- Installed a new single bisecting with normal beam mode to SICS

This commit is contained in:
koennecke
2012-03-29 08:46:18 +00:00
parent 0f1f56be38
commit 12b755de76
2 changed files with 476 additions and 0 deletions

458
singlebinb.c Normal file
View File

@ -0,0 +1,458 @@
/*
* singlebinb.c
*
* This is an implementation of the polymorphic single crystal calculation
* system as defined if singlediff.h for a diffractometer which not only
* uses an eulerian cradle for positioning the crystal but also detector
* tilt. The aim is once more to fix the operation of a diffractometer
* which has been crippled in its movements by overly bulky cryostats.
*
* The tricky bit is in finding a solution to get the crystal into a diffraction
* condition. The aim is to prefer the bisecting position above all. To this purpose
* the crystal is rotated through psi and the position with the least difference in
* chi and phi is noted. Where difference is the difference towards the limits
* if the calculated chi and phi is outside of the limits. Then the closest chi and
* phi is calculated. The scattering vector is rotated by this chi and phi and a
* normal beam calculation attempted for the rotated scattering vector.
*
* copyright: see file COPYRIGHT
*
* Created on: Feb 13, 2012
* Author: Mark Koennecke
*/
#include <stdlib.h>
#include <assert.h>
#include <sics.h>
#include "singlediff.h"
#include "ubfour.h"
#include "fourlib.h"
#include "motor.h"
#include "singlex.h"
#include "motorlist.h"
#include "lld.h"
#define ABS(x) (x < 0 ? -(x) : (x))
/*
* from singlenb.c
*/
int checkNormalBeam(double om, double *gamma, double nu,
float fSet[4], pSingleDiff self);
/*-----------------------------------------------------------------------*/
static int checkTheta(pSingleDiff self, double *stt)
{
char pError[132];
int iTest;
float fHard;
pMotor pTheta;
pTheta = SXGetMotor(TwoTheta);
if (pTheta == NULL) {
return 0;
}
iTest = MotorCheckBoundary(pTheta, (float) *stt, &fHard, pError, 131);
if (!iTest) {
return -1;
}
return iTest;
}
/*---------------------------------------------------------------------*/
static double testClosestLimit(pMotor mot, float pos, float *closestpos)
{
double diff = .0;
float lowlim, upperlim, zero, sign;
*closestpos = pos;
/*
* check for soft limit violation
*/
MotorGetPar(mot,"softlowerlim",&lowlim);
MotorGetPar(mot,"softupperlim",&upperlim);
if(pos > lowlim && pos < upperlim){
diff = .0;
} else {
diff = ABS(lowlim - pos);
*closestpos = lowlim;
if(ABS(upperlim -pos) < diff){
diff = ABS(upperlim - pos);
*closestpos = upperlim;
}
return diff;
}
/**
* apply zero point and sign
*/
MotorGetPar(mot,"softzero",&zero);
MotorGetPar(mot,"sign",&sign);
zero = - zero;
pos = pos - zero;
pos *= sign;
/**
* check hardlimits
*/
MotorGetPar(mot,"hardlowerlim",&lowlim);
MotorGetPar(mot,"hardupperlim",&upperlim);
if(pos > lowlim && pos < upperlim){
diff = .0;
} else {
diff = ABS(lowlim - pos);
*closestpos = lowlim*sign+zero;
if(ABS(upperlim -pos) < diff){
diff = ABS(upperlim - pos);
*closestpos = upperlim*sign +zero;
}
}
return diff;
}
/*---------------------------------------------------------------------*/
static double calculateDiff(pSingleDiff self, float fSet[4],
float *closestchi, float *closestphi)
{
double diff = .0, dTheta;
float fHard;
pMotor pOmega, pChi, pPhi;
char pError[132];
pOmega = SXGetMotor(Omega);
pChi = SXGetMotor(Chi);
pPhi = SXGetMotor(Phi);
if (pOmega == NULL || pChi == NULL || pPhi == NULL) {
return 11000;
}
/* check two theta */
dTheta = fSet[0];
if(checkTheta(self, &dTheta) != 1) {
return 11000;
}
/* check omega */
if(MotorCheckBoundary(pOmega, fSet[1], &fHard, pError, 131) != 1) {
return 11000.;
}
diff += testClosestLimit(pChi, fSet[2],closestchi);
diff += testClosestLimit(pPhi, fSet[3],closestphi);
return diff;
}
/*---------------------------------------------------------------------*/
static double searchPSI(pSingleDiff self, float fSet[4], float bestSet[5])
