = true;
cntr_sample(cp);
return 0;
Error:
hctr_errmsg(errBuff, sizeof(errBuff));
printf("DAQmx Error: %s\n", errBuff);
return error;
return 0;
}
/**
* Start the logical counter
*
* Read the value of the physical counter and set the state to running
*/
int cntr_start(COUNTER *cp)
{
int error = 0;
char errBuff[2048]={'\0'};
struct timeval now;
int value;
SAMPLE* sp = NULL;
SAMPLE* psp = NULL;
PARAMETERS* pp = &cp->params;
/* start the counter object */
gettimeofday(&now, NULL);
cp->current_time = now;
cp->start_time = cp->current_time;
cp->current_count = cp->params.initial_count;
cp->accumulated.tv_sec = 0;
cp->accumulated.tv_usec = 0;
cp->poll_counter = 0;
cp->sample_counter = 0;
cp->terminal_due = false;
cp->state = counter_running;
cp->previous_time = cp->current_time;
dbg_printf(0, "Setting input line to %d\n", pp->source);
HCTR_TEST(hctr_source(cp->private_data, pp->source));
cp->source = pp->source;
HCTR_TEST(hctr_read(cp->private_data, &cp->count64));
sp = cur_sample(cp);
sp->timestamp = cp->current_time;
sp->counter_value = cp->current_count;
psp = prv_sample(cp, 1);
psp->timestamp = cp->current_time;
psp->counter_value = cp->current_count;
make_report(cp);
if (pp->output_line == 1)
value = 1;
else if (pp->output_line == 2)
value = 0;
else
value = -1;
dbg_printf(0, "Setting output line to %d\n", value);
HCTR_TEST(hctr_outp(cp->private_data, value));
return error;
Error:
cntr_errmsg(errBuff, sizeof(errBuff));
printf("DAQmx Error: %s\n", errBuff);
return error;
}
int cntr_stop(COUNTER *cp)
{
int error = 0;
char errBuff[2048]={'\0'};
PARAMETERS* pp = &cp->params;
int value;
cp->stop_time = cp->current_time;
cp->state = counter_stopped;
if (pp->output_line == 1)
value = 0;
else if (pp->output_line == 2)
value = 1;
else
value = -1;
dbg_printf(0, "Setting output line to %d\n", value);
HCTR_TEST(hctr_outp(cp->private_data, value));
dbg_printf(0, "Setting input line to %d\n", pp->source);
HCTR_TEST(hctr_source(cp->private_data, pp->source));
cp->source = pp->source;
return error;
Error:
cntr_errmsg(errBuff, sizeof(errBuff));
printf("DAQmx Error: %s\n", errBuff);
return error;
}
int cntr_pause(COUNTER *cp)
{
if (cp->state == counter_running)
cp->state = counter_paused;
return 0;
}
int cntr_resume(COUNTER *cp)
{
if (cp->state == counter_paused)
cp->state = counter_running;
return 0;
}
int cntr_command(void* counter, const char* command)
{
COUNTER* cp = static_cast<COUNTER*>(counter);
if (strncasecmp(command, "pause", 5) == 0)
return cntr_pause(cp);
else if (strncasecmp(command, "continue", 8) == 0)
return cntr_resume(cp);
else if (strncasecmp(command, "resume", 6) == 0)
return cntr_resume(cp);
else if (strncasecmp(command, "start", 6) == 0)
return cntr_start(cp);
else if (strncasecmp(command, "stop", 4) == 0)
return cntr_stop(cp);
return 0;
}
static void cntr_event(COUNTER *cp, char* event)
{
BUFFER buffer;
sprintf(buffer.body, "EVENT %s %s\r\n",
event,
make_timestamp(&cp->current_time));
buffer.length = strlen(buffer.body);
dbg_printf(0, "%s", buffer.body);
//sock_report(&buffer, 0);
sock_report(&buffer, 1);
sock_report(&buffer, 2);
}
static void cntr_range_check(COUNTER* cp, int mode)
{
PARAMETERS* pp = &cp->params;
if (pp->range_check_enable)
{
if (pp->range_mode == mode)
{
double test;
SAMPLE* sp = cur_sample(cp);
if (mode == 1)
test = sp->counter_rate;
else if (mode == 2)
test = sp->counter_rate;
else
test = cp->report.average_rate;
if (pp->range_low > 0 && pp->range_low > test)
{
if (cp->range_error != 1)
cntr_event(cp, "RANGE OUT LOW");
cp->range_error = 1;
if (pp->range_gate_enable)
cp->range_gated = true;
else
cp->range_gated = false;
}
else if (pp->range_high > 0 && pp->range_high < test)
{
if (cp->range_error != 2)
cntr_event(cp, "RANGE OUT HIGH");
cp->range_error = 2;
if (pp->range_gate_enable)
cp->range_gated = true;
else
cp->range_gated = false;
}
else
{
if (cp->range_error != 0)
cntr_event(cp, "RANGE IN");
cp->range_error = 0;
cp->range_gated = false;
}
}
}
else
{
/* If range check has been disabled while in error - reset */
if (cp->range_error != 0)
cntr_event(cp, "RANGE IN");
cp->range_error = 0;
cp->range_gated = false;
}
}
static void cntr_test_term(COUNTER* cp)
{
PARAMETERS* pp = &cp->params;
SAMPLE* sp = cur_sample(cp);
SAMPLE* psp = prv_sample(cp, 1);
if (!cp->terminal_due)
{
if (pp->terminal_check_type == 1)
{
if (pp->direction == COUNT_DOWN)
{
/*
* decremented to or through terminal
*/
// TODO FIXME improve wraparound handling
if ((sp->counter_value <= pp->terminal_count &&
psp->counter_value > pp->terminal_count) ||
(sp->counter_value > psp->counter_value &&
psp->counter_value > pp->terminal_count))
{
cp->terminal_due = true;
}
}
else
{
/*
* incremented to or through terminal
*/
