Compare commits

..

86 Commits

Author SHA1 Message Date
6126780660 Merge branch 'main-rc' into b3.0.1 2020-11-30 16:45:00 +01:00
9b7f9b1be1 Merge branch 'main-rc' into b3.0.0 2020-11-30 16:42:35 +01:00
26c829d766 Merge branch 'main-rc' into b2.3.4 2020-11-30 16:38:04 +01:00
3fde5c5b55 Merge branch 'main-rc' into b2.3.3 2020-11-30 16:36:24 +01:00
3e5f546ebe Merge branch 'main-rc' into b2.3.2 2020-11-30 16:26:44 +01:00
9833a7d330 Merge branch 'main-rc' into b2.3.1 2020-11-30 16:25:23 +01:00
8f9155e578 Merge branch 'main-rc' into b2.3.0 2020-11-30 16:23:50 +01:00
9df1eac3c1 Merge branch 'main-rc' into b2.2.0 2020-11-30 15:46:45 +01:00
5ededf9be4 Merge branch 'main-rc' into b2.1.1 2020-11-30 15:16:57 +01:00
3e8774798a Merge branch 'main-rc' into b2.1.0 2020-11-30 15:13:43 +01:00
834794ad98 gotthard renamed binaries 2017-12-19 18:04:44 +01:00
56c504abbb Merge remote branch 'slsDetectorCalibration/2.3.4' into 2.3.4 2017-12-12 11:14:19 +01:00
4d6346e678 Merge remote branch 'slsDetectorCalibration/2.3.3' into 2.3.3 2017-12-12 11:14:15 +01:00
dc7e448759 Merge remote branch 'slsDetectorCalibration/2.3.2' into 2.3.2 2017-12-12 11:14:12 +01:00
e658cbacda Merge remote branch 'slsDetectorCalibration/2.3.1' into 2.3.1 2017-12-12 11:14:08 +01:00
1e6c6dea71 Merge remote branch 'slsDetectorCalibration/2.3' into 2.3 2017-12-12 11:14:05 +01:00
0e5d4d1d8e Merge remote branch 'slsDetectorCalibration/2.2' into 2.2 2017-12-12 11:14:01 +01:00
a2986784d3 Merge remote branch 'slsDetectorCalibration/2.1.1' into 2.1.1 2017-12-12 11:13:34 +01:00
975cbb576e Merge remote branch 'slsDetectorCalibration/2.1' into 2.1 2017-12-12 11:06:15 +01:00
e48a92d9cd Merge remote branch 'slsDetectorCalibration/2.0.5' into 2.0.5 2017-12-12 11:02:57 +01:00
befdcf7f36 Merge remote branch 'slsDetectorGui/2.3.4' into 2.3.4 2017-12-04 16:48:01 +01:00
02f5c472a8 Merge remote branch 'slsReceiverSoftware/2.3.4' into 2.3.4 2017-12-04 16:48:00 +01:00
75ed2cd2e4 Merge remote branch 'slsDetectorSoftware/2.3.4' into 2.3.4 2017-12-04 16:47:59 +01:00
3be045f9b6 Merge remote branch 'slsDetectorGui/2.3.3' into 2.3.3 2017-12-04 16:47:54 +01:00
8fae982802 Merge remote branch 'slsReceiverSoftware/2.3.3' into 2.3.3 2017-12-04 16:47:54 +01:00
128ec88b5f Merge remote branch 'slsDetectorSoftware/2.3.3' into 2.3.3 2017-12-04 16:47:52 +01:00
d5fc158330 Merge remote branch 'slsDetectorGui/2.3.2' into 2.3.2 2017-12-04 16:47:47 +01:00
864e6e4c81 Merge remote branch 'slsReceiverSoftware/2.3.2' into 2.3.2 2017-12-04 16:47:47 +01:00
343d96ff16 Merge remote branch 'slsDetectorSoftware/2.3.2' into 2.3.2 2017-12-04 16:47:46 +01:00
4142328437 Merge remote branch 'slsDetectorGui/2.3.1' into 2.3.1 2017-12-04 16:47:41 +01:00
6c797988c7 Merge remote branch 'slsReceiverSoftware/2.3.1' into 2.3.1 2017-12-04 16:47:41 +01:00
215c262981 Merge remote branch 'slsDetectorSoftware/2.3.1' into 2.3.1 2017-12-04 16:47:39 +01:00
081b809078 Merge remote branch 'slsDetectorGui/2.3' into 2.3 2017-12-04 16:47:35 +01:00
9263567cd8 Merge remote branch 'slsReceiverSoftware/2.3' into 2.3 2017-12-04 16:47:34 +01:00
58e90a85be Merge remote branch 'slsDetectorSoftware/2.3' into 2.3 2017-12-04 16:47:33 +01:00
025c836e25 Merge remote branch 'slsDetectorGui/2.2' into 2.2 2017-12-04 16:47:28 +01:00
5d5abae3f4 Merge remote branch 'slsReceiverSoftware/2.2' into 2.2 2017-12-04 16:47:28 +01:00
e2ad46386e Merge remote branch 'slsDetectorSoftware/2.2' into 2.2 2017-12-04 16:47:26 +01:00
308d44e452 Merge remote branch 'slsDetectorGui/2.1.1' into 2.1.1 2017-12-04 16:47:22 +01:00
69da61b1fb Merge remote branch 'slsReceiverSoftware/2.1.1' into 2.1.1 2017-12-04 16:47:22 +01:00
460168ce04 Merge remote branch 'slsDetectorSoftware/2.1.1' into 2.1.1 2017-12-04 16:47:21 +01:00
