frappy/frappy_psi/attocube.py
Markus Zolliker 1715f95dd4 frappy_psi.attocube: add lock protection to hw access
in order to avoid sporadic timeout problems

Change-Id: I36f67ae72b65e9c1f3179cae942b0a7d94584e55
2024-03-27 17:08:24 +01:00

397 lines
15 KiB
Python

# *****************************************************************************
# This program is free software; you can redistribute it and/or modify it under
# the terms of the GNU General Public License as published by the Free Software
# Foundation; either version 2 of the License, or (at your option) any later
# version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
# FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
# details.
#
# You should have received a copy of the GNU General Public License along with
# this program; if not, write to the Free Software Foundation, Inc.,
# 59 Temple Place, Suite 330, Boston, MA 02111-1307 USA
#
# Module authors:
# Markus Zolliker <markus.zolliker@psi.ch>
# *****************************************************************************
import time
import threading
from frappy.core import Drivable, Parameter, Command, Property, \
ERROR, WARN, BUSY, IDLE, nopoll, Limit
from frappy.datatypes import IntRange, FloatRange, StringType, BoolType
from frappy.errors import BadValueError, HardwareError
from frappy_psi.pyanc350 import HwAxis
class Stopped(RuntimeError):
"""thread was stopped"""
class Axis(Drivable):
axis = Property('axis number', IntRange(0, 2), 0)
value = Parameter('axis position', FloatRange(unit='deg'))
frequency = Parameter('frequency', FloatRange(1, unit='Hz'), readonly=False)
amplitude = Parameter('amplitude', FloatRange(0, unit='V'), readonly=False)
gear = Parameter('gear factor', FloatRange(), readonly=False, value=1)
tolerance = Parameter('positioning tolerance', FloatRange(0, unit='$'),
readonly=False, default=0.01)
sensor_connected = Parameter('a sensor is connected', BoolType())
info = Parameter('axis info', StringType())
statusbits = Parameter('status bits', StringType())
step_mode = Parameter('step mode (soft closed loop)', BoolType(),
default=False, readonly=False, group='step_mode')
timeout = Parameter('timeout after no progress detected', FloatRange(0),
default=1, readonly=False, group='step_mode')
steps_fwd = Parameter('forward steps / main unit', FloatRange(0), unit='$/s',
default=0, readonly=False, group='step_mode')
steps_bwd = Parameter('backward steps / main unit', FloatRange(0, unit='$/s'),
default=0, readonly=False, group='step_mode')
delay = Parameter('delay between tries within loop', FloatRange(0, unit='s'),
readonly=False, default=0.05, group='step_mode')
maxstep = Parameter('max. step duration', FloatRange(0, unit='s'),
default=0.25, readonly=False, group='step_mode')
prop = Parameter('factor for control loop', FloatRange(0, 1),
readonly=False, default=0.8, group='step_mode')
target_min = Limit()
target_max = Limit()
fast_interval = 0.25
_hw = None
_scale = 1 # scale for custom units
SCALES = {'deg': 1, 'm': 1, 'mm': 1000, 'um': 1000000, 'µm': 1000000}
_thread = None
_moving_since = 0
_status = IDLE, ''
_calib_range = None
_try_cnt = 0
_at_target = False
def initModule(self):
super().initModule()
self._stopped = threading.Event()
self._hw = HwAxis(self.axis)
def initialReads(self):
self.read_info()
super().initialReads()
def shutdownModule(self):
self._hw.close()
def read_value(self):
if self._thread:
return self.value
try:
return self._read_pos()
except Stopped:
return self.value
def write_gear(self, value):
self._scale = self.SCALES[self.parameters['value'].datatype.unit] * self.gear
return value
def read_frequency(self):
return self._hw.getFrequency()
def write_frequency(self, value):
self._hw.setFrequency(value)
return self._hw.getFrequency()
def read_amplitude(self):
return self._hw.getAmplitude()
def write_amplitude(self, value):
self._hw.setAmplitude(value)