// TODO FIXME improve wraparound handling
if (
#if 1
sp->counter_value >= pp->terminal_count
#else
(sp->counter_value >= pp->terminal_count &&
psp->counter_value < pp->terminal_count) ||
(sp->counter_value < psp->counter_value &&
psp->counter_value > pp->terminal_count)
#endif
)
{
cp->terminal_due = true;
}
}
}
else if (pp->terminal_check_type == 2)
{
if ((uint64) cp->accumulated.tv_sec >= pp->terminal_count)
cp->terminal_due = true;
}
if (cp->terminal_due)
{
cntr_event(cp, "TERMINAL");
make_report(cp);
cntr_stop(cp);
}
}
}
/*
* poll the physical counter
*/
int cntr_poll(COUNTER* cp)
{
PARAMETERS* pp = &cp->params;
char errBuff[2048]={'\0'};
unsigned long long current_count_local;
int count_delta_local;
int error=0;
SAMPLE* sp = NULL;
SAMPLE* psp = NULL;
/* read the value from the hardware counter to a temp */
++cp->poll_counter;
HCTR_TEST(hctr_read(cp->private_data, &current_count_local));
dbg_printf(0, "cntr_poll = %llu @ %s\n",
current_count_local,
make_timestamp(&cp->current_time));
sp = cur_sample(cp);
psp = prv_sample(cp, 1);
/* calculate the number since last time and save new value */
count_delta_local = current_count_local - cp->count64;
cp->count64 = current_count_local;
sp->num_polls += 1;
/*
* If the counter is running and not gated increment the count and runtime
*/
if (cp->state == counter_running &&
!(cp->params.range_gate_enable && cp->range_gated))
{
if (cp->params.direction == COUNT_DOWN)
{
cp->current_count -= count_delta_local;
}
else
{
cp->current_count += count_delta_local;
}
/*
* Add the time difference to the accumulated time
*/
cp->accumulated.tv_sec += cp->current_time.tv_sec - sp->timestamp.tv_sec;
/* prevent negative tv_usec by borrowing one second in microseconds */
cp->accumulated.tv_usec += 1000000;
cp->accumulated.tv_usec += cp->current_time.tv_usec;
cp->accumulated.tv_usec -= sp->timestamp.tv_usec;
if (cp->accumulated.tv_usec >= 1000000)
{
/* carry the seconds */
cp->accumulated.tv_sec += cp->accumulated.tv_usec / 1000000;
cp->accumulated.tv_usec %= 1000000;
}
/* pay back the borrowed second */
cp->accumulated.tv_sec -= 1;
}
/* calculate and check the count-rate between polls */
sp->count_delta = cp->count64 - sp->count64;
sp->time_delta = time_diff(&cp->current_time, &sp->timestamp);
sp->counter_rate = (double) sp->count_delta / sp->time_delta;
cntr_range_check(cp, 2); /* poll range check */
cp->previous_time = cp->current_time;
/* save counter values in the sample */
sp->counter_value = cp->current_count;
sp->count64 = cp->count64;
sp->timestamp = cp->current_time;
/* calculate the count-rate for this sample so far */
sp->count_delta = sp->count64 - psp->count64;
sp->time_delta = time_diff(&sp->timestamp, &psp->timestamp);
sp->counter_rate = (double) sp->count_delta / sp->time_delta;
/* test for the occurrence of a terminal event */
cntr_test_term(cp);
/* check if it is time to roll the sample */
if (cntr_time_to_next_sample(cp) <= 0)
{
/* check if it is time to roll the report */
if (cntr_time_to_next_report(cp) <= 0)
{
make_report(cp);
cntr_range_check(cp, 0); /* report range check */
cntr_report(cp);
}
cntr_range_check(cp, 1); /* sample range check */
cntr_sample(cp);
}
/* set the source line */
if (cp->source != pp->source)
{
cp->source = pp->source;
HCTR_TEST(hctr_source(cp->private_data, cp->source));
}
/* drive the output line */
if (cp->output_line != pp->output_line)
{
int value;
cp->output_line = pp->output_line;
if (pp->output_line == 1)
{
if (cp->state == counter_running || cp->state == counter_paused)
value = 1;
else
value = 0;
}
else if (pp->output_line == 2)
{
if (cp->state == counter_running || cp->state == counter_paused)
value = 0;
else
value = 1;
}
else
value = -1;
HCTR_TEST(hctr_outp(cp->private_data, value));
}
return error;
Error:
cntr_errmsg(errBuff, sizeof(errBuff));
printf("DAQmx Error: %s\n", errBuff);
return error;
}
void cntr_term(COUNTER* cp)
{
if (cp->private_data)
{
hctr_dtor(&cp->private_data);
cp->private_data = NULL;
}
cp->state = counter_idle;
}
bool cntr_fatal(int error)
{
return hctr_failed(error);
}
void cntr_errmsg(char* buff, int len)
{
hctr_errmsg(buff, len);
}
double cntr_time_to_next_report(COUNTER* cp)
{
uint64 last_report;
uint64 timeofday;
int timeout;
struct timeval now;
now = cp->current_time;
last_report = 1000 * (uint64) cp->report_timer.tv_sec;
last_report += (uint64) cp->report_timer.tv_usec / 1000;
timeofday = 1000 * (uint64) now.tv_sec;
timeofday += (uint64) now.tv_usec / 1000;
timeout = cp->params.poll_period * cp->params.sample_period *
cp->params.report_period;
if ((last_report / timeout) != (timeofday / timeout))
return 0.0;
timeout = timeout - timeofday % timeout;
return 0.001 * timeout;
}
double cntr_time_to_next_sample(COUNTER* cp)
