[WIP] phytron improvements

- Limits
- offset
- power cycle behaviour

Change-Id: Id2f717c362cd7e1e37f180c8130b0e086e724389
This commit is contained in:
zolliker 2023-05-05 13:16:41 +02:00
parent 3fcd72b189
commit 3314241631

View File

@ -22,11 +22,12 @@
"""driver for phytron motors"""
import time
from frappy.core import Done, Command, EnumType, FloatRange, IntRange, \
HasIO, Parameter, Property, Drivable, PersistentMixin, PersistentParam, \
StringIO, StringType, TupleOf
from frappy.errors import CommunicationFailedError, HardwareError, BadValueError
from frappy.lib import clamp
StringIO, StringType, IDLE, BUSY, ERROR, Limit
from frappy.errors import CommunicationFailedError, HardwareError
from frappy.features import HasOffset
class PhytronIO(StringIO):
@ -54,43 +55,35 @@ class PhytronIO(StringIO):
return reply[1:]
class Motor(PersistentMixin, HasIO, Drivable):
class Motor(HasOffset, PersistentMixin, HasIO, Drivable):
axis = Property('motor axis X or Y', StringType(), default='X')
address = Property('address', IntRange(0, 15), default=0)
circumference = Property('cirumference for rotations or zero for linear', FloatRange(0), default=360)
encoder_mode = Parameter('how to treat the encoder', EnumType('encoder', NO=0, READ=1, CHECK=2),
default=1, readonly=False)
value = Parameter('angle', FloatRange(unit='deg'))
value = PersistentParam('angle', FloatRange(unit='deg'))
status = PersistentParam()
target = Parameter('target angle', FloatRange(unit='deg'), readonly=False)
speed = Parameter('', FloatRange(0, 20, unit='deg/s'), readonly=False)
accel = Parameter('', FloatRange(2, 250, unit='deg/s/s'), readonly=False)
encoder_tolerance = Parameter('', FloatRange(unit='deg'), readonly=False, default=0.01)
offset = PersistentParam('', FloatRange(unit='deg'), readonly=False, default=0)
sign = PersistentParam('', IntRange(-1,1), readonly=False, default=1)
encoder = Parameter('encoder reading', FloatRange(unit='deg'))
backlash = Parameter("""backlash compensation\n
offset for always approaching from the same side""",
FloatRange(unit='deg'), readonly=False, default=0)
abslimits = Parameter('abs limits (raw values)', default=(0, 0),
datatype=TupleOf(FloatRange(unit='deg'), FloatRange(unit='deg')))
userlimits = PersistentParam('user limits', readonly=False, default=(0, 0), initwrite=True,
datatype=TupleOf(FloatRange(unit='deg'), FloatRange(unit='deg')))
target_min = Limit()
target_max = Limit()
alive_time = PersistentParam('alive time for detecting restarts',
FloatRange(), default=0) # export=False
ioClass = PhytronIO
fast_poll = 0.1
_backlash_pending = False
_mismatch_count = 0
_rawlimits = None
_step_size = None # degree / step
def earlyInit(self):
super().earlyInit()
if self.abslimits == (0, 0):
self.abslimits = -9e99, 9e99
if self.userlimits == (0, 0):
self._rawlimits = self.abslimits
self.read_userlimits()
self.loadParameters()
_reset_needed = False
def get(self, cmd):
return self.communicate('%x%s%s' % (self.address, self.axis, cmd))
@ -111,9 +104,24 @@ class Motor(PersistentMixin, HasIO, Drivable):
self.set(cmd, value)
return self.get(query)
def read_alive_time(self):
now = time.time()
axisbit = 1 << int(self.axis == 'Y')
active_axes = int(self.get('P37R')) # adr 37 is a custom address with no internal meaning
if not (axisbit & active_axes): # power cycle detected and this axis not yet active
self.set('P37S', axisbit | active_axes) # activate axis
if now < self.alive_time + 7 * 24 * 3600: # the device was running within last week
# inform the user about the loss of position by the need of doing reset_error
self._reset_needed = True
else: # do reset silently
self.reset_error()
self.alive_time = now
self.saveParameters()
return now
def read_value(self):
prev_enc = self.encoder
pos = float(self.get('P20R')) * self.sign - self.offset
pos = float(self.get('P20R')) * self.sign
if self.encoder_mode != 'NO':
enc = self.read_encoder()
else:
@ -122,23 +130,25 @@ class Motor(PersistentMixin, HasIO, Drivable):
status = status[0:4] if self.axis == 'X' else status[4:8]
self.log.debug('run %s enc %s end %s', status[1], status[2], status[3])
status = self.get('=H')
if status == 'N':
if status == 'N': # not at target
if self.encoder_mode == 'CHECK':
e1, e2 = sorted((prev_enc, enc))
if e1 - self.encoder_tolerance <= pos <= e2 + self.encoder_tolerance:
self.status = self.Status.BUSY, 'driving'
self.status = BUSY, 'driving'
else:
self.log.error('encoder lag: %g not within %g..%g',
pos, e1, e2)
self.get('S') # stop
self.status = self.Status.ERROR, 'encoder lag error'
self.status = ERROR, 'encoder lag error'
self.value = pos
self.saveParameters()
self.setFastPoll(False)
else:
self.status = self.Status.BUSY, 'driving'
self.status = BUSY, 'driving'
else:
if self._backlash_pending:
# drive to real target
self.set('A', self.sign * (self.target + self.offset))
self.set('A', self.sign * self.target)
self._backlash_pending = False
return pos
if (self.encoder_mode == 'CHECK' and
@ -148,17 +158,19 @@ class Motor(PersistentMixin, HasIO, Drivable):
else:
self.log.error('encoder mismatch: abs(%g - %g) < %g',
enc, pos, self.encoder_tolerance)
self.status = self.Status.ERROR, 'encoder does not match pos'
self.status = ERROR, 'encoder does not match pos'
else:
self._mismatch_count = 0
self.status = self.Status.IDLE, ''
self.status = IDLE, ''
self.value = pos
self.saveParameters()
self.setFastPoll(False)
return pos
def read_encoder(self):
if self.encoder_mode == 'NO':
return self.value
return float(self.get('P22R')) * self.sign - self.offset
return float(self.get('P22R')) * self.sign
def write_sign(self, value):
self.sign = value
@ -187,68 +199,56 @@ class Motor(PersistentMixin, HasIO, Drivable):
self.get_step_size()
return float(self.set_get('P15S', round(value / self._step_size), 'P15R')) * self._step_size
def _check_limits(self, *values):
for name, (mn, mx) in ('user', self._rawlimits), ('abs', self.abslimits):
mn -= self.offset
mx -= self.offset
for v in values:
if not mn <= v <= mx:
raise BadValueError('%s limits violation: %g <= %g <= %g' % (name, mn, v, mx))
v += self.offset
def check_target(self, value):
self.checkLimits(value)
self.checkLimits(value + self.backlash)
def write_target(self, value):
if self.status[0] == self.Status.ERROR:
self.read_alive_time()
if self._reset_needed:
self.status = ERROR, 'reset needed after power up (probably position lost)'
raise HardwareError(self.status[1])
if self.status[0] == ERROR:
raise HardwareError('need reset')
self.status = self.Status.BUSY, 'changed target'
self._check_limits(value, value + self.backlash)
self.status = BUSY, 'changed target'
self.saveParameters()
if self.backlash:
# drive first to target + backlash
# we do not optimize when already driving from the right side
self._backlash_pending = True
self.set('A', self.sign * (value + self.offset + self.backlash))
self.set('A', self.sign * (value + self.backlash))
else:
self.set('A', self.sign * (value + self.offset))
self.set('A', self.sign * value)
self.setFastPoll(True, self.fast_poll)
return value
def read_userlimits(self):
return self._rawlimits[0] - self.offset, self._rawlimits[1] - self.offset
def write_userlimits(self, value):
self._rawlimits = [clamp(self.abslimits[0], v + self.offset, self.abslimits[1]) for v in value]
value = self.read_userlimits()
self.saveParameters()
return value
def write_offset(self, value):
self.offset = value
self.read_userlimits()
self.saveParameters()
return Done
def stop(self):
self.get('S')
@Command
def reset(self):
def reset_error(self):
"""Reset error, set position to encoder"""
self.read_value()
if self.status[0] == self.Status.ERROR:
enc = self.encoder + self.offset
pos = self.value + self.offset
if abs(enc - pos) > self.encoder_tolerance:
if enc < 0:
# assume we have a rotation (not a linear motor)
while enc < 0:
self.offset += 360
enc += 360
self.set('P22S', enc * self.sign)
self.saveParameters()
self.set('P20S', enc * self.sign) # set pos to encoder
if self.status[0] == ERROR or self._reset_needed:
newenc = enc = self.encoder
pos = self.value
if abs(enc - pos) > self.encoder_tolerance or self.encoder_mode == 'NO':
if self.circumference:
# bring encoder value either within or as close as possible to the given range
if enc < self.target_min:
mid = self.target_min + 0.5 * min(self.target_max - self.target_min, self.circumference)
elif enc > self.target_max:
mid = self.target_max - 0.5 * min(self.target_max - self.target_min, self.circumference)
else:
mid = enc
newenc += round((mid - enc) / self.circumference) * self.circumference
if newenc != enc:
self.set('P22S', newenc * self.sign)
if newenc != pos:
self.set('P20S', newenc * self.sign) # set pos to encoder
self.read_value()
# self.status = self.Status.IDLE, ''
self._reset_needed = False
# TODO:
# '=E' electronics status
# '=I+' / '=I-': limit switches
# use P37 to determine if restarted