Files
sinqepicsapp/sinqEPICSApp/src/C804Axis.cpp

478 lines
18 KiB
C++

#include "C804Axis.h"
#include "C804Controller.h"
#include <cmath>
#include <errlog.h>
#include <limits>
#include <math.h>
#include <string.h>
#include <unistd.h>
C804Axis::C804Axis(C804Controller *pC, int axisNo)
: SINQAxis(pC, axisNo), pC_(pC) {
/*
The superclass constructor SINQAxis calls in turn its superclass constructor
asynMotorAxis. In the latter, a pointer to the constructed object this is
stored inside the array pAxes_:
pC->pAxes_[axisNo] = this;
Therefore, the axes are managed by the controller pC. See C804Controller.cpp
for further explanation. If axisNo is out of bounds, asynMotorAxis prints an
error (see
https://github.com/epics-modules/motor/blob/master/motorApp/MotorSrc/asynMotorAxis.cpp,
line 40). However, we want the IOC creation to stop completely, since this
is a configuration error.
*/
if (axisNo >= pC->numAxes_) {
exit(-1);
}
last_position_steps_ = 0;
last_poll_ = 0.0;
}
C804Axis::~C804Axis(void) {
// Since the controller memory is managed somewhere else, we don't need to
// clean up the pointer pC here.
}
/*
The polling function informs us about the state of the axis, in particular if it
is currently moving. It is called periodically, with the period defined by
the controller constructor arguments idlePollPeriod and movingPollPeriod
depending on the current axis state.
*/
asynStatus C804Axis::poll(bool *moving) {
// Local variable declaration
static const char *functionName = "C804Axis::poll";
// The poll function is just a wrapper around poll_no_param_lib_update and
// handles mainly the callParamCallbacks() function
asynStatus status_poll = C804Axis::poll_no_param_lib_update(moving);
// According to the function documentation of asynMotorAxis::poll, this
// function should be called at the end of a poll implementation.
asynStatus status_callback = callParamCallbacks();
if (status_callback != asynSuccess) {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: Updating the parameter library failed for axis %d\n",
functionName, axisNo_);
return status_callback;
} else {
return status_poll;
}
}
// Perform the actual poll
asynStatus C804Axis::poll_no_param_lib_update(bool *moving) {
// Local variable declaration
static const char *functionName = "C804Axis::poll";
asynStatus status;
int axis_status = 0;
// The controller returns the position and velocity in encoder steps.
// This value needs to be converted in user units (engineering units EGU)
// via the record field MRES of the motor record. This field has already
// been read by the constructor into the member variable
// motorRecResolution_. To go from steps to user units, multiply with
// motorRecResolution_ Example: If 10 steps correspond to 1 mm, MRES should
// be 0.1.
int position_error_steps = 0;
int motor_position_steps = 0;
int motor_velocity_steps = 0;
int programmed_motor_velocity_steps = 0;
double position_error = .0;
double motor_position = .0;
double motor_velocity = .0;
double programmed_motor_velocity = .0;
// The buffer sizes for command and response are defined in the controller
// (see the corresponding source code files)
char command[pC_->C804_MAXBUF_], response[pC_->C804_MAXBUF_];
/*
Cancel the poll if the last poll has "just" happened.
*/
if (time(NULL) < last_poll_ + 0.5 * pC_->movingPollPeriod_) {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_WARNING,
"%s: Aborted poll since the last poll for axis %d happened a "
"short time ago\n",
functionName, axisNo_);
return asynSuccess;
} else {
last_poll_ = time(NULL);
}
/*
The parameter motorRecResolution_ is coupled to the field MRES of the motor
record in the following manner:
- In sinq_asyn_motor.db, the PV (motor_record_pv_name)MOTOR_REC_RESOLUTION
is defined as a copy of the field (motor_record_pv_name).MRES:
record(ao,"$(P)$(M):Resolution") {
field(DESC, "$(M) resolution")
field(DOL, "$(P)$(M).MRES CP MS")
field(OMSL, "closed_loop")
field(DTYP, "asynFloat64")
field(OUT, "@asyn($(PORT),$(ADDR))MOTOR_REC_RESOLUTION")
field(PREC, "$(PREC)")
}
- The PV name MOTOR_REC_RESOLUTION is coupled in asynMotorController.h to
the constant motorRecResolutionString
- ... which in turn is assigned to motorRecResolution_ in
asynMotorController.cpp This way of making the field visible to the driver
is described here: https://epics.anl.gov/tech-talk/2020/msg00378.php This is
a one-way coupling, changes to the parameter library via setDoubleParam are
NOT transferred to (motor_record_pv_name).MRES or to
(motor_record_pv_name):Resolution.