{
uint64 last_sample;
uint64 timeofday;
int timeout;
struct timeval now;
now = cp->current_time;
last_sample = 1000 * (uint64) cp->sample_timer.tv_sec;
last_sample += (uint64) cp->sample_timer.tv_usec / 1000;
timeofday = 1000 * (uint64) now.tv_sec;
timeofday += (uint64) now.tv_usec / 1000;
timeout = cp->params.poll_period * cp->params.sample_period;
if ((last_sample / timeout) != (timeofday / timeout))
return 0.0;
timeout = timeout - timeofday % timeout;
return 0.001 * timeout;
}

View File

@@ -1,120 +0,0 @@
#ifndef _COUNTER_H_
#define _COUNTER_H_
#define SAMPLE_ARRAY_SZ 1000
#include "utility.h"
#include "params.h"
typedef enum counter_state_t
{
/** The counter has not yet been created or has been destroyed */
counter_idle = 0,
/** The counter has not yet been started or has been stopped */
counter_stopped,
/** The counter is counting */
counter_running,
/** the counter has been paused */
counter_paused
} COUNTER_STATE;
/**
* Logical counter sample
*/
typedef struct sample_t
{
/** sample number */
int sample_counter;
/** poll number */
int poll_counter;
/** time of last read */
struct timeval timestamp;
/** logical counter value */
uint64 counter_value;
/** extended physical counter value */
uint64 count64;
/** counts between current and previous */
int count_delta;
/** number of polls */
int num_polls;
/** this data is valid */
bool valid;
/** time between current and previous */
double time_delta;
/** computed */
double counter_rate;
/** computed */
double average_rate;
/** computed */
double minimum_rate;
/** computed */
double maximum_rate;
} SAMPLE, *pSAMPLE;
typedef struct counter_t
{
char name[64];
COUNTER_STATE state;
/** time of last start */
struct timeval start_time;
/** time of last stop */
struct timeval stop_time;
/** time of this read */
struct timeval current_time;
/** time of last read */
struct timeval previous_time;
/** time of next sample closure */
struct timeval sample_timer;
/** time of next report generation */
struct timeval report_timer;
/** accumulated runtime */
struct timeval accumulated;
/** Current value of logical 64-bit counter */
uint64 current_count;
/** an array of samples to be used for reporting */
SAMPLE sample_array[SAMPLE_ARRAY_SZ];
/** calculated values for reporting */
SAMPLE report;
/** index into the sample array of the current sample */
int sample_index;
/** number of polls */
int poll_counter;
/** number of samples */
int sample_counter;
/** is a terminal count exception due */
bool terminal_due;
/** error: 0:none, 1:low, 2:high */
int range_error;
/** is a range exception gate active */
bool range_gated;
/** Extended physical counter value */
uint64 count64;
/** Control parameters */
PARAMETERS params;
/** active value of parameter source */
int source;
/** active value of parameter output_line */
int output_line;
struct counter_private_t* private_data;
} COUNTER, *pCOUNTER;
void make_report(COUNTER* cp);
void cntr_sample(COUNTER* cp);
void cntr_send(COUNTER* cp, int n);
void cntr_read(COUNTER* cp, int n);
void cntr_print(COUNTER* cp, FILE* fd);
void cntr_report(COUNTER* cp);
int cntr_init(COUNTER** cpp, char* name);
int cntr_start(COUNTER* cp);
int cntr_stop(COUNTER* cp);
int cntr_pause(COUNTER* cp);
int cntr_resume(COUNTER* cp);
int cntr_command(void* cp, const char* cmd);
int cntr_poll(COUNTER* cp);
void cntr_term(COUNTER* cp);
bool cntr_fatal(int error);
void cntr_errmsg(char* buff, int len);
double cntr_time_to_next_sample(COUNTER* cp);
double cntr_time_to_next_report(COUNTER* cp);
#endif

View File

@@ -1,830 +0,0 @@
/* vim: ts=8 sts=2 sw=2 cindent
*/
#include "hctr.h"
#include <stdio.h>
#include <string.h>
#include <stdlib.h>
#include <ctype.h>
#ifdef REGISTER_LEVEL_PROGRAMMING
#define DAQmxFailed(e) ((e) != 0)
#define DAQmxGetExtendedErrorInfo(b, l) snprintf(b, l, "BAD")
#include <osiBus.h>
#include <tTIO.h>
typedef unsigned long uInt32;
/**
* This structure contains the data for the PCI-6602 card
*/
typedef struct card_t
{
iBus* bus;
tAddressSpace Bar1;
tAddressSpace Bar2;
tTIO *tio_1;
tTIO *tio_2;
unsigned char dio_mask;
unsigned char dev_mask;
} CARD;
#else
#include <NIDAQmx.h>
#define DAQmxErrChk(functionCall) \
do { if( DAQmxFailed(error=(functionCall)) ) \
goto Error; } while(0)
#endif
/**
* This structure encapsulates the data that is private to
* the implementation of the NI DAQ counter interface
*/
typedef struct counter_private_t
{
/** extended 64-bit counter value */
unsigned long long count64;
/** NIDAQ device number of card */
int device_number;
/** NI counter number on card */
int counter_number;
/** true if using external sync else timer based sampling */
bool sync;
/** sync line number on the card */
int sync_line_number;