4e429c0d77 Merge remote branch 'slsDetectorGui/2.1' into 2.1 2017-12-04 16:45:34 +01:00
bf4fab549d Merge remote branch 'slsReceiverSoftware/2.1' into 2.1 2017-12-04 16:45:34 +01:00
f7705eb1da Merge remote branch 'slsDetectorSoftware/2.1' into 2.1 2017-12-04 16:45:32 +01:00
a2217e2066 Merge remote branch 'slsReceiverSoftware/2.0.5' into 2.0.5 2017-12-04 15:33:33 +01:00
aaa02706fc Merge remote branch 'slsDetectorSoftware/2.0.5' into 2.0.5 2017-12-04 15:31:52 +01:00
6a80bc5b54 new feature, set threshold without uploading trimbits 2017-06-27 13:00:38 +02:00
b9275646ad crazy amount of changes, both necessary and unnecessary;need to narrow down the real change later 2017-04-27 14:05:04 +02:00
9e2f2697c7 crazy amount of changes, both necessary and unnecessary;need to narrow down the real change later 2017-04-27 13:58:25 +02:00
b6b0df62b6 updaterev 2017-04-20 08:26:29 +02:00
0ba537e479 removed headersize compile error 2017-04-20 08:26:16 +02:00
75ddf535dc updaterev 2017-04-19 17:59:53 +02:00
b1de501bef updaterev 2017-04-19 17:59:46 +02:00
0f3a63f101 changed zmq default port starting at 40001 to be able to view in wireshark and removed headersize for warning 2017-04-19 17:42:38 +02:00
3b4b2d707f changes without ostringstream done 2017-04-19 10:17:39 +02:00
f405aa1733 split zmq_msg_t so its not reused 2017-04-19 10:17:30 +02:00
df0fdb7ecb changes without ostringstream done 2017-04-19 10:16:45 +02:00
91b7a87557 just started changin frm ostringstream 2017-04-18 15:32:01 +02:00
9468b9ca1e updaterev 2017-04-11 13:39:59 +02:00
d7982e178e updaterev 2017-04-11 13:39:53 +02:00
9cf5714a5b removing warnings shown from esrf debian 2017-04-11 13:39:35 +02:00
0c9ac8911a removing warnings shown from esrf debian 2017-04-11 13:39:28 +02:00
4730c8c0a9 updaterev 2017-04-11 13:31:49 +02:00
43efb8acfd removing warnings shown from esrf debian 2017-04-11 13:31:32 +02:00
6ecca8fcb0 updaterev 2017-04-11 09:03:26 +02:00
17cb63a57f updaterev 2017-04-11 09:03:19 +02:00
4f83fcb001 updaterev 2017-04-11 09:02:10 +02:00
ab94af6d29 removed verbose etc 2017-04-07 15:08:40 +02:00
7c725cc69b .c_str() must not access global variables from thread 2017-04-07 14:57:19 +02:00
f0198d2d2e alejandro's changes from ESRF 2017-04-07 14:50:17 +02:00
5ddccbdee4 changed all -lpthread to -pthread 2017-04-07 14:28:00 +02:00
8fb39b8c7e changed all -lpthread to -pthread 2017-04-07 14:27:27 +02:00
bd5293f4b1 changed all -lpthread to -pthread 2017-04-07 14:26:09 +02:00
b91180f5b2 changed all -lpthread to -pthread 2017-04-07 14:26:03 +02:00
7c3b5065a5 changed all -lpthread to -pthread 2017-04-07 14:25:09 +02:00
9aef802bea changed all -lpthread to -pthread 2017-04-07 14:24:49 +02:00
f7d85231f2 solved warnings except sscanf for uint64_t 2017-04-07 14:12:21 +02:00
5b3a911e8d solved warnings except sscanf for uint64_t 2017-04-07 14:11:34 +02:00
65f5e1c1ab strtok is not thread safe..used to set receiver udp ip etc to detector, fixed 2017-04-06 15:04:33 +02:00
839896c7e6 fixed the print file packet loss progress bug 2016-10-19 15:53:26 +02:00
4a7e246604 removed asking only 1 for framescaugh 2016-10-19 10:21:29 +02:00
7f293115c4 moved f_activate to receiver funcs from detectors funcs 2016-10-10 08:43:18 +02:00
f59f40a659 ask only 1 for frames caught for 9m 2016-10-10 08:41:03 +02:00
64fd82f92c fixed bug in gui that overwrites the individual sls file path values with the multi value, included a febl and febr temp read 2016-10-10 08:39:46 +02:00
cd232fd732 fixed bug in gui that overwrites the individual sls file path values with the multi value 2016-10-10 08:17:34 +02:00
172fa66b1f hotfix for memory leak in server 2016-08-18 11:57:36 +02:00
432 changed files with 35483 additions and 40998 deletions