{
float fTest[4], closestchi, closestphi;
double om, chi, phi, psi, ompsi, chipsi, phipsi, diff;
double bestdiff = 200000;
int i;
/*
* do not scan psi if there is already bisecting happiness
*/
for(i = 0; i < 4; i++){
bestSet[i] = fSet[i];
}
bestSet[4] = .0;
if(calculateDiff(self,fSet,&closestchi, &closestphi) < .001){
return 0;
}
om = fSet[1];
chi = fSet[2];
phi = fSet[3];
for (psi = .0; psi < 360.; psi += .5) {
rotatePsi(om, chi, phi, psi, &ompsi, &chipsi, &phipsi);
fTest[0] = fSet[0];
fTest[1] = ompsi;
fTest[2] = circlify(chipsi);
fTest[3] = circlify(phipsi);
diff = calculateDiff(self, fTest, &closestchi, &closestphi);
if(diff < bestdiff){
bestSet[0] = fSet[0];
bestSet[1] = ompsi;
bestSet[2] = closestchi;
bestSet[3] = closestphi;
bestSet[4] = psi;
bestdiff = diff;
}
if(bestdiff < .001){
return diff;
}
}
return diff;
}
/*---------------------------------------------------------------------*/
static int calculateBINBSettings(pSingleDiff self,
double *hkl, double *settings)
{
MATRIX z1, chim, phim, rotmat, z1_2;
double stt, om, chi, phi, psi, ompsi, chipsi, phipsi;
int i, test, mask[4];
double diff, gamma, nu;
float fSet[4], bestSet[5];
z1 = calculateScatteringVector(self, hkl);
/*
just the plain angle calculation
*/
if (!z1mToBisecting(self->lambda, z1, &stt, &om, &chi, &phi)) {
return 0;
}
fSet[0] = stt;
fSet[1] = om;
fSet[2] = chi;
fSet[3] = phi;
diff = searchPSI(self, fSet, bestSet);
for(i = 0; i < 4; i++){
settings[i] = bestSet[i];
}
settings[4] = .0;
if(diff > 9000){
/* burning in stt or om */
return 0;
} else if(diff < .01){
/* success in bisecting */
return 1;
}
/*
* continue to apply normal beam too
*/
/*
* rotate z1 by chi and phi to z1_2
*/
chim = mat_creat(3,3,ZERO_MATRIX);
chimat(chim,bestSet[2]);
phim = mat_creat(3,3,ZERO_MATRIX);
phimat(phim,bestSet[3]);
rotmat = mat_mul(chim,phim);
z1_2 = mat_mul(rotmat,z1);
mat_free(chim);
mat_free(phim);
mat_free(rotmat);
/*
* Calculate NB angles for z1-2
*/
test = z1mToNormalBeam(self->lambda, z1_2, &gamma, &om, &nu);
mat_free(z1_2);
if(test != 1){
return 0;
}
settings[0] = gamma;
settings[1] = om;
settings[4] = nu;
if(!checkNormalBeam(om,&gamma, nu, fSet,self)){
return 0;
} else {
return 1;
}
}
/*-------------------------------------------------------------------*/
static int settingsToBINBList(struct __SingleDiff *self, double *settings)
{
setNewMotorTarget(self->motList, (char *) SXGetMotorName(TwoTheta),
(float) settings[0]);
setNewMotorTarget(self->motList, (char *) SXGetMotorName(Omega),
(float) settings[1]);
setNewMotorTarget(self->motList, (char *) SXGetMotorName(Chi),
(float) settings[2]);
setNewMotorTarget(self->motList, (char *) SXGetMotorName(Phi),
(float) settings[3]);
setNewMotorTarget(self->motList, (char *) SXGetMotorName(Nu),
(float) settings[4]);
return 1;
}
/*------------------------------------------------------------------------*/
static int hklFromBINBAngles(struct __SingleDiff *self, double *hkl)
{
pIDrivable pDriv;
MATRIX UBinv, z1m, rez;
double z1[3], stt, om, chi, phi, nu;
int i;
pDriv = makeMotListInterface();
pDriv->GetValue(&self->motList, pServ->dummyCon);
UBinv = mat_inv(self->UB);
if (UBinv == NULL) {
return 0;
}
stt = getListMotorPosition(self->motList,
(char *) SXGetMotorName(TwoTheta));
om = getListMotorPosition(self->motList, (char *) SXGetMotorName(Omega));
chi = getListMotorPosition(self->motList, (char *) SXGetMotorName(Chi));
phi = getListMotorPosition(self->motList, (char *) SXGetMotorName(Phi));
nu = getListMotorPosition(self->motList, (char *) SXGetMotorName(Nu));
z1FromAllAngles(self->lambda, om, stt, nu, chi, phi, z1);
z1m = vectorToMatrix(z1);
rez = mat_mul(UBinv, z1m);
for (i = 0; i < 3; i++) {
hkl[i] = rez[i][0];
}
mat_free(UBinv);
mat_free(z1m);
mat_free(rez);
return 1;
}
/*--------------------------------------------------------------------*/
static int hklFromBINBAnglesGiven(struct __SingleDiff *self,
