mirror of
https://github.com/slsdetectorgroup/slsDetectorPackage.git
synced 2025-05-04 03:40:04 +02:00
433 lines
15 KiB
C++
433 lines
15 KiB
C++
// SPDX-License-Identifier: LGPL-3.0-or-other
|
|
// Copyright (C) 2021 Contributors to the SLS Detector Package
|
|
#ifndef JUNGFRAULGADSTRIXELSDATAQUADH5_H
|
|
#define JUNGFRAULGADSTRIXELSDATAQUADH5_H
|
|
#ifdef CINT
|
|
#include "sls/sls_detector_defs_CINT.h"
|
|
#else
|
|
#include "sls/sls_detector_defs.h"
|
|
#endif
|
|
#include "slsDetectorData.h"
|
|
|
|
// This needs to be linked correctly
|
|
#include "HDF5File.cpp"
|
|
#include "HDF5File.h" //this includes hdf5.h and hdf5_hl.h
|
|
|
|
// #define VERSION_V2
|
|
/**
|
|
@short structure for a Detector Packet or Image Header
|
|
@li frameNumber is the frame number
|
|
@li expLength is the subframe number (32 bit eiger) or real time exposure
|
|
time in 100ns (others)
|
|
@li packetNumber is the packet number
|
|
@li bunchId is the bunch id from beamline
|
|
@li timestamp is the time stamp with 10 MHz clock
|
|
@li modId is the unique module id (unique even for left, right, top, bottom)
|
|
@li xCoord is the x coordinate in the complete detector system
|
|
@li yCoord is the y coordinate in the complete detector system
|
|
@li zCoord is the z coordinate in the complete detector system
|
|
@li debug is for debugging purposes
|
|
@li roundRNumber is the round robin set number
|
|
@li detType is the detector type see :: detectorType
|
|
@li version is the version number of this structure format
|
|
*/
|
|
|
|
// #include <algorithm>
|
|
#include <numeric>
|
|
#include <tuple>
|
|
|
|
namespace strixelQuad {
|
|
constexpr int nc_rawimg = 1024; // for full images //256;
|
|
constexpr int nc_quad = 512;
|
|
constexpr int nr_rawimg = 512;
|
|
constexpr int nr_chip = 256;
|
|
constexpr int gr = 9;
|
|
|
|
// shift due to extra pixels
|
|
constexpr int shift_x = 2; // left
|
|
|
|
constexpr int nc_strixel = (nc_quad - shift_x - 2 * gr) / 3; // 164
|
|
constexpr int nr_strixel =
|
|
(nr_chip - 1 - gr) * 3; // one half (-1 because double sided pixel) //738
|
|
constexpr int nr_center = 12; // double sided pixels to be skipped
|
|
|
|
// boundaries in ASIC coordinates (pixels at both bounds are included)
|
|
constexpr int xstart = 256 + gr; // 265
|
|
constexpr int xend = 255 + nc_quad - gr; // 758
|
|
constexpr int bottom_ystart = gr; // 9
|
|
constexpr int bottom_yend = nr_chip - 2; // 254
|
|
constexpr int top_ystart = nr_chip + 1; // 257
|
|
constexpr int top_yend = nr_chip * 2 - gr - 1; // 502
|
|
|
|
// x shift because of 2-pixel strixels on one side
|
|
constexpr int shift = 2;
|
|
|
|
} // namespace strixelQuad
|
|
|
|
// to account for module rotation
|
|
enum rotation { NORMAL = 0, INVERSE = 1 };
|
|
|
|
const int rota = NORMAL;
|
|
|
|
typedef struct {
|
|
uint64_t bunchNumber; /**< is the frame number */
|
|
uint64_t pre; /**< something */
|
|
|
|
} jf_header; // Aldo's header
|
|
|
|
using namespace strixelQuad;
|
|
|
|
class jungfrauLGADStrixelsDataQuadH5 : public slsDetectorData<uint16_t> {
|
|
|
|
private:
|
|
int iframe;
|
|
int x0, y0, x1, y1, shifty;
|
|
struct {
|
|
uint16_t xmin;
|
|
uint16_t xmax;
|
|
uint16_t ymin;
|
|
uint16_t ymax;
|
|
int nc;
|
|
} globalROI;
|
|
|
|
// to account for the inverted routing of the two different quad halfs
|
|
enum location { BOTTOM = 0, TOP = 1 };
|
|
|
|
int multiplicator = 3;
|
|
std::vector<int> mods{0, 1, 2};
|
|
|
|
void reverseVector(std::vector<int> &v) {