View File

@ -1,5 +1,5 @@
cmake_minimum_required(VERSION 2.8)
set(CMAKE_MODULE_PATH "${CMAKE_CURRENT_SOURCE_DIR}/cmake" ${CMAKE_MODULE_PATH})
set(CMAKE_MODULE_PATH "${CMAKE_SOURCE_DIR}/cmake")
set (CALIBRATE OFF)
option (USE_HDF5 "HDF5 File format" OFF)
@ -7,12 +7,7 @@ option (USE_TEXTCLIENT "Text Client" OFF)
option (USE_RECEIVER "Receiver" OFF)
option (USE_GUI "GUI" OFF)
if (CMAKE_CXX_COMPILER_VERSION VERSION_GREATER 6.0)
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -std=c++98 -Wno-misleading-indentation")
else ()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -std=c++98")
endif ()
set(CMAKE_CXX_FLAGS "${CMAKE_CXX_FLAGS} -Wall -Wno-misleading-indentation")
find_package(Qt4)
find_package(Qwt 6)
@ -36,10 +31,8 @@ endif (USE_TEXTCLIENT)
if (USE_RECEIVER)
add_subdirectory(slsReceiverSoftware)
add_subdirectory(manual/manual-api)
endif (USE_RECEIVER)
if (USE_GUI)
if (QT4_FOUND AND QWT_FOUND)
add_subdirectory(slsDetectorGui)

View File

@ -23,7 +23,7 @@ CALIBDIR = $(WD)/slsDetectorCalibration
TABSPACE := "\t"
INCLUDES=-I. -I$(LIBRARYDIR)/commonFiles -I$(LIBRARYDIR)/slsDetector -I$(LIBRARYDIR)/usersFunctions -I$(LIBRARYDIR)/multiSlsDetector -I$(LIBRARYDIR)/slsDetectorUtils -I$(LIBRARYDIR)/slsDetectorCommand -I$(LIBRARYDIR)/slsDetectorAnalysis -I$(LIBRARYDIR)/slsReceiverInterface -I$(LIBRARYRXRDIR)/include -I$(LIBRARYDIR)/threadFiles -I$(LIBRARYDIR)/sharedMemory -I$(ASM)
INCLUDES=-I. -I$(LIBRARYDIR)/commonFiles -I$(LIBRARYDIR)/slsDetector -I$(LIBRARYDIR)/usersFunctions -I$(LIBRARYDIR)/multiSlsDetector -I$(LIBRARYDIR)/slsDetectorUtils -I$(LIBRARYDIR)/slsDetectorCommand -I$(LIBRARYDIR)/slsDetectorAnalysis -I$(LIBRARYDIR)/slsReceiverInterface -I$(LIBRARYRXRDIR)/include -I$(LIBRARYDIR)/threadFiles -I$(ASM)
INCLUDESRXR += -I. -I$(LIBRARYRXRDIR)/include -I$(CALIBDIR) -I$(ASM)
#LIBFLAGRXR +=

View File

@ -1,13 +1,10 @@
### Documentation
Detailed documentation can be found on the [official site.](https://www.psi.ch/detectors/users-support)
### Binaries
Documentation to obtain the binaries via the conda package is available [here.](https://github.com/slsdetectorgroup/sls_detector_software)
### Source code
One can also obtain the source code from this repository and compile while realizing the setup dependencies as required.
```
git clone https://github.com/slsdetectorgroup/slsDetectorPackage.git
git clone https://github.com/slsdetectorgroup/slsDetectorPackage.git --branch 3.0.1
```
#### Setup dependencies
@ -44,9 +41,6 @@ Usage: [-c] [-b] [-h] [-d HDF5 directory] [-j]<br>
* -g: Build/Rebuilds only gui<br>
* -j: Number of threads to compile through<br>
Basic Option:
./cmk.sh -b
For only make:
./cmk.sh