/** output line number on the card */
int output_line_number;
/** Actual physical counter value, as returned by read function */
uInt32 count32;
#ifdef REGISTER_LEVEL_PROGRAMMING
CARD* card;
#else
/** NIDAQ opaque task handle */
TaskHandle taskHandle;
/** NIDAQ opaque task handle for digital output */
TaskHandle taskHandle_dout;
#endif
} COUNTER_PRIVATE;
typedef struct mapping_t {
int cntr_num;
int sync_num;
int outp_num;
} MAPPING;
static MAPPING mapping[8] = {
{ 0, 37, 36 },
{ 1, 33, 32 },
{ 2, 29, 28 },
{ 3, 25, 24 },
{ 4, 21, 20 },
{ 5, 17, 16 },
{ 6, 13, 12 },
{ 7, 9, 8 }
};
#ifdef REGISTER_LEVEL_PROGRAMMING
static void initMite(iBus *bus);
static CARD* card[10];
#else
static int make_dout_task(pHCTR ptr);
#endif
int hctr_ctor(const char* device_name, pHCTR* ptr)
{
pHCTR hctr = NULL;
#ifdef REGISTER_LEVEL_PROGRAMMING
CARD* pci = NULL;
#endif
int error = 0;
bool flag = false;
char text_string[] = "dev1/ctr0";
const char *name;
const char *text;
hctr = (COUNTER_PRIVATE*) malloc(sizeof(COUNTER_PRIVATE));
*ptr = hctr;
memset(*ptr, 0, sizeof(COUNTER_PRIVATE));
name = device_name;
text = text_string;
while (name && *name)
{
if (isspace(*name))
++name;
else if (*name >= '0' && *name <= '7')
{
if (flag)
{
(*ptr)->counter_number = *name - '0';
(*ptr)->sync_line_number = mapping[(*ptr)->counter_number].sync_num;
(*ptr)->output_line_number = mapping[(*ptr)->counter_number].outp_num;
}
else
{
(*ptr)->device_number = *name - '0';
flag = true;
}
}
else if (tolower(*name) != *text)
{
/* TODO error */
printf("Device name error: %s (%d,%d)\n",
device_name,
(*ptr)->counter_number,
(*ptr)->device_number);
break;
}
++name;
++text;
}
#ifdef REGISTER_LEVEL_PROGRAMMING
if (card[hctr->device_number] == NULL)
{
char local_name[40] = "PXI6::1::INSTR";
FILE* fd = fopen("/proc/nirlpk/lsdaq", "r");
if (fd)
{
bool found = false;
int count = 0;
char line[100];
while (fgets(line, 100, fd))
{
if (strstr(line, "0x1310"))
{
++count;
name = strstr(line, "PXI");
if (name && count == hctr->device_number)
{
found = true;
strcpy(local_name, name);
break;
}
}
if (!found)
{
// TODO error
}
}
fclose(fd);
}
card[hctr->device_number] = (CARD*) malloc(sizeof(CARD));
memset(card[hctr->device_number], 0, sizeof(CARD));
pci = card[hctr->device_number];
hctr->card = pci;
pci->bus = acquireBoard((tChar*) local_name /* "PXI6::1::INSTR" */);
if(pci->bus == NULL)
{
printf("Error accessing the PCI device \"%s\". Exiting.\n",
local_name);
error = 1;
goto Error;
}
//Intitialise Mite Chip.
initMite(pci->bus);
pci->Bar1 = pci->bus->createAddressSpace(kPCI_BAR1);
pci->Bar2 = pci->bus->createAddressSpace(kPCI_BAR1);
pci->tio_1 = new tTIO(pci->Bar1);
pci->tio_2 = new tTIO(pci->Bar2);
pci->tio_2->setAddressOffset(0x800);
//
//Set all counter outputs to 'input' so we don't accidentally double drive an IO pin
pci->tio_1->IO_Pin_8_9_Configuration_Register.writeIO_Pin_8_Select(0); //0='input'
pci->tio_1->IO_Pin_12_13_Configuration_Register.writeIO_Pin_12_Select(0); //0='input'
pci->tio_1->IO_Pin_16_17_Configuration_Register.writeIO_Pin_16_Select(0); //0='input'
pci->tio_1->IO_Pin_20_21_Configuration_Register.writeIO_Pin_20_Select(0); //0='input'
pci->tio_1->IO_Pin_24_25_Configuration_Register.writeIO_Pin_24_Select(0); //0='input'
pci->tio_1->IO_Pin_28_29_Configuration_Register.writeIO_Pin_28_Select(0); //0='input'
pci->tio_1->IO_Pin_32_33_Configuration_Register.writeIO_Pin_32_Select(0); //0='input'
pci->tio_1->IO_Pin_36_37_Configuration_Register.writeIO_Pin_36_Select(0); //0='input'
pci->tio_2->IO_Pin_8_9_Configuration_Register.writeIO_Pin_8_Select(0); //0='input'
pci->tio_2->IO_Pin_12_13_Configuration_Register.writeIO_Pin_12_Select(0); //0='input'
pci->tio_2->IO_Pin_16_17_Configuration_Register.writeIO_Pin_16_Select(0); //0='input'
pci->tio_2->IO_Pin_20_21_Configuration_Register.writeIO_Pin_20_Select(0); //0='input'
pci->tio_2->IO_Pin_24_25_Configuration_Register.writeIO_Pin_24_Select(0); //0='input'
pci->tio_2->IO_Pin_28_29_Configuration_Register.writeIO_Pin_28_Select(0); //0='input'
pci->tio_2->IO_Pin_32_33_Configuration_Register.writeIO_Pin_32_Select(0); //0='input'
pci->tio_2->IO_Pin_36_37_Configuration_Register.writeIO_Pin_36_Select(0); //0='input'
//Bind the first TIO to counters 0-3 on the IO connector, and
//bind the second TIO to counters 4-7
pci->tio_1->Clock_Configuration_Register.writeCntr_Swap(0);
pci->tio_2->Clock_Configuration_Register.writeCntr_Swap(1);
}
else
{
pci = card[hctr->device_number];
hctr->card = pci;
}
// Mark the counter on this card as in-use
if (pci->dev_mask & (1 << hctr->counter_number))
{
// TODO error
}
pci->dev_mask |= 1 << hctr->counter_number;
/*
* Set up the counter object
*/
switch (hctr->counter_number)
{
case 0:
//Disarm
