// SPDX-License-Identifier: LGPL-3.0-or-other // Copyright (C) 2021 Contributors to the SLS Detector Package #ifndef JUNGFRAULGADSTRIXELSDATAQUADH5_H #define JUNGFRAULGADSTRIXELSDATAQUADH5_H #ifdef CINT #include "sls/sls_detector_defs_CINT.h" #else #include "sls/sls_detector_defs.h" #endif #include "slsDetectorData.h" // This needs to be linked correctly #include "HDF5File.cpp" #include "HDF5File.h" //this includes hdf5.h and hdf5_hl.h // #define VERSION_V2 /** @short structure for a Detector Packet or Image Header @li frameNumber is the frame number @li expLength is the subframe number (32 bit eiger) or real time exposure time in 100ns (others) @li packetNumber is the packet number @li bunchId is the bunch id from beamline @li timestamp is the time stamp with 10 MHz clock @li modId is the unique module id (unique even for left, right, top, bottom) @li xCoord is the x coordinate in the complete detector system @li yCoord is the y coordinate in the complete detector system @li zCoord is the z coordinate in the complete detector system @li debug is for debugging purposes @li roundRNumber is the round robin set number @li detType is the detector type see :: detectorType @li version is the version number of this structure format */ // #include #include #include namespace strixelQuad { constexpr int nc_rawimg = 1024; // for full images //256; constexpr int nc_quad = 512; constexpr int nr_rawimg = 512; constexpr int nr_chip = 256; constexpr int gr = 9; // shift due to extra pixels constexpr int shift_x = 2; // left constexpr int nc_strixel = (nc_quad - shift_x - 2 * gr) / 3; // 164 constexpr int nr_strixel = (nr_chip - 1 - gr) * 3; // one half (-1 because double sided pixel) //738 constexpr int nr_center = 12; // double sided pixels to be skipped // boundaries in ASIC coordinates (pixels at both bounds are included) constexpr int xstart = 256 + gr; // 265 constexpr int xend = 255 + nc_quad - gr; // 758 constexpr int bottom_ystart = gr; // 9 constexpr int bottom_yend = nr_chip - 2; // 254 constexpr int top_ystart = nr_chip + 1; // 257 constexpr int top_yend = nr_chip * 2 - gr - 1; // 502 // x shift because of 2-pixel strixels on one side constexpr int shift = 2; } // namespace strixelQuad // to account for module rotation enum rotation { NORMAL = 0, INVERSE = 1 }; const int rota = NORMAL; typedef struct { uint64_t bunchNumber; /**< is the frame number */ uint64_t pre; /**< something */ } jf_header; // Aldo's header using namespace strixelQuad; class jungfrauLGADStrixelsDataQuadH5 : public slsDetectorData { private: int iframe; int x0, y0, x1, y1, shifty; struct { uint16_t xmin; uint16_t xmax; uint16_t ymin; uint16_t ymax; int nc; } globalROI; // to account for the inverted routing of the two different quad halfs enum location { BOTTOM = 0, TOP = 1 }; int multiplicator = 3; std::vector mods{0, 1, 2}; void reverseVector(std::vector &v) { std::reverse(v.begin(), v.end()); std::cout << "mods reversed "; for (auto i : v) std::cout << i << " "; std::cout << '\n'; } void setMappingShifts(const int rot, const int half) { x0 = xstart; x1 = xend; if (rot == NORMAL) { x0 += shift; } else { x1 -= shift; reverseVector(mods); } if (half == BOTTOM) { y0 = bottom_ystart; y1 = bottom_yend; shifty = 0; } else { y0 = top_ystart; y1 = top_yend; reverseVector(mods); shifty = nr_strixel + nr_center; // double-sided pixels in the // center have to be jumped } } void remap(int xmin = 0, int xmax = 0, int ymin = 0, int ymax = 0) { int ix, iy = 0; // remapping loop for (int ipy = y0; ipy <= y1; ++ipy) { for (int ipx = x0; ipx <= x1; ++ipx) { ix = int((ipx - x0) / multiplicator); for (int m = 0; m < multiplicator; ++m) { if ((ipx - x0) % multiplicator == m) iy = (ipy - y0) * multiplicator + mods[m] + shifty; } // if (iy< 40) cout << iy << " " << ix <= xmin && ipx <= xmax && ipy >= ymin && ipy <= ymax) dataMap[iy][ix] = (globalROI.nc * (ipy - globalROI.ymin) + (ipx - globalROI.xmin)) * 2; } else { // if full Quad dataMap[iy][ix] = (nc_rawimg * ipy + ipx) * 2; } } } } void remapQuad(const int rot) { setMappingShifts(rot, BOTTOM); remap(); setMappingShifts(rot, TOP); remap(); } std::tuple adjustROItoLimits(uint16_t xmin, uint16_t xmax, uint16_t ymin, uint16_t ymax, uint16_t lim_roi_xmin, uint16_t lim_roi_xmax, uint16_t lim_roi_ymin, uint16_t lim_roi_ymax) { uint16_t xmin_roi, xmax_roi, ymin_roi, ymax_roi; if (xmin < lim_roi_xmin) xmin_roi = lim_roi_xmin; else xmin_roi = xmin; if (xmax > lim_roi_xmax) xmax_roi = lim_roi_xmax; else xmax_roi = xmax; if (ymin < lim_roi_ymin) ymin_roi = lim_roi_ymin; else ymin_roi = ymin; if (ymax > lim_roi_ymax) ymax_roi = lim_roi_ymax; else ymax_roi = ymax; return std::make_tuple(xmin_roi, xmax_roi, ymin_roi, ymax_roi); } // The strixel Quad has a mirrored symmetry from the center axis // So we need to distinguish between bottom and top half for remapping std::vector> mapSubROIs(uint16_t xmin, uint16_t xmax, uint16_t ymin, uint16_t ymax) { bool bottom = false; bool top = false; for (int x = xmin; x != xmax + 1; ++x) { for (int y = ymin; y != ymax; ++y) { if (xstart <= x && x <= xend && bottom_ystart <= y && y <= bottom_yend) bottom = true; if (xstart <= x && x <= xend && top_ystart <= y && y <= top_yend) top = true; } } uint16_t xmin_roi{}, xmax_roi{}, ymin_roi{}, ymax_roi{}; std::vector> rois{}; if (bottom) { std::tie(xmin_roi, xmax_roi, ymin_roi, ymax_roi) = adjustROItoLimits(xmin, xmax, ymin, ymax, xstart, xend, bottom_ystart, bottom_yend); rois.push_back(std::make_tuple(BOTTOM, xmin_roi, xmax_roi, ymin_roi, ymax_roi)); } if (top) { std::tie(xmin_roi, xmax_roi, ymin_roi, ymax_roi) = adjustROItoLimits(xmin, xmax, ymin, ymax, xstart, xend, top_ystart, top_yend); rois.push_back( std::make_tuple(TOP, xmin_roi, xmax_roi, ymin_roi, ymax_roi)); } return rois; } void remapROI(std::tuple roi, const int rot) { int half, xmin, xmax, ymin, ymax; std::tie(half, xmin, xmax, ymin, ymax) = roi; setMappingShifts(rot, half); std::cout << "remapping roi: " << ", x0: " << x0 << ", x1: " << x1 << ", y0: " << y0 << ", y1: " << y1 << std::endl; std::cout << "Adjusted roi: [" << xmin << ", " << xmax << ", " << ymin << ", " << ymax << "]" << std::endl; remap(xmin, xmax, ymin, ymax); } // The following functions are pure virtual in the base class. But I don't // want them to be accessible here! Implement the functions as private (to // satisfy the linker) int getFrameNumber(char* buff){return 0;} //This is // actually needed because the cluster finder writes the framenumber int getPacketNumber(char *buff) { return 0; } // Not provided // Mark overwritten functions as override final char *readNextFrame(std::ifstream &filebin) override final { return nullptr; } public: using header = sls::defs::sls_receiver_header; jungfrauLGADStrixelsDataQuadH5(uint16_t xmin = 0, uint16_t xmax = 0, uint16_t ymin = 0, uint16_t ymax = 0) : slsDetectorData( // nc_strixel, // nr_strixel * 2 + nr_center, // nc_strixel * ( nr_strixel * 2 + nr_center ) * 2 512 / 2, 1024 * 2, 512 * 1024 * 2) { std::cout << "Jungfrau strixels quad with full module data " << std::endl; // Fill all strixels with dummy values // for (int ix = 0; ix != nc_strixel; ++ix) { // for (int iy = 0; iy != nr_strixel * 2 + nr_center; ++iy) { for (int ix = 0; ix != 512 / 2; ++ix) { for (int iy = 0; iy != 1024 * 2; ++iy) { // Set everything to dummy value dataMap[iy][ix] = sizeof(header); } } globalROI.xmin = xmin; globalROI.xmax = xmax; globalROI.ymin = ymin; globalROI.ymax = ymax; // std::cout << "sizeofheader = " << sizeof(header) << std::endl; std::cout << "Jungfrau strixels quad with full module data " << std::endl; if (xmin < xmax && ymin < ymax) { // get ROI raw image number of columns globalROI.nc = xmax - xmin + 1; std::cout << "nc_roi = " << globalROI.nc << std::endl; dataSize = (xmax - xmin + 1) * (ymax - ymin + 1) * 2; std::cout << "datasize " << dataSize << std::endl; auto rois = mapSubROIs(xmin, xmax, ymin, ymax); // function to fill vector of rois from globalROI for (auto roi : rois) remapROI(roi, rota); } else { remapQuad(rota); } iframe = 0; std::cout << "data struct created" << std::endl; }; /** Returns the value of the selected channel for the given dataset as double. \param data pointer to the dataset (including headers etc) \param ix pixel number in the x direction \param iy pixel number in the y direction \returns data for the selected channel, with inversion if required as double */ virtual double getValue(char *data, int ix, int iy = 0) { uint16_t val = getChannel(data, ix, iy) & 0x3fff; return val; }; char *readNextFrame(HDF5File &hfile) { int fn = 0; std::vector h5offset(1); return readNextFrame(hfile, fn, h5offset); }; char *readNextFrame(HDF5File &hfile, int &fn) { std::vector h5offset(1); return readNextFrame(hfile, fn, h5offset); }; char *readNextFrame(HDF5File &hfile, int &fn, std::vector &h5offset) { // Ensure dataSize is a valid size for allocation if (dataSize <= 0) { // Handle error case appropriately, e.g., log an error message return nullptr; } char *data = new char[dataSize]; char *readResult = readNextFrame(hfile, fn, h5offset, data); // Check if reading failed if (readResult == nullptr) { delete[] data; // Free allocated memory data = nullptr; // Set to nullptr to avoid dangling pointer } return data; // returning data is equivalent to returning // reinterpret_cast(data_ptr) as they both point to // the same memory }; /* * This is the most recent function. This is used in the cluster finder! * The overloads are legacy! * Note that caller has to allocate and deallocate memory for data! * \param hfile object of type HDF5File (reader class) * \param framenumber frame number as read from the HDF5 file * \param h5offset vector defining offset parameters for HDF5 hyperslab * selection (dimensions Z and S), incremented automatially * \param data pointer to image buffer (converted to hold uint16_t by * definition of HDF5File) */ char *readNextFrame(HDF5File &hfile, int &framenumber, std::vector &h5offset, char *data) { if (framenumber >= 0) { if (h5offset[0] % 10 == 0) std::cout << "*"; // Storing the reinterpret_cast in the variable data_ptr ensures // that I can pass it to a function that expects at uint16_t* uint16_t *data_ptr = reinterpret_cast( data); // now data_ptr points where data points (thus modifies // the same memory) framenumber = hfile.ReadImage(data_ptr, h5offset); iframe = h5offset[0]; // iframe is a class member! return data; // return reinterpret_cast(data_ptr); // // Equivalent } std::cout << "#"; return nullptr; }; int getFrameNumber(char *buff) { return iframe; } // Provided via public method readNextFrame // It is debatable if one might not instead want to provide the "real" frame // number as read from the file here For now, this is the frame offset // counter (that always has to start at 0 for each new file) /* Loops over a memory slot until a complete frame is found (i.e. all */ /* packets 0 to nPackets, same frame number). purely virtual func \param */ /* data pointer to the memory to be analyzed \param ndata reference to * the */ /* amount of data found for the frame, in case the frame is incomplete at */ /* the end of the memory slot \param dsize size of the memory slot to be */ /* analyzed \returns pointer to the beginning of the last good frame * (might */ /* be incomplete if ndata smaller than dataSize), or NULL if no frame is */ /* found */ /* *\/ */ virtual char *findNextFrame(char *data, int &ndata, int dsize) { if (dsize < dataSize) ndata = dsize; else ndata = dataSize; return data; }; // int getPacketNumber(int x, int y) {return dataMap[y][x]/packetSize;}; }; #endif