Compare commits
4 Commits
| Author | SHA1 | Date | |
|---|---|---|---|
|
|
c70d7759d0 | ||
|
|
21fa774c95 | ||
|
|
4f6e75915a | ||
|
|
25f47e5e23 |
@@ -1,5 +1,5 @@
|
||||
[build-system]
|
||||
requires = ["setuptools >= 77.0.3"]
|
||||
requires = ["setuptools"]# >= 77.0.3"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
||||
[tool.setuptools]
|
||||
@@ -8,7 +8,7 @@ package-dir = {"" = "src"}
|
||||
|
||||
[project]
|
||||
name = "AMBER-ds4ms"
|
||||
version = "0.0.5"
|
||||
version = "1.0.1"
|
||||
dependencies = [
|
||||
"numpy>=1.14",
|
||||
"scipy>=1.7",
|
||||
@@ -27,7 +27,7 @@ maintainers = [
|
||||
]
|
||||
description = "AMBER: Algorithm for Multiplexing spectrometer Background Estimation with Rotation-independence"
|
||||
readme = "README.md"
|
||||
license-files = ["LICENSE"]
|
||||
#license-files = ["LICENSE"]
|
||||
keywords = ["Machine Learning", "Signal Segmentation", "Background Determination"]
|
||||
classifiers = [
|
||||
"Development Status :: 4 - Beta",
|
||||
|
||||
@@ -9,14 +9,15 @@
|
||||
project = 'AMBER'
|
||||
copyright = '2025, J. Lass, V. Cohen, B. B. Haro, & D. G. Mazzone'
|
||||
author = 'J. Lass, V. Cohen, B. B. Haro, & D. G. Mazzone'
|
||||
release = '0.0.5'
|
||||
release = '1.0.1'
|
||||
|
||||
# -- General configuration ---------------------------------------------------
|
||||
# https://www.sphinx-doc.org/en/master/usage/configuration.html#general-configuration
|
||||
|
||||
extensions = [
|
||||
'nbsphinx', # allows notebooks
|
||||
'myst_parser' # allows markdown
|
||||
'myst_parser', # allows markdown
|
||||
'IPython.sphinxext.ipython_console_highlighting',
|
||||
]
|
||||
source_suffix = {
|
||||
'.rst': 'restructuredtext',
|
||||
@@ -24,7 +25,7 @@ source_suffix = {
|
||||
'.md': 'markdown',
|
||||
}
|
||||
templates_path = ['_templates']
|
||||
exclude_patterns = []
|
||||
exclude_patterns = ['**.ipynb_checkpoints']
|
||||
|
||||
|
||||
|
||||
|
||||
File diff suppressed because one or more lines are too long
@@ -613,11 +613,10 @@ class background():
|
||||
|
||||
# Loss function
|
||||
loss = []#np.zeros(n_epochs, dtype=self.dtype)
|
||||
old_loss = 2000000
|
||||
new_loss = 1000000
|
||||
old_loss = 0
|
||||
new_loss = 0
|
||||
k = 0
|
||||
|
||||
while (old_loss - new_loss > 1e-3) and (k < n_epochs):
|
||||
while ((old_loss - new_loss > 1e-3) and (k < n_epochs)) or k < 2:
|
||||
# Compute A = Y - B by filling the nans with 0s
|
||||
A = np.where(np.isnan(Y_r - b_tmp) == True, 0.0, Y_r - b_tmp)
|
||||
|
||||
|
||||
Reference in New Issue
Block a user