pci->tio_1->G0_Command_Register.writeG0_Disarm(1);
//load initial value of zero
pci->tio_1->G0_Load_A_Registers.writeG0_Load_A(0x00000000);
pci->tio_1->G0_Command_Register.writeG0_Load(1);
//set source to external default source pin
pci->tio_1->G0_Input_Select_Register.writeG0_Source_Select(1);
//set gate to no gate
pci->tio_1->G0_Input_Select_Register.writeG0_Gate_Select(30);
pci->tio_1->G0_Mode_Register.writeG0_Gate_Polarity(1);
pci->tio_1->G0_Mode_Register.writeG0_Trigger_Mode_For_Edge_Gate(3);
//set counting direction to up
pci->tio_1->G0_Command_Register.writeG0_Up_Down(1);
//arm counter
pci->tio_1->G0_Command_Register.writeG0_Arm(1);
break;
case 1:
//Disarm
pci->tio_1->G1_Command_Register.writeG1_Disarm(1);
//load initial value of zero
pci->tio_1->G1_Load_A_Registers.writeG1_Load_A(0x00000000);
pci->tio_1->G1_Command_Register.writeG1_Load(1);
//set source to external default source pin
pci->tio_1->G1_Input_Select_Register.writeG1_Source_Select(1);
//set gate to no gate
pci->tio_1->G1_Input_Select_Register.writeG1_Gate_Select(30);
pci->tio_1->G1_Mode_Register.writeG1_Gate_Polarity(1);
pci->tio_1->G1_Mode_Register.writeG1_Trigger_Mode_For_Edge_Gate(3);
//set counting direction to up
pci->tio_1->G1_Command_Register.writeG1_Up_Down(1);
//arm counter
pci->tio_1->G1_Command_Register.writeG1_Arm(1);
break;
case 2:
//Disarm
pci->tio_1->G2_Command_Register.writeG2_Disarm(1);
//load initial value of zero
pci->tio_1->G2_Load_A_Registers.writeG2_Load_A(0x00000000);
pci->tio_1->G2_Command_Register.writeG2_Load(1);
//set source to external default source pin
pci->tio_1->G2_Input_Select_Register.writeG2_Source_Select(1);
//set gate to no gate
pci->tio_1->G2_Input_Select_Register.writeG2_Gate_Select(30);
pci->tio_1->G2_Mode_Register.writeG2_Gate_Polarity(1);
pci->tio_1->G2_Mode_Register.writeG2_Trigger_Mode_For_Edge_Gate(3);
//set counting direction to up
pci->tio_1->G2_Command_Register.writeG2_Up_Down(1);
//arm counter
pci->tio_1->G2_Command_Register.writeG2_Arm(1);
break;
case 3:
//Disarm
pci->tio_1->G3_Command_Register.writeG3_Disarm(1);
//load initial value of zero
pci->tio_1->G3_Load_A_Registers.writeG3_Load_A(0x00000000);
pci->tio_1->G3_Command_Register.writeG3_Load(1);
//set source to external default source pin
pci->tio_1->G3_Input_Select_Register.writeG3_Source_Select(1);
//set gate to no gate
pci->tio_1->G3_Input_Select_Register.writeG3_Gate_Select(30);
pci->tio_1->G3_Mode_Register.writeG3_Gate_Polarity(1);
pci->tio_1->G3_Mode_Register.writeG3_Trigger_Mode_For_Edge_Gate(3);
//set counting direction to up
pci->tio_1->G3_Command_Register.writeG3_Up_Down(1);
//arm counter
pci->tio_1->G3_Command_Register.writeG3_Arm(1);
break;
case 4:
//Disarm
pci->tio_2->G0_Command_Register.writeG0_Disarm(1);
//load initial value of zero
pci->tio_2->G0_Load_A_Registers.writeG0_Load_A(0x00000000);
pci->tio_2->G0_Command_Register.writeG0_Load(1);
//set source to external default source pin
pci->tio_2->G0_Input_Select_Register.writeG0_Source_Select(1);
//set gate to no gate
pci->tio_2->G0_Input_Select_Register.writeG0_Gate_Select(30);
pci->tio_2->G0_Mode_Register.writeG0_Gate_Polarity(1);
pci->tio_2->G0_Mode_Register.writeG0_Trigger_Mode_For_Edge_Gate(3);
//set counting direction to up
pci->tio_2->G0_Command_Register.writeG0_Up_Down(1);
//arm counter
pci->tio_2->G0_Command_Register.writeG0_Arm(1);
break;
case 5:
//Disarm
pci->tio_2->G1_Command_Register.writeG1_Disarm(1);
//load initial value of zero
pci->tio_2->G1_Load_A_Registers.writeG1_Load_A(0x00000000);
pci->tio_2->G1_Command_Register.writeG1_Load(1);
//set source to external default source pin
pci->tio_2->G1_Input_Select_Register.writeG1_Source_Select(1);
//set gate to no gate
pci->tio_2->G1_Input_Select_Register.writeG1_Gate_Select(30);
pci->tio_2->G1_Mode_Register.writeG1_Gate_Polarity(1);
pci->tio_2->G1_Mode_Register.writeG1_Trigger_Mode_For_Edge_Gate(3);
//set counting direction to up
pci->tio_2->G1_Command_Register.writeG1_Up_Down(1);
//arm counter
pci->tio_2->G1_Command_Register.writeG1_Arm(1);
break;
case 6:
//Disarm
pci->tio_2->G2_Command_Register.writeG2_Disarm(1);
//load initial value of zero
pci->tio_2->G2_Load_A_Registers.writeG2_Load_A(0x00000000);
pci->tio_2->G2_Command_Register.writeG2_Load(1);
//set source to external default source pin
pci->tio_2->G2_Input_Select_Register.writeG2_Source_Select(1);
//set gate to no gate
pci->tio_2->G2_Input_Select_Register.writeG2_Gate_Select(30);
pci->tio_2->G2_Mode_Register.writeG2_Gate_Polarity(1);
pci->tio_2->G2_Mode_Register.writeG2_Trigger_Mode_For_Edge_Gate(3);
//set counting direction to up
pci->tio_2->G2_Command_Register.writeG2_Up_Down(1);
//arm counter
pci->tio_2->G2_Command_Register.writeG2_Arm(1);
break;
case 7:
//Disarm
