293 lines
14 KiB
Python
293 lines
14 KiB
Python
# -*- coding: utf-8 -*-
|
|
"""
|
|
OTFModule
|
|
______________________
|
|
|
|
Version: 1.0
|
|
Authors: Davis Garrad (Paul Scherrer Institute, CH)
|
|
______________________
|
|
|
|
frappy-based module for generating and running pulse sequences on TNMR (Tecmag). The On-The-Fly module is meant to represent a SECoP node frappy-side, so it really just interacts with the TNMR software.
|
|
|
|
"""
|
|
#On-the-fly!
|
|
|
|
import frappy_psi.tnmr.tnmr_interface as te
|
|
import frappy_psi.tnmr.sequence_generation as seq_gen
|
|
|
|
import frappy.core as fc
|
|
import frappy
|
|
|
|
import win32com
|
|
import pythoncom
|
|
import numpy as np
|
|
|
|
import threading
|
|
import time
|
|
import os
|
|
import traceback
|
|
|
|
class ProgrammedSequence(fc.Readable):
|
|
"""An NMR device being driven by an instance of TNMR. Requires that an instance of TNMR is opened before creation.
|
|
|
|
Use
|
|
---
|
|
Generating a pulse sequence is as simple as setting the sequence_data parameter to be a list of sequence dictionaries, in the order you want them to be executed. The next step is to set the acquisition parameters (see below), including title, acquisition_time, pre_acquisition_time, post_acquisition_time, ringdown_time, and acq_phase_cycle.
|
|
|
|
Once all the parameters are set, you can call the frappy command and member function compile_and_run() (NOT the private member function __compile_and_run()).
|
|
|
|
Attributes
|
|
----------
|
|
value: an array of complexes representing the TNMR data return (technically inherited from Readable)
|
|
sequence_data: an array of structs: keys are { 'pulse_width': (width of pulse in us), 'pulse_height': (amplitude of pulse in percentage - 30 is 30%, 0.3 is 0.3% etc.), 'delay_time': (delay time in us), 'phase_cycle': (a str denoting a phase cycle, e.g., '0 1 2 3') }
|
|
|
|
Acquisition Parameters
|
|
----------------------
|
|
title: a title which will be embedded to the sequence files. Use this for identification.
|
|
acquisition_time: float (usecs) which describes the length of acquisition
|
|
ringdown_time: float (usecs) which describes the length of ringdown
|
|
pre_acquisition_time: float (usecs) which describes the length of time to wait after ringdown finishes (1u is okay)
|
|
post_acquisition_time: float (ms) which describes the length of time to wait after finishing acquisition
|
|
acq_phase_cycle: str, the phase cycle to run on acquisition (eg., '0 1 1 2', '0 1 2 3', '1 1 2 2 0 0 3 3 1 2 3 4', ...)
|
|
num_scans: int (ct), the number of 1D scans to take per sequence
|
|
obs_freq: float (MHz), the NMR frequency
|
|
|
|
Commands
|
|
--------
|
|
compile and run: finishes building the sequence, saves it and its configuration to files (timestamped), and starts data acquisition on TNMR (async)
|
|
|
|
Inherited Attributes
|
|
--------------------
|
|
name: from Module
|
|
logger: from Module
|
|
cfgdict: from Module
|
|
src: from Module
|
|
status: from Readable
|
|
value: from Readable
|
|
pollinterval: from Readable
|
|
"""
|
|
|
|
# inherited
|
|
value = fc.Parameter('data_return', fc.StructOf(reals=fc.ArrayOf(fc.FloatRange(), maxlen=4096), # real values
|
|
imags=fc.ArrayOf(fc.FloatRange(), maxlen=4096), # imag values
|
|
t =fc.ArrayOf(fc.FloatRange(), maxlen=4096)), # times (starting from zero)
|
|
default={ 'reals': [], 'imags': [], 't': [] })
|
|
status = fc.Parameter(datatype=frappy.datatypes.StatusType(fc.Readable, "DISABLED", 'PREPARED', 'BUSY'), default=('IDLE', 'ok - uncompiled'))
|
|
pollinterval = fc.Parameter(default=1)
|
|
|
|
# basic
|
|
title = fc.Parameter('title', fc.StringType(), default='Sequence', readonly=False)
|
|
sequence_data = fc.Parameter('sequence_config', fc.ArrayOf(fc.StructOf(pulse_width=fc.FloatRange(unit='usecs'),
|
|
pulse_height=fc.FloatRange(unit='%'),
|
|
delay_time=fc.FloatRange(unit='usecs'),
|
|
phase_cycle=fc.StringType())), default=[], readonly=False)
|
|
|
|
# final details
|
|
acquisition_time = fc.Parameter('acquisition_time', fc.FloatRange(unit='usecs'), readonly=False, group='sequence_editor', default=204.8) # this is a limit set by the dwell limit and number of acquisition points
|
|
ringdown_time = fc.Parameter('ringdown_time', fc.FloatRange(unit='usecs'), readonly=False, group='sequence_editor', default=1)
|
|
pre_acquisition_time = fc.Parameter('pre_acquisition_time', fc.FloatRange(unit='usecs'), readonly=False, group='sequence_editor', default=1)
|
|
post_acquisition_time = fc.Parameter('post_acquisition_time', fc.FloatRange(unit='msecs'), readonly=False, group='sequence_editor', default=500)
|
|
acq_phase_cycle = fc.Parameter('acq_phase_cycle', fc.StringType(), readonly=False, group='sequence_editor', default='')
|
|
num_scans = fc.Parameter('num_scans', fc.IntRange(), readonly=False, group='sequence_editor', default=16)
|
|
obs_freq = fc.Parameter('obs_freq', fc.FloatRange(unit='MHz'), readonly=False, group='sequence_editor', default=213.16)
|
|
|
|
compiled_parameters = {} # so that we can store the values of parameters only when compiling, effectively giving us an instance of each parameter loaded into TNMR, as well as "targets" (those above)
|
|
inited = False
|
|
approx_sequence_length = 0
|
|
|
|
### SETUP
|
|
def tnmr(self):
|
|
'''Creates a new instance or retrieves a previously-made instance of the TNMR API wrapper.