NOTE: This function must not be called in the constructor (e.g. in order to
save the read result to the member variable earlier), since the parameter
library is updated at a later stage!
*/
pC_->getDoubleParam(axisNo_, pC_->motorRecResolution_,
&motorRecResolution_);
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_FLOW, "Poll axis %d\n", axisNo_);
/*
We know that the motor resolution must not be zero. During the startup of
the IOC, polls can happen before the record is fully initialized. In that
case, all values are zero.
*/
if (motorRecResolution_ == 0) {
return asynError;
}
/*
Assume that the axis does not have a status problem. If it does have a
problem, this value will be overwritten further below. Setting this value
in itself does not trigger a callback immediately, any callbacks
(such as e.g. updating camonitor) are done in callParamCallbacks() at the
end of this function.
*/
setIntegerParam(pC_->motorStatusProblem_, false);
// Read out the position error of the axis (delta of target position to
// actual position)
snprintf(command, pC_->C804_MAXBUF_ - 1, "%dTE", axisNo_);
status = pC_->lowLevelWriteRead(axisNo_, command, response, true);
if (status == asynSuccess) {
int parsed_axis;
sscanf(response, "%2dE%10d", &parsed_axis, &position_error_steps);
// Scale from the encoder resultion to user units
position_error = double(position_error_steps) * motorRecResolution_;
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_FLOW,
"%s: Axis %d, response %s, position error %f\n", functionName,
axisNo_, response, position_error);
} else {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: Reading the position error failed for axis %d\n",
functionName, axisNo_);
setIntegerParam(pC_->motorStatusProblem_, true);
// Stop the evaluation prematurely
return status;
}
// Read the current position.
snprintf(command, this->pC_->C804_MAXBUF_ - 1, "%dTP", this->axisNo_);
status =
this->pC_->lowLevelWriteRead(this->axisNo_, command, response, true);
if (status == asynSuccess) {
int parsed_axis;
sscanf(response, "%2dP%10d", &parsed_axis, &motor_position_steps);
// Scale from the encoder resultion to user units
motor_position = double(motor_position_steps) * motorRecResolution_;
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_FLOW,
"%s: Axis %d, response %s, position %f\n", functionName,
axisNo_, response, motor_position);
setDoubleParam(pC_->motorPosition_, motor_position);
setDoubleParam(pC_->motorEncoderPosition_, motor_position);
} else {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: Reading the position failed for axis %d\n", functionName,
axisNo_);
setIntegerParam(pC_->motorStatusProblem_, true);
return status;
}
// Read the current velocity
snprintf(command, this->pC_->C804_MAXBUF_ - 1, "%dTV", this->axisNo_);
status =
this->pC_->lowLevelWriteRead(this->axisNo_, command, response, true);
if (status == asynSuccess) {
int parsed_axis;
sscanf(response, "%2dV%10d", &parsed_axis, &motor_velocity_steps);
// Scale from the encoder resultion to user units
motor_velocity = double(motor_velocity_steps) * motorRecResolution_;
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_FLOW,
"%s: Axis %d, response %s, velocity %f\n", functionName,
axisNo_, response, motor_velocity);
} else {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: Reading the velocity failed for axis %d\n", functionName,
axisNo_);
setIntegerParam(pC_->motorStatusProblem_, true);
return status;
}
// Read the programmed velocity
snprintf(command, this->pC_->C804_MAXBUF_ - 1, "%dTY", this->axisNo_);
status =
this->pC_->lowLevelWriteRead(this->axisNo_, command, response, true);
if (status == asynSuccess) {
int parsed_axis;