pci->tio_2->G3_Command_Register.writeG3_Disarm(1);
//load initial value of zero
pci->tio_2->G3_Load_A_Registers.writeG3_Load_A(0x00000000);
pci->tio_2->G3_Command_Register.writeG3_Load(1);
//set source to external default source pin
pci->tio_2->G3_Input_Select_Register.writeG3_Source_Select(1);
//set gate to no gate
pci->tio_2->G3_Input_Select_Register.writeG3_Gate_Select(30);
pci->tio_2->G3_Mode_Register.writeG3_Gate_Polarity(1);
pci->tio_2->G3_Mode_Register.writeG3_Trigger_Mode_For_Edge_Gate(3);
//set counting direction to up
pci->tio_2->G3_Command_Register.writeG3_Up_Down(1);
//arm counter
pci->tio_2->G3_Command_Register.writeG3_Arm(1);
break;
}
#else
/*********************************************/
// Create a DAQmx task to hold the counter
/*********************************************/
DAQmxErrChk (DAQmxCreateTask("",&(*ptr)->taskHandle));
/*********************************************/
// Create a DAQmx counter within the task
/*********************************************/
DAQmxErrChk (
DAQmxCreateCICountEdgesChan((*ptr)->taskHandle,
device_name,
"",
DAQmx_Val_Rising,
(*ptr)->count32,
DAQmx_Val_CountUp));
/*********************************************/
// Start the DAQmx task
/*********************************************/
DAQmxErrChk (DAQmxStartTask((*ptr)->taskHandle));
#endif
return 0;
Error:
free(*ptr);
*ptr = NULL;
return error;
}
int hctr_read(pHCTR hctr, unsigned long long* value)
{
int error = 0;
*value = 0;
uInt32 counterValue1;
#ifdef REGISTER_LEVEL_PROGRAMMING
uInt32 counterValue2;
CARD* pci = hctr->card;
//read counter value
//Use this method to read the value of an armed counter
//during non-buffered counting. Since the value of the counter may
//change during the read, we make sure that the value is stable.
switch (hctr->counter_number)
{
case 0:
counterValue1 = pci->tio_1->G0_Save_Registers.readRegister();
counterValue2 = pci->tio_1->G0_Save_Registers.readRegister();
if (counterValue1 != counterValue2)
counterValue1 = pci->tio_1->G0_Save_Registers.readRegister();
break;
case 1:
counterValue1 = pci->tio_1->G1_Save_Registers.readRegister();
counterValue2 = pci->tio_1->G1_Save_Registers.readRegister();
if (counterValue1 != counterValue2)
counterValue1 = pci->tio_1->G1_Save_Registers.readRegister();
break;
case 2:
counterValue1 = pci->tio_1->G2_Save_Registers.readRegister();
counterValue2 = pci->tio_1->G2_Save_Registers.readRegister();
if (counterValue1 != counterValue2)
counterValue1 = pci->tio_1->G2_Save_Registers.readRegister();
break;
case 3:
counterValue1 = pci->tio_1->G3_Save_Registers.readRegister();
counterValue2 = pci->tio_1->G3_Save_Registers.readRegister();
if (counterValue1 != counterValue2)
counterValue1 = pci->tio_1->G3_Save_Registers.readRegister();
break;
case 4:
counterValue1 = pci->tio_2->G0_Save_Registers.readRegister();
counterValue2 = pci->tio_2->G0_Save_Registers.readRegister();
if (counterValue1 != counterValue2)
counterValue1 = pci->tio_2->G0_Save_Registers.readRegister();
break;
case 5:
counterValue1 = pci->tio_2->G1_Save_Registers.readRegister();
counterValue2 = pci->tio_2->G1_Save_Registers.readRegister();
if (counterValue1 != counterValue2)
counterValue1 = pci->tio_2->G1_Save_Registers.readRegister();
break;
case 6:
counterValue1 = pci->tio_2->G2_Save_Registers.readRegister();
counterValue2 = pci->tio_2->G2_Save_Registers.readRegister();
if (counterValue1 != counterValue2)
counterValue1 = pci->tio_2->G2_Save_Registers.readRegister();
break;
case 7:
counterValue1 = pci->tio_2->G3_Save_Registers.readRegister();
counterValue2 = pci->tio_2->G3_Save_Registers.readRegister();
if (counterValue1 != counterValue2)
counterValue1 = pci->tio_2->G3_Save_Registers.readRegister();
break;
}
#else
DAQmxErrChk (DAQmxReadCounterScalarU32(hctr->taskHandle,
1.0,
&counterValue1,
NULL));
Error:
if (error)
counterValue1 = hctr->count32;
#endif
hctr->count64 += counterValue1 - hctr->count32;
hctr->count32 = counterValue1;
*value = hctr->count64;
return error;
}
/*
* Select the source
*/
int hctr_source(pHCTR hctr, int value)
{
int error = 0;
#ifdef REGISTER_LEVEL_PROGRAMMING
CARD* pci = hctr->card;
int src = 1;
if (value == 3)
//set source to internal time base 3, the 80Mhz internal clock
src = 30;
else if (value == 2)
//set source to internal time base 2, the l00Khz internal clock
src = 18;
else if (value == 1)
//set source to internal time base 1, the 20Mhz internal clock
src = 0;
else
//set source to external default source pin
src = 1;
switch (hctr->counter_number)
{
case 0:
pci->tio_1->G0_Input_Select_Register.writeG0_Source_Select(src);
break;
case 1:
pci->tio_1->G1_Input_Select_Register.writeG1_Source_Select(src);
break;
case 2:
pci->tio_1->G2_Input_Select_Register.writeG2_Source_Select(src);