return self._hw.getAmplitude()
def read_statusbits(self):
self._get_status()
return self.statusbits
def _get_status(self):
"""get axis status
- update self.sensor_connected and self.statusbits
- return <moving flag>, <error flag>, <reason>
<moving flag> is True whn moving
<in_error> is True when in error
<reason> is an error text, when in error, 'at target' or '' otherwise
"""
statusbits = self._hw.getAxisStatus()
self.sensor_connected, self._output, moving, at_target, fwd_stuck, bwd_stuck, error = statusbits
self.statusbits = ''.join(k for k, v in zip('OTFBE', (self._output,) + statusbits[3:]) if v)
if error:
return ERROR, 'other error'
if bwd_stuck:
return ERROR, 'end of travel backward'
if fwd_stuck:
return ERROR, 'end of travel forward'
target_reached = at_target > self._at_target
self._at_target = at_target
if self._moving_since:
if target_reached:
return IDLE, 'at target'
if time.time() < self._moving_since + 0.25:
return BUSY, 'started'
if at_target:
return IDLE, 'at target'
if moving and self._output:
return BUSY, 'moving'
return WARN, 'stopped by unknown reason'
if self._moving_since is False:
return IDLE, 'stopped'
if not self.step_mode and at_target:
return IDLE, 'at target'
return IDLE, ''
def read_status(self):
status = self._get_status()
if self.step_mode:
return self._status
if self._moving_since:
if status[0] != BUSY:
self._moving_since = 0
self.setFastPoll(False)
return status
def _wait(self, delay):
if self._stopped.wait(delay):
raise Stopped()
def _read_pos(self):
if not self.sensor_connected:
return 0
poslist = []
for i in range(9):
if i:
self._wait(0.001)
poslist.append(self._hw.getPosition() * self._scale)
self._poslist = sorted(poslist)
return self._poslist[len(poslist) // 2] # median
def _run_drive(self, target):
self.value = self._read_pos()
self.status = self._status = BUSY, 'drive by steps'
deadline = time.time() + self.timeout
max_steps = self.maxstep * self.frequency
while True:
for _ in range(2):
dif = target - self.value
steps_per_unit = self.steps_bwd if dif < 0 else self.steps_fwd
tol = max(self.tolerance, 0.6 / steps_per_unit) # avoid a tolerance less than 60% of a step
if abs(dif) > tol * 3:
break
# extra wait time when already close
self._wait(2 * self.delay)
self.read_value()
status = None
if abs(dif) < tol:
status = IDLE, 'in tolerance'
elif self._poslist[2] <= target <= self._poslist[-3]: # target within noise
status = IDLE, 'within noise'
elif dif > 0:
steps = min(max_steps, min(dif, (dif + tol) * self.prop) * steps_per_unit)
else:
steps = max(-max_steps, max(dif, (dif - tol) * self.prop) * steps_per_unit)
if status or steps == 0:
self._status = status
break
if round(steps) == 0: # this should not happen
self._status = WARN, 'steps=0'
break
self._move_steps(steps)
if self._step_size > self.prop * 0.25 / steps_per_unit:
# some progress happened
deadline = time.time() + self.timeout
elif time.time() > deadline:
self._status = WARN, 'timeout - no progress'
break
self.read_status()
def _thread_wrapper(self, func, *args):
try:
func(*args)
except Stopped as e:
self._status = IDLE, str(e)
except Exception as e:
self._status = ERROR, f'{type(e).__name__} - {e}'
finally:
self._hw.setAxisOutput(enable=0, autoDisable=0)
self.setFastPoll(False)
self._stopped.clear()
self._thread = None
def _stop_thread(self):
if self._thread:
self._stopped.set()
self._thread.join()
def _start_thread(self, *args):
self._stop_thread()
thread = threading.Thread(target=self._thread_wrapper, args=args)
self._thread = thread
thread.start()
def write_target(self, target):
if not self.sensor_connected:
raise HardwareError('no sensor connected')
self._stop_thread()
self._hw.setTargetRange(self.tolerance / self._scale)
if self.step_mode:
self.status = BUSY, 'changed target'
self._start_thread(self._run_drive, target)
else:
self._try_cnt = 0
self.setFastPoll(True, self.fast_interval)
self._hw.setTargetPosition(target / self._scale)