View File

@ -1 +1,350 @@
SLS Detector Package 3.0.1 released on 2018-02-12
=================================================
INTRODUCTION
This document describes the differences between 3.0.0 and 3.0.1 release.
The conda package of the binaries can be downloaded from
https://github.com/erikfrojdh/sls_detector_software.git
The conda package of the python API wrap-around to the software package is at
https://github.com/slsdetectorgroup/sls_detector.git
Manual (both HTML and pdf versions) are provided in
manual/docs/
Documentation from Source Code can be found for the Command Line and C++ API in
html:
manual/docs/html/slsDetectorClientDocs/index.html
manual/docs/html/slsDetectorUsersDocs/index.html
pdf:
manual/docs/pdf/slsDetectorClientDocs.pdf
manual/docs/pdf/slsDetectorUsersDocs.pdf
Documentation to the python API is available at
https://slsdetectorgroup.github.io/sls_detector/
Example including binaries for detector and receiver user classes can be found in
manual/manual-api
User documentation can also be accessed directly at this location:
https://www.psi.ch/detectors/users-support
If you have any software related questions or comments, please send them to:
dhanya.thattil@psi.ch
anna.bergamaschi@psi.ch
If you have any python related questions or comments, please send them to:
erik.frojdh@psi.ch
CONTENTS
- Firmware Requirements
- Changes in User Interface
- New Features
- Resolved Issues
- Known Issues
Firmware Requirements
=====================
Please refer to the link below for more details on the firmware versions.
https://www.psi.ch/detectors/firmware.
Gotthard
========
Minimum compatible version : old one
Latest version : 08.02.2018 (50um and 25um Master)
09.02.2018 (25 um Slave)
-Can not be upgraded remotely.
Eiger
=====
Minimum compatible version : 16
Latest version : 21
-Can be upgraded remotely via bit files.
Jungfrau
========
Minimum compatible version : 13.11.2017
Latest version : 13.11.2017
-Can be upgraded remotely via sls_detector_put programfpga <pof>.
Changes in User Interface
=========================
Client
------
1. Additional functions added for advanced users in users class:
(setSpeed, setClockDivider, setReadOutFlags, setDac, getADC,
setAllTrimbits, startReceiver, stopReceiver,
startAcquisition non blocking, setReceiverSilentMode, setHighVoltage,
enableDataStreamingToClient, enableDataStreamingFromReceiver,
setReceiverDataStreamingOutPort, setClientDataStreamingInPort)
2. Zmq set up for client and receiver are separated.
zmqport for client and rx_zmqport for receiver. By default, they are the
same for the slsDetectorGui to work.
3. Users example also works without config file, where detector already
configured in shared memory.
4. Use "sls_detector_get busy 0" to clear acquiring flag in shared memory
caused due to an earlier interrupted acquisition from Ctrl+C"
5. Set bit, clear bit, read register and write register cannot give -1 for
inconsistent values from multiple detectors. One has to check error from
API or read the values individually.
6. multiSlsDetector::char* getSettingsFile() function signature has been
changed to string getSettingsFile().
Receiver
--------
7. Modified the help manaual/main-api/mainReceiver.cpp to make it more
robust (handling child process exit) and flexible to determine upon
start up the number of receivers (child processes), the start TCP port
and whether to call back data.
detReceiver is now executed with [start tcp port] [number of receivers]
[1 for call back, 0 for none] as arguments.
By default, start tcp port is 1954, number of receivers is 1, and call
back is initiated.
8. rx_datastream to enable/disable data streaming in receiver. Using the GUI
or registering data call back in client automatically enables zmq in
receiver and client. "externalgui" is removed from the command line. Use
this command instead.
9. Rx_tcpport argument to the slsReceiver can be given using -t.
Eg. slsReceiver -t1955
New Features
============
Package
-------
1. In addition to the C++ API, the Python API is also now provided.
2. CMAKE now with debug flag and rpath, show warnings, compile only certain
components (such as receiver or gui)
3. One repository for entire package and made available at github.
4. One can do --version or -v to all the binaries to find out the release
version of the particular executable.
5. All the software version numbers have only date in format YYMMDD.
Client
------
6. Parallelized more commands to detector. Beneficial for large detectors.
(setTimer, setFileIndex, setOnline, setReceiverOnline, getReceiverStatus,
resetFramesCaught, setFrameIndex, setFileName, getFramesCaughtByReceiver,
setDynamicRange, setRateCorrection)
Option to also use "sls_detector_put threaded 0" to improve speed by
eliminating progress display during acquisition. Effective only for
large detectors.
Detector Server
---------------
7. (Eiger) Virtual class to execute on pc.
