Added functionality for the TNMR module to write partial scans - useful for long experiments with many acquisitions, which might need to be terminated early. Also good for impatient people. Added functionality to the ZVL Network Analyser module to allow for use of inbuilt data correction (calibration).

This commit is contained in:
2025-07-29 14:31:24 +02:00
parent d5d9d70713
commit e77c48ace0
4 changed files with 122 additions and 26 deletions

View File

@@ -30,32 +30,50 @@ class ZVLNetAnalyzer():
self.base_data = np.array([])
self.base_data = self.get_data()[1]
self.min_freq = 0
self.max_freq = 0
def reset(self):
#self.instrument.write('*RST')
#self.instrument.write('SYST:PRES') # reloads current setup.
self.instrument.write('*CLS')
self.instrument.write('*RST')
self.instrument.write('INST:NSEL 2')
self.instrument.write('DISPlay:WINDow1:STATe ON')
self.instrument.write(":CALC:PAR:MEAS 'Trc1', 'S11'")
self.instrument.write('CALC:FORM MLOG')
self.instrument.write('INIT:CONT OFF')
self.instrument.write("SYST:USER:DISP:TITL 'Frappy connection'")
#self.instrument.write('INIT:SCOP OFF')
#self.instrument.write('DISPlay:WINDow2:STATe ON')
self.instrument.write('*ESE')
self.min_freq, self.max_freq = self.get_freq_range() # default is largest.
def load_calibration(self, f):
self.instrument.write(f":MMEMORY:STORE:CORR 1, 'OSM1 {f}'") # put calibration in pool
self.instrument.write(f":MMEMORY:LOAD:CORR 1, 'OSM1 {f}'") # load from pool
def reload_calibration(self):
self.reset()
#self.instrument.write("DISP:MENU:KEY:SEL 'Correction Off'")
#self.instrument.write("DISP:MENU:KEY:EXEC 'Correction Off'")
self.instrument.write("DISP:MENU:KEY:EXEC 'Recall Last Cal Set'")
time.sleep(1)
self.min_freq, self.max_freq = self.get_freq_range() # default is largest.
def get_freq_range(self):
start = float(self.instrument.ask('SENS1:FREQ:STAR?'))
stop = float(self.instrument.ask('SENS1:FREQ:STOP?'))
return start, stop
def set_freq_range(self, start, stop):
'''In Hz'''
self.instrument.write(f'SENS1:FREQ:STAR {start}')
self.instrument.write(f'SENS1:FREQ:STOP {stop}')
if(start >= self.min_freq) and (stop <= self.max_freq):
self.instrument.write(f'SENS1:FREQ:STAR {start}')
self.instrument.write(f'SENS1:FREQ:STOP {stop}')
self.start_freq = start
self.stop_freq = stop
def set_freq_span(self, center, span):
'''In Hz'''
self.instrument.write(f'SENS1:FREQ:CENT {center}')
self.instrument.write(f'SENS1:FREQ:SPAN {span}')
start = center - span/2
stop = center + span/2
self.set_freq_range(start, stop)
def set_averaging_passes(self,avgs):
'''
@@ -101,6 +119,7 @@ class ZVLNetAnalyzer():
assert(averaging_passes<=999)
assert(units in ['dB', 'unitless'])
self.instrument.write('INIT:CONT OFF')
self.instrument.write(f'SWE:POIN {N}')
self.instrument.write(f'SWE:COUN {averaging_passes}')

View File

@@ -0,0 +1,50 @@
from ZVLDriver import *
import matplotlib.pyplot as plt
# example code. profiles the per-point delay for reading data and
ip = '129.129.156.201'
ip = '169.254.83.53'
import matplotlib.pyplot as plt
print('start')
z = ZVLNetAnalyzer()
z.reset()
#mm, mmi, fr, frq = z.find_peak(50_000_000, 350_000_000, 20_000_000)
#plt.plot(frq, fr)
#plt.axvline(frq[mmi])
#plt.axhline(mm)
#plt.show()
#z.reset()
##z.set_freq_range(1_000_000, 2_000_000.5)
##z.set_freq_span(1_000_000, 10_000)
z.set_freq_range(25_750_000, 75_250_000)
plt.scatter(*(z.get_data()))
z.reload_calibration()
#z.set_freq_span(220_000_000, 50_000_000)
plt.scatter(*(z.get_data()))
plt.show()
#Ns = np.linspace(3, 1000, 100).astype(int)
#ts = []
#for N in Ns:
# st = time.time()
# freqs, data = z.get_data(N)
# et = time.time()
# dt = (et-st)
# print(f'got data, {dt/N} ({dt})')
# ts += [dt]
#
#plt.scatter(Ns, ts)
#plt.show()
#plt.scatter(Ns, np.array(ts)/np.array(Ns))
#plt.show()
#input()
#plt.plot(*z.get_data(averaging_passes=1), alpha=0.3)
#plt.plot(*z.get_data(averaging_passes=64), alpha=0.3)
#plt.show()
input()