self._hw.setAxisOutput(enable=1, autoDisable=0)
self._hw.startAutoMove(enable=1, relative=0)
self._moving_since = time.time()
self.status = self._get_status()
return target
@Command()
def stop(self):
if self.step_mode:
self._stop_thread()
self._status = IDLE, 'stopped'
elif self._moving_since:
self._moving_since = False # indicate stop
self.read_status()
@Command(IntRange())
def move(self, steps):
"""relative move by number of steps"""
self._stop_thread()
self.read_value()
if steps > 0:
if self.value > self.target_max:
raise BadValueError('above upper limit')
elif self.value < self.target_min:
raise BadValueError('below lower limit')
self.status = self._status = BUSY, 'moving relative'
self._start_thread(self._run_move, steps)
def _run_move(self, steps):
self.setFastPoll(True, self.fast_interval)
self._move_steps(steps)
self.status = self._status = IDLE, ''
def _move_steps(self, steps):
steps = round(steps)
if not steps:
return
previous = self._read_pos()
self._hw.setAxisOutput(enable=1, autoDisable=0)
# wait for output is really on
for i in range(100):
self._wait(0.001)
self._get_status()
if self._output:
break
else:
raise ValueError('can not switch on output')
for cnt in range(abs(steps)):
self._hw.setAxisOutput(enable=1, autoDisable=0)
if not self._thread:
raise Stopped('stopped')
self._hw.startSingleStep(steps < 0)
self._wait(1 / self.frequency)
self._get_status()
if cnt and not self._output:
steps = cnt
break
self._wait(self.delay)
self.value = self._read_pos()
self._step_size = (self.value - previous) / steps
@Command(IntRange(0))
def calib_steps(self, delta):
"""calibrate steps_fwd and steps_bwd using <delta> steps forwards and backwards"""
if not self.sensor_connected:
raise HardwareError('no sensor connected')
self._stop_thread()
self._status = BUSY, 'calibrate step size'
self.read_status()
self._start_thread(self._run_calib, delta)
def _run_calib(self, steps):
self.value = self._read_pos()
if self._calib_range is None or abs(self.target - self.value) > self._calib_range:
self.target = self.value
maxfwd = 0
maxbwd = 0
cntfwd = 0
cntbwd = 0
self._calib_range = 0
for i in range(10):
if self.value <= self.target:
self._status = BUSY, 'move forwards'
self.read_status()
self._move_steps(steps)
while True:
self._move_steps(steps)
if self._step_size and self._output:
maxfwd = max(maxfwd, self._step_size)
cntfwd += 1
if self.value > self.target:
break
else:
self._status = BUSY, 'move backwards'
self.read_status()
self._move_steps(-steps)
while True:
self._move_steps(-steps)
if self._step_size:
maxbwd = max(maxbwd, self._step_size)
cntbwd += 1
if self.value < self.target:
break
# keep track how far we had to go for calibration
self._calib_range = max(self._calib_range, abs(self.value - self.target))
if cntfwd >= 3 and cntbwd >= 3:
self.steps_fwd = 1 / maxfwd
self.steps_bwd = 1 / maxbwd
self._status = IDLE, 'calib step size done'
break
else:
self._status = WARN, 'calib step size failed'
self.read_status()
# def _measure_cap(self, event):
# """do cap measurement in a separate thread, as it may time out"""
# axistype = ['linear', 'gonio', 'rotator'][self._hw.getActuatorType()]
# name = self._hw.getActuatorName()
# self._info = f'{name} {axistype} timeout measuring capacitance'
# for _ in range(5):
# try:
# cap = self._hw.measureCapacitance() * 1e9
# break
# except Exception:
# pass
# self.info = f'{name} {axistype} {cap:.3g}nF'
# event.set()
@nopoll
def read_info(self):
"""read info from controller"""
axistype = ['linear', 'gonio', 'rotator'][self._hw.getActuatorType()]
name = self._hw.getActuatorName()
cap = self._hw.measureCapacitance() * 1e9
return f'{name} {axistype} {cap:.3g}nF'
# self._hw = Positioner()
# event = threading.Event()
# self._start_thread(self._measure_cap, event)
# t = time.time()
# if not event.wait(0.25):
# print('CAP TIMEOUT')
# return self._info
# print('CAP', time.time() - t)
# return self.info