|
|
|
|
Returns
|
|
-------
|
|
an instance of the TNMR API wrapper.
|
|
'''
|
|
if not(self.inited):
|
|
try:
|
|
self.ntnmr = te.TNMR()
|
|
self.inited = True
|
|
except Exception as e:
|
|
print(str(e), repr(e))
|
|
self.ntnmr = None
|
|
self.inited = False
|
|
return self.ntnmr
|
|
|
|
def initialReads(self):
|
|
pass
|
|
|
|
@fc.Command(description="Compile & Run", argument={'type': 'bool'})
|
|
def compile_and_run(self, thread=True):
|
|
'''Compiles and runs the currently loaded sequence (in sequence_data), populating this instance's value member with the results.
|
|
|
|
Parameters
|
|
----------
|
|
thread: bool, determines if a new thread is created and detached for this process. (default true)
|
|
'''
|
|
if(thread):
|
|
threading.Thread(target=lambda s=self: s.__compile_and_run()).start()
|
|
else:
|
|
self.__compile_and_run()
|
|
|
|
@fc.Command(description="Kill")
|
|
def kill(self):
|
|
'''Aborts the current scan, if one is running. Else, does nothing'''
|
|
self.stop()
|
|
|
|
def stop(self):
|
|
try:
|
|
self.tnmr().get_instance().Abort
|
|
self.status = ('IDLE', 'ok - killed')
|
|
except:
|
|
pass
|
|
|
|
### READ/WRITE
|
|
|
|
def write_title(self, t):
|
|
self.title = t
|
|
self.status = ('IDLE', 'ok - uncompiled')
|
|
return self.read_title()
|
|
|
|
def write_acquisition_time(self, t):
|
|
self.acquisition_time = t
|
|
self.status = ('IDLE', 'ok - uncompiled')
|
|
return self.read_acquisition_time()
|
|
|
|
def write_ringdown_time(self, t):
|
|
self.ringdown_time = t
|
|
self.status = ('IDLE', 'ok - uncompiled')
|
|
return self.read_ringdown_time()
|
|
|
|
def write_pre_acquisition_time(self, t):
|
|
self.pre_acquisition_time = t
|
|
self.status = ('IDLE', 'ok - uncompiled')
|
|
return self.read_pre_acquisition_time()
|
|
|
|
def write_post_acquisition_time(self, t):
|
|
self.post_acquisition_time = t
|
|
self.status = ('IDLE', 'ok - uncompiled')
|
|
return self.read_post_acquisition_time()
|
|
|
|
def write_acq_phase_cycle(self, t):
|
|
self.acq_phase_cycle = t
|
|
self.status = ('IDLE', 'ok - uncompiled')
|
|
return self.read_acq_phase_cycle()
|
|
|
|
def read_num_scans(self):
|
|
return self.tnmr().get_nmrparameter('Scans 1D')
|
|
|
|
def write_num_scans(self, t):
|
|
if(self.status[0] != 'BUSY'):
|
|
self.tnmr().set_nmrparameter('Scans 1D', t)
|
|
self.status = ('IDLE', 'ok - uncompiled')
|
|
return self.read_num_scans()
|
|
|
|
def read_obs_freq(self):
|
|
return self.tnmr().get_nmrparameter('Observe Freq.')