View File

@@ -49,7 +49,7 @@ class ProgrammedSequence(fc.Readable):
pre_acquisition_time: float (usecs) which describes the length of time to wait after ringdown finishes (1u is okay)
post_acquisition_time: float (ms) which describes the length of time to wait after finishing acquisition
acq_phase_cycle: str, the phase cycle to run on acquisition (eg., '0 1 1 2', '0 1 2 3', '1 1 2 2 0 0 3 3 1 2 3 4', ...)
num_scans: int (ct), the number of 1D scans to take per sequence
num_acqs: int (ct), the number of 1D scans to take per sequence
obs_freq: float (MHz), the NMR frequency
Commands
@@ -86,6 +86,7 @@ class ProgrammedSequence(fc.Readable):
pulse_height=fc.FloatRange(unit='%'),
delay_time=fc.FloatRange(unit='usecs'),
phase_cycle=fc.StringType()), minlen=0), default=[{'pulse_width':0,'pulse_height':0,'delay_time':0,'phase_cycle':''}]*100, readonly=False)
num_acqs_actual = fc.Parameter('num_acqs', fc.IntRange(), readonly=True, default=0)
# final details
acquisition_time = fc.Parameter('acquisition_time', fc.FloatRange(unit='usecs'), readonly=False, group='sequence_editor', default=204.8) # this is a limit set by the dwell limit and number of acquisition points
@@ -93,7 +94,7 @@ class ProgrammedSequence(fc.Readable):
pre_acquisition_time = fc.Parameter('pre_acquisition_time', fc.FloatRange(unit='usecs'), readonly=False, group='sequence_editor', default=1)
post_acquisition_time = fc.Parameter('post_acquisition_time', fc.FloatRange(unit='msecs'), readonly=False, group='sequence_editor', default=500)
acq_phase_cycle = fc.Parameter('acq_phase_cycle', fc.StringType(), readonly=False, group='sequence_editor', default='')
num_scans = fc.Parameter('num_scans', fc.IntRange(), readonly=False, group='sequence_editor', default=16)
num_acqs = fc.Parameter('num_acqs', fc.IntRange(), readonly=False, group='sequence_editor', default=16)
obs_freq = fc.Parameter('obs_freq', fc.FloatRange(unit='MHz'), readonly=False, group='sequence_editor', default=213.16)
compiled_parameters = {} # so that we can store the values of parameters only when compiling, effectively giving us an instance of each parameter loaded into TNMR, as well as "targets" (those above)
@@ -194,14 +195,14 @@ class ProgrammedSequence(fc.Readable):
self.status = ('IDLE', 'ok - uncompiled')
return self.read_acq_phase_cycle()
def read_num_scans(self):
def read_num_acqs(self):
return self.tnmr().get_nmrparameter('Scans 1D')
def write_num_scans(self, t):
def write_num_acqs(self, t):
if(self.status[0] != 'BUSY'):
self.tnmr().set_nmrparameter('Scans 1D', t)
self.status = ('IDLE', 'ok - uncompiled')
return self.read_num_scans()
return self.read_num_acqs()
def read_obs_freq(self):
return self.tnmr().get_nmrparameter('Observe Freq.')
@@ -221,6 +222,34 @@ class ProgrammedSequence(fc.Readable):
self.sequence_data = seq
return self.read_sequence_data()
def read_status(self):
if(self.tnmr().acquisition_running()):
self.status = ('BUSY', 'acquiring')
elif(self.status[1] == 'acquiring'):
# we've just finished acquiring, in frappy's perspective
self.status = ('PREPARED', 'compiled')
return self.status
def read_value(self):
newvals = {}
try:
d = self.tnmr().get_data()
newvals['reals'] = d[0]
newvals['imags'] = d[1]
newvals['t'] = [ self.compiled_parameters['acquisition_time'] * i/len(d[0]) for i in range(0, len(d[0])) ]
except:
newvals['reals'] = []
newvals['imags'] = []
newvals['t'] = []
return newvals
def read_num_acqs_actual(self):
try:
n = self.tnmr().get_nmrparameter('Actual Scans 1D')
return n
except:
return 0
### PRIVATE (Utility)
def __compile_sequence(self):
@@ -266,7 +295,7 @@ class ProgrammedSequence(fc.Readable):
seq_gen.save_sequence_cfg(filename, seq)
dashboard_params = { 'Observe Freq.': self.read_obs_freq(),
'Scans 1D': self.read_num_scans(),
'Scans 1D': self.read_num_acqs(),
}
self.compiled_parameters['ringdown_time'] = self.ringdown_time
@@ -274,7 +303,7 @@ class ProgrammedSequence(fc.Readable):
self.compiled_parameters['acquisition_time'] = self.acquisition_time
self.compiled_parameters['post_acquisition_time'] = self.post_acquisition_time
self.compiled_parameters['acq_phase_cycle'] = self.acq_phase_cycle
self.compiled_parameters['num_scans'] = self.read_num_scans()
self.compiled_parameters['num_acqs'] = self.read_num_acqs()
self.compiled_parameters['obs_freq'] = self.read_obs_freq()
self.compiled_parameters['title'] = self.read_title()
self.compiled_parameters['comments'] = self.read_comments()
@@ -303,13 +332,7 @@ class ProgrammedSequence(fc.Readable):
'''Tells TNMR to acquire data. Only call after __compile_sequence().'''
if(self.status[0] != 'BUSY'):
self.status = ('BUSY', 'acquiring')
self.tnmr().ZeroGo(lock=True, interval=0.5, check_time=max(self.approx_sequence_length*5, 5))
newvals = {}
newvals['reals'] = self.tnmr().get_data()[0]
newvals['imags'] = self.tnmr().get_data()[1]
newvals['t'] = [ self.compiled_parameters['acquisition_time'] * i/1024 for i in range(0, 1024) ]
self.value = newvals
self.status = ('PREPARED', 'compiled')
self.tnmr().ZeroGo(lock=False, check_time=max(self.approx_sequence_length*5, 5))
def __compile_and_run(self, thread=True):
'''Compiles and runs the currently-loaded sequence

View File

@@ -411,6 +411,10 @@ class TNMR:
else:
print('W: Filenames do not match for sequence!')
return False
d = self.get_data()
ntnmr.ZeroFill(len(d[0])) # to clear everything out.
return True
def load_dashboard(self, dashboard_fn):