frappy_psi.attocube: add lock protection to hw access

in order to avoid sporadic timeout problems

Change-Id: I36f67ae72b65e9c1f3179cae942b0a7d94584e55
This commit is contained in:
zolliker 2024-03-27 17:08:24 +01:00
parent db29776dd5
commit 1715f95dd4
2 changed files with 248 additions and 149 deletions

View File

@ -17,34 +17,19 @@
# Markus Zolliker <markus.zolliker@psi.ch> # Markus Zolliker <markus.zolliker@psi.ch>
# ***************************************************************************** # *****************************************************************************
import sys
import time import time
import threading import threading
from frappy.core import Drivable, Parameter, Command, Property, \ from frappy.core import Drivable, Parameter, Command, Property, \
ERROR, WARN, BUSY, IDLE, nopoll, Limit, TupleOf ERROR, WARN, BUSY, IDLE, nopoll, Limit
# from frappy.features import HasSimpleOffset
from frappy.datatypes import IntRange, FloatRange, StringType, BoolType from frappy.datatypes import IntRange, FloatRange, StringType, BoolType
from frappy.errors import BadValueError from frappy.errors import BadValueError, HardwareError
sys.path.append('/home/l_samenv/Documents/anc350/Linux64/userlib/lib') from frappy_psi.pyanc350 import HwAxis
from PyANC350v4 import Positioner
class Stopped(RuntimeError): class Stopped(RuntimeError):
"""thread was stopped""" """thread was stopped"""
class DriveInfo:
def __init__(self, value, target, status=(BUSY, 'changed target')):
self.pos = value
self.direction = -1 if target < value else 1
self.target = target
self.status = status
self.thread = None
self.statusbits = ''
self.output = False
self.sensor_connected = False
class Axis(Drivable): class Axis(Drivable):
axis = Property('axis number', IntRange(0, 2), 0) axis = Property('axis number', IntRange(0, 2), 0)
value = Parameter('axis position', FloatRange(unit='deg')) value = Parameter('axis position', FloatRange(unit='deg'))
@ -53,19 +38,21 @@ class Axis(Drivable):
gear = Parameter('gear factor', FloatRange(), readonly=False, value=1) gear = Parameter('gear factor', FloatRange(), readonly=False, value=1)
tolerance = Parameter('positioning tolerance', FloatRange(0, unit='$'), tolerance = Parameter('positioning tolerance', FloatRange(0, unit='$'),
readonly=False, default=0.01) readonly=False, default=0.01)
output = Parameter('enable output', BoolType(), readonly=False) sensor_connected = Parameter('a sensor is connected', BoolType())
info = Parameter('axis info', StringType()) info = Parameter('axis info', StringType())
statusbits = Parameter('status bits', StringType()) statusbits = Parameter('status bits', StringType())
step_mode = Parameter('step mode (soft closed loop)', BoolType(), step_mode = Parameter('step mode (soft closed loop)', BoolType(),
default=False, readonly=False, group='step_mode') default=False, readonly=False, group='step_mode')
maxtry = Parameter('max. number of move tries', IntRange(), timeout = Parameter('timeout after no progress detected', FloatRange(0),
default=5, readonly=False, group='step_mode') default=1, readonly=False, group='step_mode')
steps_fwd = Parameter('forward steps / main unit', FloatRange(0), steps_fwd = Parameter('forward steps / main unit', FloatRange(0), unit='$/s',
default=0, readonly=False, group='step_mode') default=0, readonly=False, group='step_mode')
steps_bwd = Parameter('backward steps / main unit', FloatRange(0), steps_bwd = Parameter('backward steps / main unit', FloatRange(0, unit='$/s'),
default=0, readonly=False, group='step_mode') default=0, readonly=False, group='step_mode')
delay = Parameter('delay between tries within loop', FloatRange(0), delay = Parameter('delay between tries within loop', FloatRange(0, unit='s'),
readonly=False, default=0.05, group='step_mode') readonly=False, default=0.05, group='step_mode')
maxstep = Parameter('max. step duration', FloatRange(0, unit='s'),
default=0.25, readonly=False, group='step_mode')
prop = Parameter('factor for control loop', FloatRange(0, 1), prop = Parameter('factor for control loop', FloatRange(0, 1),
readonly=False, default=0.8, group='step_mode') readonly=False, default=0.8, group='step_mode')