double *settings, double *hkl)
{
MATRIX UBinv, z1m, rez;
double z1[3], stt, om, chi, phi, nu;
int i;
UBinv = mat_inv(self->UB);
if (UBinv == NULL) {
return 0;
}
stt = settings[0];
om = settings[1];
chi = settings[2];
phi = settings[3];
nu = settings[4];
z1FromAllAngles(self->lambda, om, stt, nu, chi, phi, z1);
z1m = vectorToMatrix(z1);
rez = mat_mul(UBinv, z1m);
for (i = 0; i < 3; i++) {
hkl[i] = rez[i][0];
}
mat_free(UBinv);
mat_free(z1m);
mat_free(rez);
return 1;
}
/*------------------------------------------------------------------
* In order to make my life easier, I transform the full reflection into
* a Bisecting one by recalculating angles. This allows me to use the
* Bisecting UB matrix calculation routines.
-------------------------------------------------------------------*/
static int getBINBReflection(char *id, reflection * r)
{
pSICSOBJ refList;
double hkl[3], angles[5], z1[3], stt, om, chi, phi, lambda;
refList = SXGetReflectionList();
if (!GetRefIndexID(refList, id, hkl)) {
return 0;
} else {
r->h = hkl[0];
r->k = hkl[1];
r->l = hkl[2];
GetRefAnglesID(refList, id, angles);
r->s2t = angles[0];
r->om = angles[1];
r->chi = angles[2];
r->phi = angles[3];
r->nu = angles[4];
}
lambda = SXGetLambda();
z1FromAllAngles(lambda, r->om, r->s2t, r->nu, r->chi, r->phi, z1);
z1ToBisecting(lambda, z1, &stt, &om, &chi, &phi);
r->s2t = stt;
r->om = om;
r->chi = chi;
r->phi = phi;
r->nu = .0;
return 1;
}
/*-------------------------------------------------------------------*/
MATRIX calcBINBUBFromTwo(pSingleDiff self,
char *refid1, char *refid2, int *err)
{
MATRIX newUB;
reflection r1, r2;
lattice direct;
direct.a = self->cell[0];
direct.b = self->cell[1];
direct.c = self->cell[2];
direct.alpha = self->cell[3];
direct.beta = self->cell[4];
direct.gamma = self->cell[5];
if (!getBINBReflection(refid1, &r1)) {
*err = REFERR;
return NULL;
}
if (!getBINBReflection(refid2, &r2)) {
*err = REFERR;
return NULL;
}
newUB = calcUBFromCellAndReflections(direct, r1, r2, err);
return newUB;
}
/*-------------------------------------------------------------------*/
MATRIX calcBINBUBFromThree(pSingleDiff self,
char *refid1, char *refid2, char *refid3,
int *err)
{
MATRIX newUB;
reflection r1, r2, r3;
if (!getBINBReflection(refid1, &r1)) {
*err = REFERR;
return NULL;
}
if (!getBINBReflection(refid2, &r2)) {
*err = REFERR;
return NULL;
}
if (!getBINBReflection(refid3, &r3)) {
*err = REFERR;
return NULL;
}
newUB = calcUBFromThreeReflections(r1, r2, r3, self->lambda, err);
return newUB;
}
/*--------------------------------------------------------------------*/
static int calcBINBZ1(pSingleDiff self, char *refid, double z1[3])
{
reflection r1;
if (!getBINBReflection(refid, &r1)) {
return 0;
}
z1FromAngles(self->lambda, r1.s2t, r1.om, r1.chi, r1.phi, z1);
return 1;
}
/*--------------------------------------------------------------------*/
void initializeSingleBINB(pSingleDiff diff)
{
if (diff->motList >= 0) {
LLDdelete(diff->motList);
}
diff->motList = LLDcreate(sizeof(MotControl));
addMotorToList(diff->motList, (char *) SXGetMotorName(TwoTheta), .0);
addMotorToList(diff->motList, (char *) SXGetMotorName(Omega), .0);
addMotorToList(diff->motList, (char *) SXGetMotorName(Chi), .0);
addMotorToList(diff->motList, (char *) SXGetMotorName(Phi), .0);
addMotorToList(diff->motList, (char *) SXGetMotorName(Nu), .0);
diff->calculateSettings = calculateBINBSettings;
diff->settingsToList = settingsToBINBList;
diff->hklFromAngles = hklFromBINBAngles;
diff->hklFromAnglesGiven = hklFromBINBAnglesGiven;
diff->calcUBFromTwo = calcBINBUBFromTwo;
diff->calcUBFromThree = calcBINBUBFromThree;
diff->calcZ1 = calcBINBZ1;
}

18
singlebinb.h Normal file
View File

@ -0,0 +1,18 @@
/*
* singlebinb.h.
*
* Documentation: see singlebinb.c
*
*
* Created on: Feb 13, 2012
* Author: koennecke
*/
#ifndef SINGLEBINB_H_
#define SINGLEBINB_H_
void initializeSingleBINB(pSingleDiff diff);
#endif /* SINGLEBINB_H_ */