8. One can now read temperatures during acquisition. It goes via the stop
server.
9. (Jungfrau) One can start server in "debug" mode and then program the
new firmware via software command "sls_detector_put programfpga xx.pof".
10. (Jungfrau) Server can exit on start up if either the firmware or the
server is incompatible with each other.
11. (Jungfrau) One is able to set transmission delay (ms) of image for each
individual detector using "txndelay_frame" command. Beneficial for
large detectors.
12. (Jungfrau) One can set a threshold temperature (temp_threshold) and
enable the temperature control feature (temp_control). When the
temperature (temp_fpga) overshoots the threshold temperature, it will
set the temperature event (temp_event) and power off the chip. One must
then switch off the detector and check cooling. Switching back on starts
with defaults.
13. (25um Gotthard) Added start acquisition delay to master module.
14. (Gotthard) New constraints include minimum exposure time is 186 ns and
minimum period is 1278 ns + current exposure time.
Receiver
--------
14. The detectorip and rx_udpip does not have to be in the same subnet anymore.
Add the following commands after rx_hostname in config file to overwrite
mac configuration:
rx_udpmac [router mac]
configuremac 0
15. Added silent mode to receiver using command r_silent [i] from client.
It might be beneficial for max frame rate applications.
16. Receiver print out can handle black or white backgrounds.
17. zmq package included updated to v4.0.8.
18. Zmq streaming from receiver also sends file index in json header.
Gui
---
18. If acquisition is done, but "stop dummy packet" to the gui was lost in
the network, stop acquisition command will restream it so that the gui
doesnt hang forever. This is used only for very fast detectors like
Moench.
Resolved Issues
===============
Client
------
1. gethostbyname used in connecting to sockets was not thread safe for
multiple detectors. Using getaddrinfo for stability in multi threaded
environment.
2. Updated writing content of config and parameter dump into files.
3. More locking to handle main and processing threads using the threadpool.
Removing unlock twice, which is undefined behavior.
Detector Server
---------------
4. (Eiger) The hardware MAC of the detector is used during configuration
and relayed back to client. Similarly, hardware IP for 1 Gbe data mode.
5. (Eiger) Status will return error if there was the unlikely trouble
reading status register in the front end board. Earlier, it would only
return idle.
6. (Jungfrau) patch server v3.0.0.6.3
Able to set settings, high voltage now correctly reads 0 when
switched off, dacs are properly set.
7. (Jungfrau) FPGA reset and programming FPGA firmware via software is done
properly
8. (Gotthard) patch server v3.0.0.5.1
Able to read temperature properly.
9. (Gotthard) butst mode if set too fast had unwanted behavior such as
sending same image continuously. Now it is handled to display error
and stop acquisition.
10. (Gotthard) completely removed the possibility to set timing modes
other than auto and trigger as they are not implemented anyway. Also
signal index 1, 2 and 3 are reserved and hence, cannot be configured for
an external trigger.
11. Non Mythen and non Eiger detectors can also now get settings file from
board.
12. (Gotthard) Did not get first few images initially after configuring MAC
of detector. Fixed.
Receiver
--------
12. Made it easier to disable the standard receiver and fixing bugs related
to the use of a custom one.
13. (Jungfrau) HDF5 dimensions (npixelsY) required for mapping fixed.
14. patch2-v3.0.0-slsReceiverSoftware.patch
x, y and z coordinates in the call backs and the files are hardcoded
for this release.
15. Rest implementation (not used by standard receiver) removed.
Gui
---
16. patch1-v3.0.0-slsDetectorGui.patch
(Eiger) In expert mode and in advanced tab, when trimbits
loaded are different for every pixel, the gui complains and sets
all trimbits to zero. This has been resolved. Now, the "Set All
Trimbits" field is just set to -1.
17. Fixed segmentation fault of xputsn properly.
18. Upon clicking on "Start", clears acquiring flag in shared memory
caused due to an earlier interrupted acquisition from Ctrl+C"
19. Fixed plotting twice caused due to unzooming the first time.
20. Removed option for compression in Gui as it is not available currently.
21. Can also show Jungfrau multi detector in x direction in gui.
22. Switching tabs sometimes results in delay and gates fields being incorrectly
enabled. Fixed.
Known Issues
============
Client
------
1. File name prefix can only be done at multi deector level. Changing at
individual detector level will not include scan or position variables.
Detector Server
---------------
2. Standard header fills x-coord in 1D. y-coord and z-coord is not
implemented (3D).
Receiver
--------
3. HDF5 compression and filters are not implemented yet.