|
|
std::reverse(v.begin(), v.end());
|
|
std::cout << "mods reversed ";
|
|
for (auto i : v)
|
|
std::cout << i << " ";
|
|
std::cout << '\n';
|
|
}
|
|
|
|
void setMappingShifts(const int rot, const int half) {
|
|
|
|
x0 = xstart;
|
|
x1 = xend;
|
|
|
|
if (rot == NORMAL) {
|
|
x0 += shift;
|
|
} else {
|
|
x1 -= shift;
|
|
reverseVector(mods);
|
|
}
|
|
|
|
if (half == BOTTOM) {
|
|
y0 = bottom_ystart;
|
|
y1 = bottom_yend;
|
|
shifty = 0;
|
|
} else {
|
|
y0 = top_ystart;
|
|
y1 = top_yend;
|
|
reverseVector(mods);
|
|
shifty = nr_strixel + nr_center; // double-sided pixels in the
|
|
// center have to be jumped
|
|
}
|
|
}
|
|
|
|
void remap(int xmin = 0, int xmax = 0, int ymin = 0, int ymax = 0) {
|
|
|
|
int ix, iy = 0;
|
|
// remapping loop
|
|
for (int ipy = y0; ipy <= y1; ++ipy) {
|
|
for (int ipx = x0; ipx <= x1; ++ipx) {
|
|
|
|
ix = int((ipx - x0) / multiplicator);
|
|
for (int m = 0; m < multiplicator; ++m) {
|
|
if ((ipx - x0) % multiplicator == m)
|
|
iy = (ipy - y0) * multiplicator + mods[m] + shifty;
|
|
}
|
|
|
|
// if (iy< 40) cout << iy << " " << ix <<endl;
|
|
if (xmin < xmax && ymin < ymax) { // if ROI
|
|
if (ipx >= xmin && ipx <= xmax && ipy >= ymin &&
|
|
ipy <= ymax)
|
|
dataMap[iy][ix] =
|
|
(globalROI.nc * (ipy - globalROI.ymin) +
|
|
(ipx - globalROI.xmin)) *
|
|
2;
|
|
} else { // if full Quad
|
|
dataMap[iy][ix] = (nc_rawimg * ipy + ipx) * 2;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void remapQuad(const int rot) {
|
|
|
|
setMappingShifts(rot, BOTTOM);
|
|
remap();
|
|
setMappingShifts(rot, TOP);
|
|
remap();
|
|
}
|
|
|
|
std::tuple<uint16_t, uint16_t, uint16_t, uint16_t>
|
|
adjustROItoLimits(uint16_t xmin, uint16_t xmax, uint16_t ymin,
|
|
uint16_t ymax, uint16_t lim_roi_xmin,
|
|
uint16_t lim_roi_xmax, uint16_t lim_roi_ymin,
|
|
uint16_t lim_roi_ymax) {
|
|
uint16_t xmin_roi, xmax_roi, ymin_roi, ymax_roi;
|
|
if (xmin < lim_roi_xmin)
|
|
xmin_roi = lim_roi_xmin;
|
|
else
|
|
xmin_roi = xmin;
|
|
if (xmax > lim_roi_xmax)
|
|
xmax_roi = lim_roi_xmax;
|
|
else
|
|
xmax_roi = xmax;
|
|
if (ymin < lim_roi_ymin)
|
|
ymin_roi = lim_roi_ymin;
|
|
else
|
|
ymin_roi = ymin;
|
|
if (ymax > lim_roi_ymax)
|
|
ymax_roi = lim_roi_ymax;
|
|
else
|
|
ymax_roi = ymax;
|
|
return std::make_tuple(xmin_roi, xmax_roi, ymin_roi, ymax_roi);
|
|
}
|
|
|
|
// The strixel Quad has a mirrored symmetry from the center axis
|
|
// So we need to distinguish between bottom and top half for remapping
|
|
std::vector<std::tuple<int, uint16_t, uint16_t, uint16_t, uint16_t>>
|
|
mapSubROIs(uint16_t xmin, uint16_t xmax, uint16_t ymin, uint16_t ymax) {
|
|
bool bottom = false;
|
|
bool top = false;
|
|
|
|
for (int x = xmin; x != xmax + 1; ++x) {
|
|
for (int y = ymin; y != ymax; ++y) {
|
|
if (xstart <= x && x <= xend && bottom_ystart <= y &&
|
|
y <= bottom_yend)
|
|
bottom = true;
|
|
if (xstart <= x && x <= xend && top_ystart <= y &&
|
|
y <= top_yend)
|
|
top = true;
|
|
}
|
|
}
|
|
|
|
uint16_t xmin_roi{}, xmax_roi{}, ymin_roi{}, ymax_roi{};
|
|
std::vector<std::tuple<int, uint16_t, uint16_t, uint16_t, uint16_t>>
|
|
rois{};
|
|
|
|
if (bottom) {
|
|
std::tie(xmin_roi, xmax_roi, ymin_roi, ymax_roi) =
|
|
adjustROItoLimits(xmin, xmax, ymin, ymax, xstart, xend,
|
|
bottom_ystart, bottom_yend);
|
|
rois.push_back(std::make_tuple(BOTTOM, xmin_roi, xmax_roi, ymin_roi,
|
|
ymax_roi));
|
|
}
|
|
if (top) {
|
|
std::tie(xmin_roi, xmax_roi, ymin_roi, ymax_roi) =
|
|