break;
case 3:
pci->tio_1->G3_Input_Select_Register.writeG3_Source_Select(src);
break;
case 4:
pci->tio_2->G0_Input_Select_Register.writeG0_Source_Select(src);
break;
case 5:
pci->tio_2->G1_Input_Select_Register.writeG1_Source_Select(src);
break;
case 6:
pci->tio_2->G2_Input_Select_Register.writeG2_Source_Select(src);
break;
case 7:
pci->tio_2->G3_Input_Select_Register.writeG3_Source_Select(src);
break;
}
#else
// TODO
// DAQmxGetDevCIPhysicalChans
// DAQmxSetCICountEdgesTerm
//Error:
#endif
return error;
}
/*
* Set the output line corresponding to the counter
*/
int hctr_outp(pHCTR hctr, int value)
{
int error = 0;
#ifdef REGISTER_LEVEL_PROGRAMMING
CARD* pci = hctr->card;
u16 data;
if (value < 0)
{
// set the disabled line to input
value = 0;
pci->dio_mask &= ~(1 << hctr->counter_number);
pci->tio_1->DIO_Control_Register.writeDIO_Pins_Dir(pci->dio_mask);
}
else
{
pci->dio_mask |= 1 << hctr->counter_number;
pci->tio_1->DIO_Control_Register.writeDIO_Pins_Dir(pci->dio_mask);
data = pci->tio_1->DIO_Output_Register.readDIO_Parallel_Data_Out();
printf("data %04x", data);
if (value > 0)
data |= 1 << hctr->counter_number;
else
data &= ~(1 << hctr->counter_number);
pci->tio_1->DIO_Output_Register.writeDIO_Parallel_Data_Out(data);
printf(" => %04x", data);
data = pci->tio_1->DIO_Output_Register.readDIO_Parallel_Data_Out();
printf(" => %04x\n", data);
}
#else
uInt8 data;
if (value < 0)
{
// set the disabled line to logic low
if (hctr->taskHandle_dout != 0) {
data = 0;
DAQmxWriteDigitalLines(hctr->taskHandle_dout,
1,
1,
10.0,
DAQmx_Val_GroupByChannel,
&data,
NULL,
NULL);
/*********************************************/
// DAQmx Stop Code
/*********************************************/
DAQmxStopTask(hctr->taskHandle_dout);
DAQmxClearTask(hctr->taskHandle_dout);
hctr->taskHandle_dout = 0;
}
}
else
{
if (hctr->taskHandle_dout == 0)
DAQmxErrChk (make_dout_task(hctr));
if (value > 0)
data = 1;
else
data = 0;
DAQmxErrChk (
DAQmxWriteDigitalScalarU32(hctr->taskHandle_dout,
1,
10.0,
data,
NULL));
}
Error:
#endif
return error;
}
/*
* Set up to read the counter synchronized to an external signal
*/
void hctr_sync(pHCTR hctr, bool external)
{
#if REGISTER_LEVEL_PROGRAMMING
CARD* pci = hctr->card;
// TODO
#else
int error = 0;
char device_name[40];
if (hctr->sync != external)
{
hctr->sync = external;
/*********************************************/
// DAQmx Stop Code
/*********************************************/
DAQmxStopTask(hctr->taskHandle);
DAQmxClearTask(hctr->taskHandle);
/*********************************************/
// Create a DAQmx task to hold the counter
/*********************************************/
DAQmxErrChk (DAQmxCreateTask("",&hctr->taskHandle));
/*********************************************/
// Create a DAQmx counter within the task
/*********************************************/
hctr->count32 = 0;
snprintf(device_name, sizeof(device_name), "dev%d/ctr%d",
hctr->device_number, hctr->counter_number);
DAQmxErrChk (
DAQmxCreateCICountEdgesChan(hctr->taskHandle,
device_name,
"",
DAQmx_Val_Rising,
hctr->count32,
DAQmx_Val_CountUp));
if (external)
{
char str[40];
snprintf(str, sizeof(str), "dev%d/PFI%d",
hctr->device_number, hctr->sync_line_number);
DAQmxErrChk (
DAQmxCfgSampClkTiming(hctr->taskHandle,
str,
10000,
DAQmx_Val_Rising,
DAQmx_Val_ContSamps,
10000));
}
/*********************************************/
// Start the DAQmx task
/*********************************************/
DAQmxErrChk (DAQmxStartTask(hctr->taskHandle));
}
Error:
#endif
return;
}
/*
* Shut down the counter
*/
int hctr_dtor(pHCTR* hctr)
{
if (hctr && *hctr)
{
#ifdef REGISTER_LEVEL_PROGRAMMING
CARD* pci = (*hctr)->card;
switch ((*hctr)->counter_number)
{
case 0:
pci->tio_1->G0_Command_Register.writeG0_Disarm(1);
break;
case 1:
pci->tio_1->G1_Command_Register.writeG1_Disarm(1);
break;
case 2:
pci->tio_1->G2_Command_Register.writeG2_Disarm(1);
break;
case 3:
pci->tio_1->G3_Command_Register.writeG3_Disarm(1);
break;
case 4:
pci->tio_2->G0_Command_Register.writeG0_Disarm(1);
break;
case 5:
pci->tio_2->G1_Command_Register.writeG1_Disarm(1);
break;
case 6:
pci->tio_2->G2_Command_Register.writeG2_Disarm(1);
break;
case 7:
pci->tio_2->G3_Command_Register.writeG3_Disarm(1);
break;
}
pci->dev_mask &= ~(1 << (*hctr)->counter_number);
if (pci->dev_mask == 0)
{
delete pci->tio_1;
delete pci->tio_2;
pci->bus->destroyAddressSpace(pci->Bar1);
pci->bus->destroyAddressSpace(pci->Bar2);
releaseBoard(pci->bus);
card[(*hctr)->device_number] = NULL;
free(pci);
}
#else
if ((*hctr)->taskHandle!=0)
{
/*********************************************/
// DAQmx Stop Code
/*********************************************/
DAQmxStopTask((*hctr)->taskHandle);