sscanf(response, "%2dY%10d", &parsed_axis,
&programmed_motor_velocity_steps);
// Scale from the encoder resultion to user units
programmed_motor_velocity =
double(programmed_motor_velocity_steps) * motorRecResolution_;
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_FLOW,
"%s: Axis %d, response %s, programmed velocity %f\n",
functionName, axisNo_, response, programmed_motor_velocity);
} else {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: Reading the programmed velocity failed for axis %d\n",
functionName, axisNo_);
setIntegerParam(pC_->motorStatusProblem_, true);
return status;
}
// Read the motor status
snprintf(command, pC_->C804_MAXBUF_ - 1, "%dTS", axisNo_);
status = pC_->lowLevelWriteRead(this->axisNo_, command, response, true);
if (status == asynSuccess) {
int parsed_axis;
sscanf(response, "%2dS%10d", &parsed_axis, &axis_status);
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_FLOW,
"%s: Axis %d, response %s, status %d\n", functionName,
axisNo_, response, axis_status);
} else {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: Reading the motor status %d\n", functionName, axisNo_);
setIntegerParam(pC_->motorStatusProblem_, true);
// Stop prematurely
return status;
}
// Check if the axis is enabled by reading out bit 2 (see
// https://stackoverflow.com/questions/2249731/how-do-i-get-bit-by-bit-data-from-an-integer-value-in-c)
int mask = 1 << 2;
int masked_n = axis_status & mask;
// Is 1 if the axis is disabled
int disabled = masked_n >> 2;
if (disabled) {
enabled_ = false;
} else {
enabled_ = true;
}
/*
Determine if the motor is moving. This is determined by the following
criteria: 1) The motor position changes from poll to poll 2) The motor is
enabled
*/
*moving = enabled_ && motor_position_steps != this->last_position_steps_;
// Update the cached_position
this->last_position_steps_ = motor_position_steps;
/*
Calculate the time the motor should need to reach its target, based on the
programmed velocity and compare this to the actual time the motor has spent
moving. If it has spent too much time in a moving state without reaching
the target, stop the motor and return an error.
*/
if (*moving) {
int motorStatusMoving = 0;
pC_->getIntegerParam(axisNo_, pC_->motorStatusMoving_,
&motorStatusMoving);
// motor is moving, but didn't move in the last poll
if (motorStatusMoving == 0) {
time_t current_time = time(NULL);
// Factor 2 of the calculated moving time
estimatedArrivalTime_ =
current_time + std::ceil(2 * std::fabs(position_error) /
programmed_motor_velocity);
} else {
// /*
// Motor is moving for a longer time than it should: Stop it
// */
// if (time(NULL) > estimatedArrivalTime_)
// {
// snprintf(command, pC_->C804_MAXBUF_ - 1, "%dST", axisNo_);
// status = pC_->lowLevelWriteRead(axisNo_, command, response);
// asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR, "%s: Stopped
// axis %d since it moved for double the time it should to reach
// its target\n", functionName, axisNo_);
// }
}
}
/*
One of these parameters (or both) are used to set (PV-name).DMOV.
This PV tells EPICS whether the axis / motor is currently moving or not.
*/
setIntegerParam(pC_->motorStatusMoving_, *moving);
setIntegerParam(pC_->motorStatusDone_, !(*moving));
callParamCallbacks();
return status;
}
asynStatus C804Axis::move(double position, int relative, double minVelocity,
double maxVelocity, double acceleration) {
asynStatus status;
static const char *functionName = "C804Axis::move";
char command[pC_->C804_MAXBUF_], response[pC_->C804_MAXBUF_];
double position_c_units = 0.0; // Controller units
int position_steps = 0;
// Convert from user coordinates (EGU) to controller coordinates (steps).