adjustROItoLimits(xmin, xmax, ymin, ymax, xstart, xend,
|
|
top_ystart, top_yend);
|
|
rois.push_back(
|
|
std::make_tuple(TOP, xmin_roi, xmax_roi, ymin_roi, ymax_roi));
|
|
}
|
|
|
|
return rois;
|
|
}
|
|
|
|
void remapROI(std::tuple<int, uint16_t, uint16_t, uint16_t, uint16_t> roi,
|
|
const int rot) {
|
|
|
|
int half, xmin, xmax, ymin, ymax;
|
|
std::tie(half, xmin, xmax, ymin, ymax) = roi;
|
|
|
|
setMappingShifts(rot, half);
|
|
|
|
std::cout << "remapping roi: "
|
|
<< ", x0: " << x0 << ", x1: " << x1 << ", y0: " << y0
|
|
<< ", y1: " << y1 << std::endl;
|
|
std::cout << "Adjusted roi: [" << xmin << ", " << xmax << ", " << ymin
|
|
<< ", " << ymax << "]" << std::endl;
|
|
|
|
remap(xmin, xmax, ymin, ymax);
|
|
}
|
|
|
|
// The following functions are pure virtual in the base class. But I don't
|
|
// want them to be accessible here! Implement the functions as private (to
|
|
// satisfy the linker) int getFrameNumber(char* buff){return 0;} //This is
|
|
// actually needed because the cluster finder writes the framenumber
|
|
int getPacketNumber(char *buff) { return 0; } // Not provided
|
|
|
|
// Mark overwritten functions as override final
|
|
char *readNextFrame(std::ifstream &filebin) override final {
|
|
return nullptr;
|
|
}
|
|
|
|
public:
|
|
using header = sls::defs::sls_receiver_header;
|
|
|
|
jungfrauLGADStrixelsDataQuadH5(uint16_t xmin = 0, uint16_t xmax = 0,
|
|
uint16_t ymin = 0, uint16_t ymax = 0)
|
|
: slsDetectorData<uint16_t>(
|
|
// nc_strixel,
|
|
// nr_strixel * 2 + nr_center,
|
|
// nc_strixel * ( nr_strixel * 2 + nr_center ) * 2
|
|
512 / 2, 1024 * 2, 512 * 1024 * 2) {
|
|
std::cout << "Jungfrau strixels quad with full module data "
|
|
<< std::endl;
|
|
|
|
// Fill all strixels with dummy values
|
|
// for (int ix = 0; ix != nc_strixel; ++ix) {
|
|
// for (int iy = 0; iy != nr_strixel * 2 + nr_center; ++iy) {
|
|
for (int ix = 0; ix != 512 / 2; ++ix) {
|
|
for (int iy = 0; iy != 1024 * 2; ++iy) {
|
|
// Set everything to dummy value
|
|
dataMap[iy][ix] = sizeof(header);
|
|
}
|
|
}
|
|
|
|
globalROI.xmin = xmin;
|
|
globalROI.xmax = xmax;
|
|
globalROI.ymin = ymin;
|
|
globalROI.ymax = ymax;
|
|
|
|
// std::cout << "sizeofheader = " << sizeof(header) << std::endl;
|
|
std::cout << "Jungfrau strixels quad with full module data "
|
|
<< std::endl;
|
|
|
|
if (xmin < xmax && ymin < ymax) {
|
|
|
|
// get ROI raw image number of columns
|
|
globalROI.nc = xmax - xmin + 1;
|
|
std::cout << "nc_roi = " << globalROI.nc << std::endl;
|
|
|
|
dataSize = (xmax - xmin + 1) * (ymax - ymin + 1) * 2;
|
|
std::cout << "datasize " << dataSize << std::endl;
|
|
|
|
auto rois = mapSubROIs(xmin, xmax, ymin, ymax);
|
|
// function to fill vector of rois from globalROI
|
|
|
|
for (auto roi : rois)
|
|
remapROI(roi, rota);
|
|
|
|
} else {
|
|
remapQuad(rota);
|
|
}
|
|
|
|
iframe = 0;
|
|
std::cout << "data struct created" << std::endl;
|
|
};
|
|
|
|
/**
|
|
Returns the value of the selected channel for the given dataset as
|
|
double. \param data pointer to the dataset (including headers etc) \param
|
|
ix pixel number in the x direction \param iy pixel number in the y
|
|
direction \returns data for the selected channel, with inversion if
|
|
required as double
|
|
|
|
*/
|
|
virtual double getValue(char *data, int ix, int iy = 0) {
|
|
|
|
uint16_t val = getChannel(data, ix, iy) & 0x3fff;
|
|
return val;
|
|
};
|
|
|
|
char *readNextFrame(HDF5File &hfile) {
|
|
int fn = 0;
|
|
std::vector<hsize_t> h5offset(1);