target_min = Limit() target_min = Limit()
@ -78,71 +65,98 @@ class Axis(Drivable):
SCALES = {'deg': 1, 'm': 1, 'mm': 1000, 'um': 1000000, 'µm': 1000000} SCALES = {'deg': 1, 'm': 1, 'mm': 1000, 'um': 1000000, 'µm': 1000000}
_thread = None _thread = None
_moving_since = 0 _moving_since = 0
_output = False
_sensor_connected = False
_status = IDLE, '' _status = IDLE, ''
_statusbits = None _calib_range = None
_try_cnt = 0
_at_target = False
def initModule(self): def initModule(self):
super().initModule() super().initModule()
self._stopped = threading.Event() self._stopped = threading.Event()
# TODO: catch timeout self._hw = HwAxis(self.axis)
self._hw = Positioner()
def write_gear(self, value):
self._scale = self.SCALES[self.parameters['value'].datatype.unit] * self.gear
return value
def initialReads(self): def initialReads(self):
self.read_info() self.read_info()
super().initialReads() super().initialReads()
def shutdownModule(self):
self._hw.close()
def read_value(self):
if self._thread:
return self.value
try:
return self._read_pos()
except Stopped:
return self.value
def write_gear(self, value):
self._scale = self.SCALES[self.parameters['value'].datatype.unit] * self.gear
return value
def read_frequency(self):
return self._hw.getFrequency()
def write_frequency(self, value):
self._hw.setFrequency(value)
return self._hw.getFrequency()
def read_amplitude(self):
return self._hw.getAmplitude()
def write_amplitude(self, value):
self._hw.setAmplitude(value)
return self._hw.getAmplitude()
def read_statusbits(self):
self._get_status()
return self.statusbits
def _get_status(self): def _get_status(self):
"""get axis status """get axis status
- update _output and _sensor_connected - update self.sensor_connected and self.statusbits
- return <moving flag>, <error flag>, <reason> - return <moving flag>, <error flag>, <reason>
<moving flag> is True whn moving <moving flag> is True whn moving
<in_error> is True when in error <in_error> is True when in error
<reason> is an error text, when in error, 'at target' or '' otherwise <reason> is an error text, when in error, 'at target' or '' otherwise
""" """
statusbits = self._hw.getAxisStatus(self.axis) statusbits = self._hw.getAxisStatus()
self._sensor_connected, self._output, moving, at_target, fwd_stuck, bwd_stuck, error = statusbits self.sensor_connected, self._output, moving, at_target, fwd_stuck, bwd_stuck, error = statusbits
self._statusbits = statusbits self.statusbits = ''.join(k for k, v in zip('OTFBE', (self._output,) + statusbits[3:]) if v)
if error: if error:
return ERROR, 'other error' return ERROR, 'other error'
if bwd_stuck: if bwd_stuck:
return ERROR, 'end of travel backward' return ERROR, 'end of travel backward'
if bwd_stuck: if fwd_stuck:
return ERROR, 'end of travel forward' return ERROR, 'end of travel forward'
target_reached = at_target > self._at_target
self._at_target = at_target
if self._moving_since: if self._moving_since:
if time.time() < self._moving_since + 1: if target_reached:
return IDLE, 'at target'
if time.time() < self._moving_since + 0.25:
return BUSY, 'started' return BUSY, 'started'
if at_target: if at_target:
self.setFastPoll(False)
self._moving_since = 0
return IDLE, 'at target' return IDLE, 'at target'
if moving and self._output: if moving and self._output:
return BUSY, 'moving' return BUSY, 'moving'
if not self._output: return WARN, 'stopped by unknown reason'
return WARN, 'switched output off by unknown reason' if self._moving_since is False:
return WARN, 'switched moving off by unknown reason' return IDLE, 'stopped'
if not self.step_mode and at_target:
return IDLE, 'at target'
return IDLE, '' return IDLE, ''
def check_value(self, value, direction):
"""check if value allows moving in current direction"""
if direction > 0:
if value > self.target_max:
raise BadValueError('above upper limit')
elif value < self.target_min:
raise BadValueError('below lower limit')
def read_status(self): def read_status(self):
status = self._get_status() status = self._get_status()
self.statusbits = ''.join(k for k, v in zip('SOMTFBE', self._statusbits) if v)