// Check for overflow
if (motorRecResolution_ == 0.0) {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: MRES must not be zero. Movement is aborted",
functionName);
return asynError;
}
position_c_units = position / motorRecResolution_;
// Check for overflow during the division
if (position_c_units * motorRecResolution_ != position) {
asynPrint(
pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: could not convert from user units (%f) to controller units "
"(user units divided by resolution MRES %f) due to overflow.",
functionName, position, motorRecResolution_);
return asynError;
}
// Steps can only be integer values => cast to integer while checking for
// overflow
if (std::numeric_limits<int>::max() < position_c_units ||
std::numeric_limits<int>::min() > position_c_units) {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: target position %f cannot be converted to int "
"(overflow). Check target value %f and MRES %f",
functionName, position_c_units, position_c_units,
motorRecResolution_);
return asynError;
}
position_steps = static_cast<int>(position_c_units);
// Convert from relative to absolute values
if (relative) {
position_steps += last_position_steps_;
}
// If the axis is currently disabled, enable it
if (!enabled_) {
snprintf(command, pC_->C804_MAXBUF_ - 1, "%dGO", axisNo_);
status =
pC_->lowLevelWriteRead(this->axisNo_, command, response, false);
if (status != asynSuccess) {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: Enabling axis %d\n failed", functionName, axisNo_);
return status;
}
}
// Start movement
snprintf(command, pC_->C804_MAXBUF_ - 1, "%dMA%d", axisNo_, position_steps);
status = pC_->lowLevelWriteRead(this->axisNo_, command, response, false);
if (status != asynSuccess) {
asynPrint(pC_->pasynUserSelf, ASYN_TRACE_ERROR,
"%s: Setting the target position %d failed for axis %d\n",
functionName, position_steps, axisNo_);
setIntegerParam(pC_->motorStatusProblem_, true);
return status;
}
setIntegerParam(pC_->motorStatusProblem_, false);
// Reset the error flag
errorReported_ = 0;
return status;
}
asynStatus C804Axis::moveVelocity(double min_velocity, double max_velocity,
double acceleration) {
static const char *functionName = "C804Axis::moveVelocity";
return asynError;
}
asynStatus C804Axis::stop(double acceleration) {
asynStatus status = asynSuccess;
static const char *functionName = "C804Axis::stop";
char command[pC_->C804_MAXBUF_], response[pC_->C804_MAXBUF_];
bool moving = false;
poll(&moving);
if (moving) {
// ST = Stop
snprintf(command, pC_->C804_MAXBUF_ - 1, "%dST", axisNo_);
status = pC_->lowLevelWriteRead(axisNo_, command, response, false);
asynPrint(pC_->pasynUserSelf, ASYN_TRACEIO_DEVICE, "%s: Stop axis %d\n",
functionName, axisNo_);
}
return status;
}
asynStatus C804Axis::home(double minVelocity, double maxVelocity,
double acceleration, int forwards) {
asynStatus status = asynSuccess;
static const char *functionName = "C804Axis::home";
char command[pC_->C804_MAXBUF_], response[pC_->C804_MAXBUF_];
snprintf(command, pC_->C804_MAXBUF_ - 1, "%dFE0",
axisNo_); // Home to the upper limit of the axis (25 mm)
status = pC_->lowLevelWriteRead(axisNo_, command, response, false);
asynPrint(pC_->pasynUserSelf, ASYN_TRACEIO_DEVICE, "%s: Homing axis %d\n",
functionName, axisNo_);
return status;
}
/**
If on is 0, disable the motor, otherwise enable it.
*/
asynStatus C804Axis::enable(int on) {
asynStatus status = asynSuccess;
static const char *functionName = "C804Axis::enable";
char command[pC_->C804_MAXBUF_], response[pC_->C804_MAXBUF_];
if (on == 0) {
snprintf(command, pC_->C804_MAXBUF_ - 1, "%dMF", axisNo_);
status = pC_->lowLevelWriteRead(axisNo_, command, response, false);
asynPrint(pC_->pasynUserSelf, ASYN_TRACEIO_DEVICE,
"%s: Disable axis %d\n", functionName, axisNo_);
} else {
snprintf(command, pC_->C804_MAXBUF_ - 1, "%dMN", axisNo_);
status = pC_->lowLevelWriteRead(axisNo_, command, response, false);
asynPrint(pC_->pasynUserSelf, ASYN_TRACEIO_DEVICE,
"%s: Enable axis %d\n", functionName, axisNo_);
}
return status;
}