View File

@ -1 +1 @@
rm /dev/shm/slsDetectorPackage*;
for i in seq `ipcs -m | cut -d ' ' -f1`; do ipcrm -M $i; done;

View File

@ -3,8 +3,12 @@ hostname bchip007
#0:port 1952
#0:stopport 1953
#0:rx_tcpport 1956 must also have this in receiver config file
0:settingsdir /home/l_maliakal_d/mySoft/newMythenSoftware/settingsdir/gotthard
0:angdir 1.000000
0:moveflag 0.000000
0:lock 0
0:caldir /home/l_maliakal_d/mySoft/newMythenSoftware/settingsdir/gotthard
0:ffdir /home/l_maliakal_d
0:extsig:0 off
#0:detectorip 129.129.202.9
0:detectormac 00:aa:bb:cc:dd:ee
@ -16,6 +20,7 @@ hostname bchip007
master -1
sync none
outdir /bigRAID/datadir_gotthard/rec_test_data
ffdir /home/l_maliakal_d
headerbefore none
headerafter none
headerbeforepar none
@ -24,4 +29,4 @@ badchannels none
angconv none
globaloff 0.000000
binsize 0.001000
threaded 1

View File

@ -1,15 +1,18 @@
hostname bchip038+
settingsdir /home/mySoft/slsDetectorsPackage/settingsdir/jungfrau
caldir /home/mySoft/slsDetectorsPackage/settingsdir/jungfrau
lock 0
0:rx_udpport 50004
0:rx_udpip 10.1.1.100
0:detectorip 10.1.1.10
rx_hostname pcmoench01
powerchip 1
#extsig:0 trigger_in_rising_edge
#timing trigger
timing auto
outdir /external_pool/jungfrau_data/softwaretest
threaded 1

View File

@ -1,6 +1,11 @@
detsizechan 1024 1024
hostname bchip048+bchip052+
settingsdir /home/mySoft/slsDetectorsPackage/settingsdir/jungfrau
caldir /home/mySoft/slsDetectorsPackage/settingsdir/jungfrau
lock 0
0:rx_udpport 50004
0:rx_udpip 10.1.1.100
0:rx_udpmac F4:52:14:2F:32:00
@ -17,9 +22,9 @@ hostname bchip048+bchip052+
rx_hostname pcmoench01
powerchip 1
#extsig:0 trigger_in_rising_edge
#timing trigger
extsig:0 trigger_in_rising_edge
timing auto
outdir /external_pool/jungfrau_data/softwaretest
threaded 1

View File

@ -8,11 +8,13 @@ hostname bchip007+bchip009+
#0:port 1952
#0:stopport 1953
#0:rx_tcpport 1956
0:settingsdir /home/l_msdetect/dhanya/slsDetectorsPackage/settingsdir/gotthard
0:angdir 1.000000
0:moveflag 0.000000
0:lock 0
0:caldir /home/l_msdetect/dhanya/slsDetectorsPackage/settingsdir/gotthard
0:ffdir /home/l_msdetect
0:extsig:0 off
0:detectorip 10.1.1.2
#0:detectormac 00:aa:bb:cc:dd:ee
#0:rx_udpport 50001
@ -26,11 +28,13 @@ hostname bchip007+bchip009+
#1:port 1952
#1:stopport 1953
1:rx_tcpport 1957
1:settingsdir /home/l_msdetect/dhanya/slsDetectorsPackage/settingsdir/gotthard
1:angdir 1.000000
1:moveflag 0.000000
1:lock 0
1:caldir /home/l_msdetect/dhanya/slsDetectorsPackage/settingsdir/gotthard
1:ffdir /home/l_msdetect
1:extsig:0 off
1:detectorip 10.1.2.2
#1:detectormac 00:aa:bb:cc:dd:ee
1:rx_udpport 50004
@ -52,4 +56,4 @@ badchannels none
angconv none
globaloff 0.000000
binsize 0.001000
threaded 1

View File

@ -0,0 +1,13 @@
No implementation found for style `graphicx'
No implementation found for style `eucal'
No implementation found for style `amsxtra'
No implementation found for style `upref'
No implementation found for style `layout'
No implementation found for style `calc'
No implementation found for style `framed'
? brace missing for \
Substitution of arg to newlabelxx delayed.
? brace missing for \textit

View File

@ -0,0 +1,101 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 2008 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>Footnotes</TITLE>
<META NAME="description" CONTENT="Footnotes">
<META NAME="keywords" CONTENT="slsDetectors-FAQ">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2008">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="slsDetectors-FAQ.css">
</HEAD>
<BODY >
<DL>
<DT><A NAME="foot1316">... tab&nbsp;</A><A
HREF="MYTHEN.html#tex2html20"><SUP>3.1</SUP></A></DT>
<DD>The default name of the calibrated trimfiles is <I>trimbits/beamline/</I><I>settings</I><I>/noise.snxxx</I> where <I>settings</I> is the chosen settings. You can change it in <I>src/qDetector.h</I> and then recompile the acquisition program as described in&nbsp;<A HREF="#sec:installation"><IMG ALIGN="BOTTOM" BORDER="1" ALT="[*]"
SRC="file:/usr/share/latex2html/icons/crossref.png"></A>.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE>
</DD>
<DT><A NAME="foot1317">....snxxx&nbsp;</A><A
HREF="MYTHEN.html#tex2html21"><SUP>3.2</SUP></A></DT>
<DD>The default name of the calibration file <I>calibration/</I><I>settings</I><I>.snxxx</I> where <I>settings</I> is the chosen settings. You can change it in <I>src/qDetector.h</I> and then recompile the acquisition program.
<PRE>.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
</PRE>
</DD>
</DL>
</BODY>
</HTML>

File diff suppressed because it is too large Load Diff

File diff suppressed because it is too large Load Diff

Binary file not shown.

After

Width:  |  Height:  |  Size: 242 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.6 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 1.2 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 682 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 37 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 223 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 13 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 25 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.7 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 4.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 255 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 471 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 269 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 259 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 416 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 485 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 461 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 473 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 348 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 10 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 14 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.0 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 578 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 495 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 550 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 159 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 12 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 211 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 215 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 161 B

Binary file not shown.