if self.step_mode: if self.step_mode:
return self._status return self._status
if self._moving_since:
if status[0] != BUSY:
self._moving_since = 0
self.setFastPoll(False)
return status return status
def _wait(self, delay): def _wait(self, delay):
@ -150,73 +164,54 @@ class Axis(Drivable):
raise Stopped() raise Stopped()
def _read_pos(self): def _read_pos(self):
if not self.sensor_connected:
return 0
poslist = [] poslist = []
for i in range(9): for i in range(9):
if i: if i:
self._wait(0.001) self._wait(0.001)
poslist.append(self._hw.getPosition(self.axis) * self._scale) poslist.append(self._hw.getPosition() * self._scale)
self._poslist = sorted(poslist) self._poslist = sorted(poslist)
return self._poslist[len(poslist) // 2] # median return self._poslist[len(poslist) // 2] # median
def read_value(self):
if self._thread:
return self.value
return self._read_pos()
def read_frequency(self):
return self._hw.getFrequency(self.axis)
def write_frequency(self, value):
self._hw.setFrequency(self.axis, value)
return self._hw.getFrequency(self.axis)
def read_amplitude(self):
return self._hw.getAmplitude(self.axis)
def write_amplitude(self, value):
self._hw.setAmplitude(self.axis, value)
return self._hw.getAmplitude(self.axis)
def write_output(self, value):
if self._thread:
if not value:
self.stop()
else:
self._hw.setAxisOutput(self.axis, enable=value, autoDisable=0)
self._output = value
return value
def read_output(self):
return self._output
def _stop_thread(self):
if self._thread:
self._thread.join()
def _run_drive(self, target): def _run_drive(self, target):
self.value = self._read_pos() self.value = self._read_pos()
self.status = self._status = BUSY, 'drive by steps' self.status = self._status = BUSY, 'drive by steps'
cnt = self.maxtry deadline = time.time() + self.timeout
prev = 0 max_steps = self.maxstep * self.frequency
tol = self.tolerance
while True: while True:
for _ in range(2):
dif = target - self.value dif = target - self.value
if target > self._poslist[2] + tol: # 78th percentile steps_per_unit = self.steps_bwd if dif < 0 else self.steps_fwd
steps = max(1, min(dif, (dif + tol) * self.prop) * self.steps_fwd) tol = max(self.tolerance, 0.6 / steps_per_unit) # avoid a tolerance less than 60% of a step
elif target < self._poslist[-3] - tol: # 22th percentile if abs(dif) > tol * 3:
steps = min(-1, max(dif, (dif - tol) * self.prop) * self.steps_bwd) break
# extra wait time when already close
self._wait(2 * self.delay)
self.read_value()
status = None
if abs(dif) < tol:
status = IDLE, 'in tolerance'
elif self._poslist[2] <= target <= self._poslist[-3]: # target within noise
status = IDLE, 'within noise'
elif dif > 0:
steps = min(max_steps, min(dif, (dif + tol) * self.prop) * steps_per_unit)
else: else:
self._status = IDLE, 'in tolerance' steps = max(-max_steps, max(dif, (dif - tol) * self.prop) * steps_per_unit)
self.read_status() if status or steps == 0:
return self._status = status
if cnt <= 0: break
self._status = ERROR, 'too many tries' if round(steps) == 0: # this should not happen
self.read_status() self._status = WARN, 'steps=0'
return break
if abs(steps) > prev * 0.7:
cnt -= 1
prev = abs(steps)
self._move_steps(steps) self._move_steps(steps)
if self._step_size > self.prop * 0.25 / steps_per_unit:
# some progress happened
deadline = time.time() + self.timeout
elif time.time() > deadline:
self._status = WARN, 'timeout - no progress'
break
self.read_status()
def _thread_wrapper(self, func, *args): def _thread_wrapper(self, func, *args):
try: try:
@ -226,49 +221,73 @@ class Axis(Drivable):
except Exception as e: except Exception as e:
self._status = ERROR, f'{type(e).__name__} - {e}' self._status = ERROR, f'{type(e).__name__} - {e}'
finally: finally:
self._hw.setAxisOutput(self.axis, enable=0, autoDisable=0) self._hw.setAxisOutput(enable=0, autoDisable=0)
self.setFastPoll(False) self.setFastPoll(False)
self._stopped.clear()
self._thread = None self._thread = None
def _stop_thread(self):
if self._thread:
self._stopped.set()
self._thread.join()
def _start_thread(self, *args): def _start_thread(self, *args):
self._stop_thread()