DAQmxClearTask((*hctr)->taskHandle);
(*hctr)->taskHandle = 0;
}
if ((*hctr)->taskHandle_dout!=0)
{
/*********************************************/
// DAQmx Stop Code
/*********************************************/
DAQmxStopTask((*hctr)->taskHandle_dout);
DAQmxClearTask((*hctr)->taskHandle_dout);
(*hctr)->taskHandle_dout = 0;
}
#endif
/* release the storage */
free(*hctr);
*hctr = NULL;
}
return 0;
}
bool hctr_failed(int error)
{
if (DAQmxFailed(error))
return true;
else
return false;
}
void hctr_errmsg(char* buff, int len)
{
*buff = '\0';
DAQmxGetExtendedErrorInfo(buff, len);
}
#ifdef REGISTER_LEVEL_PROGRAMMING
//
//Tell the MITE to link the BAR1 address to the DAQ Board
//You must initialize the MITE before you write to the rest of the PCI board
void initMite(iBus *bus)
{
tAddressSpace Bar0;
u32 physicalBar1;
//Skip MITE initialization for PCMCIA boards
//(which do not have a MITE DMA controller)
if(!bus->get(kIsPciPxiBus,0)) return;
Bar0 = bus->createAddressSpace(kPCI_BAR0);
//Get the physical address of the DAQ board
physicalBar1 = bus->get(kBusAddressPhysical,kPCI_BAR1);
// ***** 6602/6608 specific MITE initialization *****
// Hit the IO Window Base/Size Register 1 (IOWBSR1) in the MITE. We set the
// address, enable the window and set the size of the window:
Bar0.write32(0xC4, (physicalBar1 & 0xffffff00L) | 0x8C);
// Write to the IO Window Control Register 1 (IOWCR1) to make the IO window
// go to RAM memory space instead of the config space
Bar0.write32(0xF4, 0);
// ***** End of 6602/6608 specific code *****
bus->destroyAddressSpace(Bar0);
}
#else
int make_dout_task(pHCTR ptr)
{
int error = 0;
char port_range[40];
/*********************************************/
// Create a DAQmx task to hold the counter
/*********************************************/
DAQmxErrChk (DAQmxCreateTask("",&ptr->taskHandle_dout));
/*********************************************/
// Create the digital channel within the task
/*********************************************/
snprintf(port_range, sizeof(port_range), "DEV%d/LINE%d",
ptr->device_number, ptr->counter_number);
DAQmxErrChk (DAQmxCreateDOChan(ptr->taskHandle_dout,
port_range,
"",
DAQmx_Val_ChanPerLine));
/*********************************************/
// Start the DAQmx task
/*********************************************/
DAQmxErrChk (DAQmxStartTask(ptr->taskHandle_dout));
return error;
Error:
return error;
}
#endif

View File

@@ -1,105 +0,0 @@
/*
* This is an encapsulation of a National Instruments counter.
*
* It presents a simple 64-bit counter abstraction. When the counter is
* created, it commences counting at zero until it is destroyed.
*
* The counter can be read and returns a 64-bit unsigned value.
*/
#ifndef _HCTR_H_
#define _HCTR_H_
#ifdef __cplusplus
#else
#include <stdbool.h>
#endif
struct counter_private_t;
typedef struct counter_private_t* pHCTR;
/**
* Create a 64-bit counter and start it counting
*
* \param device_name the name of the device (e.g. "dev1/ctr0")
* \param ptr address of pointer to opaque private data structure
*
* \return
* 0 OK
* !0 Error
*/
int hctr_ctor(const char* device_name, pHCTR* ptr);
/**
* Read the value of the 64-bit counter
*
* \param hctr pointer to opaque private data structure
* \param value address of unsigned 64-bit value to receive the output
*
* \return
* 0 OK
* !0 Error
*/
int hctr_read(pHCTR hctr, unsigned long long* value);
/**
* Select the source
*
* \param value source selector
* 3 Timebase 3 (80Mhz on PCI-6602)
* 2 Timebase 2 (100Khz on PCI-6602)
* 1 Timebase 1 (20Mhz on PCI-6602)
* else default external pin
*/
int hctr_source(pHCTR hctr, int value);
/**
* Enables external output on designated DIO line
*
* \param hctr pointer to opaque private data structure
* \param value to be written to the associated line
* < 0 disconnect
* = 0 logic low
* > 0 logic high
*/
int hctr_outp(pHCTR hctr, int value);
/**
* Enables external sync on designated (up/down) line
*
* \param hctr pointer to opaque private data structure
* \param external true for external sync, false for internal
*/
void hctr_sync(pHCTR hctr, bool external);
/**
* Destroy the 64-bit counter
*
* \param ptr address of pointer to opaque private data structure
*
* \return
* 0 OK
* !0 Error
*/
int hctr_dtor(pHCTR* hctr);
/**
* Tests returned error value to see if it represents failure
*
* \param error a value returned from another hctr function
*
* \return
* true the error was a failure
* false the error was not a failure (warning)
*/
bool hctr_failed(int error);
/**
* Retrieves a textual representation of the most recent error
*
* \param buff a pointer to the buffer to receive the text
* \param len the length of the provided buffer
*/
void hctr_errmsg(char* buff, int len);
#endif