After

Width:  |  Height:  |  Size: 9.8 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.1 KiB

Binary file not shown.

After

Width:  |  Height:  |  Size: 3.3 KiB

View File

@ -0,0 +1,41 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 2008 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>SLS Detectors
Frequently Asked Questions</TITLE>
<META NAME="description" CONTENT="SLS Detectors
Frequently Asked Questions">
<META NAME="keywords" CONTENT="slsDetectors-FAQ">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2008">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="slsDetectors-FAQ.css">
</HEAD>
<BODY >
<P>
<H1 ALIGN=CENTER>SLS Detectors
<BR>
Frequently Asked Questions</H1>
<P ALIGN=CENTER><STRONG>Anna Bergamaschi</STRONG>
</P>
<BR><P ALIGN=CENTER><B>Date:</B> February 27, 2018</P>
<HR>
<BR><HR>
</BODY>
</HTML>

View File

@ -0,0 +1,134 @@
# LaTeX2HTML 2008 (1.71)
# Associate internals original text with physical files.
$key = q/sec:usersFunc/;
$ref_files{$key} = "$dir".q|How_can_detector_movement_p.html|;
$noresave{$key} = "$nosave";
$key = q/sec:merging/;
$ref_files{$key} = "$dir".q|How_are_different_positions.html|;
$noresave{$key} = "$nosave";
$key = q/sec:timing/;
$ref_files{$key} = "$dir".q|How_can_I_synchronize_my.html|;
$noresave{$key} = "$nosave";
$key = q/fig:gating/;
$ref_files{$key} = "$dir".q|How_can_I_synchronize_my.html|;
$noresave{$key} = "$nosave";
$key = q/sec:improvetrimming/;
$ref_files{$key} = "$dir".q|MYTHEN.html|;
$noresave{$key} = "$nosave";
$key = q/fig:multidet/;
$ref_files{$key} = "$dir".q|How_can_I_control_many.html|;
$noresave{$key} = "$nosave";
$key = q/eq:acqflow/;
$ref_files{$key} = "$dir".q|Which_is_sequence_acquisiti.html|;
$noresave{$key} = "$nosave";
$key = q/fig:autotiming/;
$ref_files{$key} = "$dir".q|How_can_I_synchronize_my.html|;
$noresave{$key} = "$nosave";
$key = q/sec:3/;
$ref_files{$key} = "$dir".q|Scaling_Poisson_variates.html|;
$noresave{$key} = "$nosave";
$key = q/fig:samplefluo/;
$ref_files{$key} = "$dir".q|How_do_I_chose_comparator.html|;
$noresave{$key} = "$nosave";
$key = q/fig:settings/;
$ref_files{$key} = "$dir".q|MYTHEN.html|;
$noresave{$key} = "$nosave";
$key = q/sec:2/;
$ref_files{$key} = "$dir".q|Advanced_binning.html|;
$noresave{$key} = "$nosave";
$key = q/fig:effidet/;
$ref_files{$key} = "$dir".q|Sensors.html|;
$noresave{$key} = "$nosave";
$key = q/sec:11/;
$ref_files{$key} = "$dir".q|Basic_binning.html|;
$noresave{$key} = "$nosave";
$key = q/fig:thrscanfluo/;
$ref_files{$key} = "$dir".q|How_do_I_chose_comparator.html|;
$noresave{$key} = "$nosave";
$key = q/sec:dataFormat/;
$ref_files{$key} = "$dir".q|In_which_data_format_are.html|;
$noresave{$key} = "$nosave";
$key = q/fig:mythensett/;
$ref_files{$key} = "$dir".q|Frontend_electronics.html|;
$noresave{$key} = "$nosave";
$key = q/sec:sync/;
$ref_files{$key} = "$dir".q|How_can_several_controllers.html|;
$noresave{$key} = "$nosave";
$key = q/fig:badff/;
$ref_files{$key} = "$dir".q|Why_isn_t_my_flat_field_fla.html|;
$noresave{$key} = "$nosave";
$key = q/fig:datareceiver/;
$ref_files{$key} = "$dir".q|How_can_I_configure_data.html|;
$noresave{$key} = "$nosave";
$key = q/fig:effiback/;
$ref_files{$key} = "$dir".q|Sensors.html|;
$noresave{$key} = "$nosave";
$key = q/fig:trig/;
$ref_files{$key} = "$dir".q|How_can_I_synchronize_my.html|;
$noresave{$key} = "$nosave";
$key = q/fig:ffsetup/;
$ref_files{$key} = "$dir".q|Dynamic_acquisition_flat_fi.html|;
$noresave{$key} = "$nosave";
$key = q/fig:thresholdscanuntrimmed/;
$ref_files{$key} = "$dir".q|MYTHEN.html|;
$noresave{$key} = "$nosave";
$key = q/fig:trimdistribution/;
$ref_files{$key} = "$dir".q|MYTHEN.html|;
$noresave{$key} = "$nosave";
$key = q/sec:angcal/;
$ref_files{$key} = "$dir".q|How_is_channel_number_cover.html|;
$noresave{$key} = "$nosave";
$key = q/sec:trimdir/;
$ref_files{$key} = "$dir".q|What_are_settings_calibrati.html|;
$noresave{$key} = "$nosave";
$key = q/fig:trimplot/;
$ref_files{$key} = "$dir".q|MYTHEN.html|;
$noresave{$key} = "$nosave";
$key = q/fig:thresholdscantrimmed/;
$ref_files{$key} = "$dir".q|MYTHEN.html|;
$noresave{$key} = "$nosave";
$key = q/sec:noisetrim/;
$ref_files{$key} = "$dir".q|MYTHEN.html|;
$noresave{$key} = "$nosave";
$key = q/sec:encal/;
$ref_files{$key} = "$dir".q|In_what_consists_energy_cal.html|;
$noresave{$key} = "$nosave";
$key = q/fig:thrscan/;
$ref_files{$key} = "$dir".q|How_do_I_chose_comparator.html|;
$noresave{$key} = "$nosave";
1;