thread = threading.Thread(target=self._thread_wrapper, args=args) thread = threading.Thread(target=self._thread_wrapper, args=args)
self._thread = thread self._thread = thread
thread.start() thread.start()
def write_target(self, target): def write_target(self, target):
if not self.sensor_connected:
raise HardwareError('no sensor connected')
self._stop_thread() self._stop_thread()
self._hw.setTargetRange(self.axis, self.tolerance / self._scale) self._hw.setTargetRange(self.tolerance / self._scale)
if self.step_mode: if self.step_mode:
self.status = BUSY, 'changed target' self.status = BUSY, 'changed target'
self._start_thread(self._run_drive, target) self._start_thread(self._run_drive, target)
else: else:
self.setFastPoll(True, 0.25) self._try_cnt = 0
self._hw.setTargetPosition(self.axis, target / self._scale) self.setFastPoll(True, self.fast_interval)
self._hw.setAxisOutput(self.axis, enable=0, autoDisable=0) self._hw.setTargetPosition(target / self._scale)
self._hw.startAutoMove(self.axis, enable=1, relative=0) self._hw.setAxisOutput(enable=1, autoDisable=0)
self._hw.startAutoMove(enable=1, relative=0)
self._moving_since = time.time() self._moving_since = time.time()
self.status = self._get_status() self.status = self._get_status()
return target return target
@Command() @Command()
def stop(self): def stop(self):
self._stopped.set() if self.step_mode:
self._stop_thread() self._stop_thread()
self._status = IDLE, 'stopped' self._status = IDLE, 'stopped'
elif self._moving_since:
self._moving_since = False # indicate stop
self.read_status() self.read_status()
@Command(IntRange()) @Command(IntRange())
def move(self, value): def move(self, steps):
"""relative move by number of steps""" """relative move by number of steps"""
self.check_value(self.value, value) self._stop_thread()
self._start_thread(self._run_move, value) self.read_value()
if steps > 0:
if self.value > self.target_max:
raise BadValueError('above upper limit')
elif self.value < self.target_min:
raise BadValueError('below lower limit')
self.status = self._status = BUSY, 'moving relative'
self._start_thread(self._run_move, steps)
def _run_move(self, steps):
self.setFastPoll(True, self.fast_interval)
self._move_steps(steps)
self.status = self._status = IDLE, ''
def _move_steps(self, steps): def _move_steps(self, steps):
steps = round(steps) steps = round(steps)
if not steps: if not steps:
return return
previous = self._read_pos() previous = self._read_pos()
self._hw.setAxisOutput(self.axis, enable=1, autoDisable=0) self._hw.setAxisOutput(enable=1, autoDisable=0)
# wait for output is really on # wait for output is really on
for i in range(100): for i in range(100):
self._wait(0.001) self._wait(0.001)
@ -277,66 +296,101 @@ class Axis(Drivable):
break break
else: else:
raise ValueError('can not switch on output') raise ValueError('can not switch on output')
for i in range(abs(steps)): for cnt in range(abs(steps)):
self._hw.setAxisOutput(enable=1, autoDisable=0)
if not self._thread: if not self._thread:
raise Stopped('stopped') raise Stopped('stopped')
self._hw.startSingleStep(self.axis, steps < 0) self._hw.startSingleStep(steps < 0)
self._wait(1 / self.frequency) self._wait(1 / self.frequency)
self._get_status() self._get_status()
if not self._output and i: if cnt and not self._output:
steps = i steps = cnt
self._step_size = 0
break break
self._wait(self.delay) self._wait(self.delay)
self.value = pos = self._read_pos() self.value = self._read_pos()
if self._output: self._step_size = (self.value - previous) / steps
self._step_size = (pos - previous) / steps
def _run_move(self, steps):
self.setFastPoll(True, self.fast_interval)
self._move_steps(steps)
@Command(IntRange(0)) @Command(IntRange(0))
def calib_steps(self, delta): def calib_steps(self, delta):
"""relative move by number of steps""" """calibrate steps_fwd and steps_bwd using <delta> steps forwards and backwards"""
if not self.sensor_connected:
raise HardwareError('no sensor connected')
self._stop_thread() self._stop_thread()
self._status = BUSY, 'calibrate step size'
self.read_status()
self._start_thread(self._run_calib, delta) self._start_thread(self._run_calib, delta)