|
|
return readNextFrame(hfile, fn, h5offset);
|
|
};
|
|
|
|
char *readNextFrame(HDF5File &hfile, int &fn) {
|
|
std::vector<hsize_t> h5offset(1);
|
|
return readNextFrame(hfile, fn, h5offset);
|
|
};
|
|
|
|
char *readNextFrame(HDF5File &hfile, int &fn,
|
|
std::vector<hsize_t> &h5offset) {
|
|
|
|
// Ensure dataSize is a valid size for allocation
|
|
if (dataSize <= 0) {
|
|
// Handle error case appropriately, e.g., log an error message
|
|
return nullptr;
|
|
}
|
|
|
|
char *data = new char[dataSize];
|
|
char *readResult = readNextFrame(hfile, fn, h5offset, data);
|
|
|
|
// Check if reading failed
|
|
if (readResult == nullptr) {
|
|
delete[] data; // Free allocated memory
|
|
data = nullptr; // Set to nullptr to avoid dangling pointer
|
|
}
|
|
|
|
return data; // returning data is equivalent to returning
|
|
// reinterpret_cast<char*>(data_ptr) as they both point to
|
|
// the same memory
|
|
};
|
|
|
|
/*
|
|
* This is the most recent function. This is used in the cluster finder!
|
|
* The overloads are legacy!
|
|
* Note that caller has to allocate and deallocate memory for data!
|
|
* \param hfile object of type HDF5File (reader class)
|
|
* \param framenumber frame number as read from the HDF5 file
|
|
* \param h5offset vector defining offset parameters for HDF5 hyperslab
|
|
* selection (dimensions Z and S), incremented automatially
|
|
* \param data pointer to image buffer (converted to hold uint16_t by
|
|
* definition of HDF5File)
|
|
*/
|
|
char *readNextFrame(HDF5File &hfile, int &framenumber,
|
|
std::vector<hsize_t> &h5offset, char *data) {
|
|
|
|
if (framenumber >= 0) {
|
|
if (h5offset[0] % 10 == 0)
|
|
std::cout << "*";
|
|
|
|
// Storing the reinterpret_cast in the variable data_ptr ensures
|
|
// that I can pass it to a function that expects at uint16_t*
|
|
uint16_t *data_ptr = reinterpret_cast<uint16_t *>(
|
|
data); // now data_ptr points where data points (thus modifies
|
|
// the same memory)
|
|
|
|
framenumber = hfile.ReadImage(data_ptr, h5offset);
|
|
iframe = h5offset[0]; // iframe is a class member!
|
|
return data; // return reinterpret_cast<char*>(data_ptr); //
|
|
// Equivalent
|
|
}
|
|
|
|
std::cout << "#";
|
|
return nullptr;
|
|
};
|
|
|
|
int getFrameNumber(char *buff) {
|
|
return iframe;
|
|
} // Provided via public method readNextFrame
|
|
// It is debatable if one might not instead want to provide the "real" frame
|
|
// number as read from the file here For now, this is the frame offset
|
|
// counter (that always has to start at 0 for each new file)
|
|
|
|
/* Loops over a memory slot until a complete frame is found (i.e. all */
|
|
/* packets 0 to nPackets, same frame number). purely virtual func \param
|
|
*/
|
|
/* data pointer to the memory to be analyzed \param ndata reference to
|
|
* the */
|
|
/* amount of data found for the frame, in case the frame is incomplete at
|
|
*/
|
|
/* the end of the memory slot \param dsize size of the memory slot to be
|
|
*/
|
|
/* analyzed \returns pointer to the beginning of the last good frame
|
|
* (might */
|
|
/* be incomplete if ndata smaller than dataSize), or NULL if no frame is
|
|
*/
|
|
/* found */
|
|
|
|
/* *\/ */
|
|
virtual char *findNextFrame(char *data, int &ndata, int dsize) {
|
|
if (dsize < dataSize)
|
|
ndata = dsize;
|
|
else
|
|
ndata = dataSize;
|
|
return data;
|
|
};
|
|
|
|
// int getPacketNumber(int x, int y) {return dataMap[y][x]/packetSize;};
|
|
};
|
|
|
|
#endif
|