|
|
|
|
def write_obs_freq(self, t):
|
|
if(self.status[0] != 'BUSY'):
|
|
self.tnmr().set_nmrparameter('Observe Freq.', t)
|
|
self.status = ('IDLE', 'ok - uncompiled')
|
|
return self.read_obs_freq()
|
|
|
|
### PRIVATE (Utility)
|
|
def __compile_sequence(self):
|
|
'''Compiles the sequence loaded in sequence_data.
|
|
|
|
This involves:
|
|
1. creating the sequence table via seq_gen.get_single_pulse_block calls;
|
|
2. combining them all;
|
|
3. saving this sequence where TNMR can see it, and in a format it can read;
|
|
4. taking a copy of all the acquisition parameters (so that if they are changed mid-acquisition, no incorrect information is written to files)
|
|
5. telling TNMR to read it (i.e., tnmr().load_sequence()), reloading the dashboard and parameters in the process
|
|
5. giving TNMR the correct parameters to populate the new dashboard with
|
|
'''
|
|
if(self.status[0] != 'BUSY'):
|
|
self.status = ('BUSY', 'compiling')
|
|
# first, create the sequence
|
|
seq = seq_gen.get_initial_block()
|
|
i = 0
|
|
self.approx_sequence_length = 0
|
|
for s in self.sequence_data:
|
|
seq = seq_gen.combine_blocks(seq, seq_gen.get_single_pulse_block(f'pulse_{i}', str(s['pulse_width']) + 'u',
|
|
str(s['pulse_height']),
|
|
str(s['delay_time']) + 'u',
|
|
str(s['phase_cycle'])))
|
|
self.approx_sequence_length += float(s['delay_time'])*1e-6
|
|
self.approx_sequence_length += float(s['pulse_width'])*1e-6
|
|
i += 1
|
|
seq = seq_gen.combine_blocks(seq, seq_gen.get_final_block(str(self.ringdown_time) + 'u',
|
|
str(self.pre_acquisition_time) + 'u',
|
|
str(self.acquisition_time) + 'u',
|
|
str(self.post_acquisition_time) + 'm',
|
|
str(self.acq_phase_cycle)))
|
|
|
|
self.approx_sequence_length += float(self.acquisition_time)*1e-6
|
|
self.approx_sequence_length += float(self.post_acquisition_time)*1e-6
|
|
|
|
# then, save the thing
|
|
filepath = os.getcwd()
|
|
filename = self.title + f'_{time.time()}'
|
|
filename = filepath + '/sequences/' + filename.replace('.','')
|
|
seq_gen.save_sequence(filename, seq)
|
|
seq_gen.save_sequence_cfg(filename, seq)
|
|
|
|
dashboard_params = { 'Observe Freq.': self.read_obs_freq(),
|
|
'Scans 1D': self.read_num_scans(),
|
|
}
|
|
|
|
self.compiled_parameters['ringdown_time'] = self.ringdown_time
|
|
self.compiled_parameters['pre_acquisition_time'] = self.pre_acquisition_time
|
|
self.compiled_parameters['acquisition_time'] = self.acquisition_time
|
|
self.compiled_parameters['post_acquisition_time'] = self.post_acquisition_time
|
|
self.compiled_parameters['acq_phase_cycle'] = self.acq_phase_cycle
|
|
self.compiled_parameters['num_scans'] = self.read_num_scans()
|
|
self.compiled_parameters['obs_freq'] = self.read_obs_freq()
|
|
|
|
# then, load the thing into TNMR
|
|
self.tnmr().load_sequence(filename)
|
|
|
|
# load some parameters back to TNMR
|
|
for key, val in dashboard_params.items():
|
|
self.tnmr().set_nmrparameter(key, val)
|
|
|
|
# finally, let ourselves know we're ready
|
|
self.status = ('PREPARED', 'compiled')
|
|
else:
|
|
traceback.print_exc()
|
|
|
|
def __zero_go(self):
|
|
'''Tells TNMR to acquire data. Only call after __compile_sequence().'''
|
|
if(self.status[0] != 'BUSY'):
|
|
self.status = ('BUSY', 'acquiring')
|
|
self.tnmr().ZeroGo(lock=True, interval=0.5, check_time=max(self.approx_sequence_length*5, 5))
|
|
newvals = {}
|
|
newvals['reals'] = self.tnmr().get_data()[0]
|
|
newvals['imags'] = self.tnmr().get_data()[1]
|
|
newvals['t'] = [ self.compiled_parameters['acquisition_time'] * i/1024 for i in range(0, 1024) ]
|
|
self.value = newvals
|
|
self.status = ('PREPARED', 'compiled')
|
|
|
|
def __compile_and_run(self, thread=True):
|
|
'''Compiles and runs the currently-loaded sequence
|
|
|
|
Parameters
|
|
----------
|
|
thread: bool, determines if this should open a child thread and detach the process
|
|
'''
|
|
self.__compile_sequence()
|
|
time.sleep(1.0)
|
|
self.__zero_go()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|