def _run_calib(self, steps): def _run_calib(self, steps):
self.target = self.value = self._read_pos() self.value = self._read_pos()
if self._calib_range is None or abs(self.target - self.value) > self._calib_range:
self.target = self.value
maxfwd = 0 maxfwd = 0
maxbwd = 0 maxbwd = 0
cntfwd = 0 cntfwd = 0
cntbwd = 0 cntbwd = 0
self._calib_range = 0
for i in range(10): for i in range(10):
if self.value < self.target: if self.value <= self.target:
self._status = BUSY, 'move forwards'
self.read_status()
self._move_steps(steps) self._move_steps(steps)
while True:
self._move_steps(steps) self._move_steps(steps)
while self.value < self.target: if self._step_size and self._output:
self._move_steps(steps)
if self._step_size:
maxfwd = max(maxfwd, self._step_size) maxfwd = max(maxfwd, self._step_size)
cntfwd += 1 cntfwd += 1
if self.value > self.target:
break
else: else:
self._status = BUSY, 'move backwards'
self.read_status()
self._move_steps(-steps) self._move_steps(-steps)
self._move_steps(-steps) while True:
while self.value > self.target:
self._move_steps(-steps) self._move_steps(-steps)
if self._step_size: if self._step_size:
maxbwd = max(maxbwd, self._step_size) maxbwd = max(maxbwd, self._step_size)
cntbwd += 1 cntbwd += 1
if self.value < self.target:
break
# keep track how far we had to go for calibration
self._calib_range = max(self._calib_range, abs(self.value - self.target))
if cntfwd >= 3 and cntbwd >= 3: if cntfwd >= 3 and cntbwd >= 3:
self.steps_fwd = 1 / maxfwd self.steps_fwd = 1 / maxfwd
self.steps_bwd = 1 / maxbwd self.steps_bwd = 1 / maxbwd
self._run_drive()
self._status = IDLE, 'calib step size done' self._status = IDLE, 'calib step size done'
break break
else: else:
self._status = WARN, 'calib step size failed' self._status = WARN, 'calib step size failed'
self.read_status()
# def _measure_cap(self, event):
# """do cap measurement in a separate thread, as it may time out"""
# axistype = ['linear', 'gonio', 'rotator'][self._hw.getActuatorType()]
# name = self._hw.getActuatorName()
# self._info = f'{name} {axistype} timeout measuring capacitance'
# for _ in range(5):
# try:
# cap = self._hw.measureCapacitance() * 1e9
# break
# except Exception:
# pass
# self.info = f'{name} {axistype} {cap:.3g}nF'
# event.set()
@nopoll @nopoll
def read_info(self): def read_info(self):
"""read info from controller""" """read info from controller"""
cap = self._hw.measureCapacitance(self.axis) * 1e9 axistype = ['linear', 'gonio', 'rotator'][self._hw.getActuatorType()]
axistype = ['linear', 'gonio', 'rotator'][self._hw.getActuatorType(self.axis)] name = self._hw.getActuatorName()
return '%s %s %.3gnF' % (self._hw.getActuatorName(self.axis), axistype, cap) cap = self._hw.measureCapacitance() * 1e9
return f'{name} {axistype} {cap:.3g}nF'
# self._hw = Positioner()
# event = threading.Event()
# self._start_thread(self._measure_cap, event)
# t = time.time()
# if not event.wait(0.25):
# print('CAP TIMEOUT')
# return self._info
# print('CAP', time.time() - t)
# return self.info

45
frappy_psi/pyanc350.py Normal file
View File

@ -0,0 +1,45 @@
"""wrapper around PyANC350v4
main purpose: make Positioner thread safe
without this, when accessing the device from different threads, timeouts may appear
allows also to omit axis in method arguments
"""
import inspect
import threading
# make sure PYTHONPATH points to the directory of PyANC350v4.py
# e.g. in /home/l_samenv/Documents/anc350/Linux64/userlib/lib
from PyANC350v4 import Positioner
class HwAxis:
hw = None
lock = None
axes = set()
def __init__(self, axisNo):
self.axisNo = axisNo
if not self.axes:
self.axes.add(axisNo)
HwAxis.hw = Positioner()
HwAxis.lock = threading.Lock()
super().__init__()
def close(self):
self.axes.discard(self.axisNo)
if not self.axes:
self.hw.disconnect()
# wrap methods from Positioner and insert to HwAxis
for name, method in Positioner.__dict__.items():
try:
arguments = inspect.getfullargspec(method).args
except TypeError as e:
continue
if arguments[0:2] == ['self', 'axisNo']:
def wrapper(self, *args, _method=method, **kwds):
with self.lock:
return _method(self.hw, self.axisNo, *args, **kwds)
setattr(HwAxis, name, wrapper)