View File

@ -0,0 +1,269 @@
# LaTeX2HTML 2008 (1.71)
# Associate labels original text with physical files.
$key = q/sec:usersFunc/;
$external_labels{$key} = "$URL/" . q|How_can_detector_movement_p.html|;
$noresave{$key} = "$nosave";
$key = q/sec:merging/;
$external_labels{$key} = "$URL/" . q|How_are_different_positions.html|;
$noresave{$key} = "$nosave";
$key = q/sec:timing/;
$external_labels{$key} = "$URL/" . q|How_can_I_synchronize_my.html|;
$noresave{$key} = "$nosave";
$key = q/fig:gating/;
$external_labels{$key} = "$URL/" . q|How_can_I_synchronize_my.html|;
$noresave{$key} = "$nosave";
$key = q/sec:improvetrimming/;
$external_labels{$key} = "$URL/" . q|MYTHEN.html|;
$noresave{$key} = "$nosave";
$key = q/fig:multidet/;
$external_labels{$key} = "$URL/" . q|How_can_I_control_many.html|;
$noresave{$key} = "$nosave";
$key = q/eq:acqflow/;
$external_labels{$key} = "$URL/" . q|Which_is_sequence_acquisiti.html|;
$noresave{$key} = "$nosave";
$key = q/fig:autotiming/;
$external_labels{$key} = "$URL/" . q|How_can_I_synchronize_my.html|;
$noresave{$key} = "$nosave";
$key = q/sec:3/;
$external_labels{$key} = "$URL/" . q|Scaling_Poisson_variates.html|;
$noresave{$key} = "$nosave";
$key = q/fig:samplefluo/;
$external_labels{$key} = "$URL/" . q|How_do_I_chose_comparator.html|;
$noresave{$key} = "$nosave";
$key = q/fig:settings/;
$external_labels{$key} = "$URL/" . q|MYTHEN.html|;
$noresave{$key} = "$nosave";
$key = q/sec:2/;
$external_labels{$key} = "$URL/" . q|Advanced_binning.html|;
$noresave{$key} = "$nosave";
$key = q/fig:effidet/;
$external_labels{$key} = "$URL/" . q|Sensors.html|;
$noresave{$key} = "$nosave";
$key = q/sec:11/;
$external_labels{$key} = "$URL/" . q|Basic_binning.html|;
$noresave{$key} = "$nosave";
$key = q/fig:thrscanfluo/;
$external_labels{$key} = "$URL/" . q|How_do_I_chose_comparator.html|;
$noresave{$key} = "$nosave";
$key = q/sec:dataFormat/;
$external_labels{$key} = "$URL/" . q|In_which_data_format_are.html|;
$noresave{$key} = "$nosave";
$key = q/fig:mythensett/;
$external_labels{$key} = "$URL/" . q|Frontend_electronics.html|;
$noresave{$key} = "$nosave";
$key = q/sec:sync/;
$external_labels{$key} = "$URL/" . q|How_can_several_controllers.html|;
$noresave{$key} = "$nosave";
$key = q/fig:badff/;
$external_labels{$key} = "$URL/" . q|Why_isn_t_my_flat_field_fla.html|;
$noresave{$key} = "$nosave";
$key = q/fig:datareceiver/;
$external_labels{$key} = "$URL/" . q|How_can_I_configure_data.html|;
$noresave{$key} = "$nosave";
$key = q/fig:effiback/;
$external_labels{$key} = "$URL/" . q|Sensors.html|;
$noresave{$key} = "$nosave";
$key = q/fig:trig/;
$external_labels{$key} = "$URL/" . q|How_can_I_synchronize_my.html|;
$noresave{$key} = "$nosave";
$key = q/fig:ffsetup/;
$external_labels{$key} = "$URL/" . q|Dynamic_acquisition_flat_fi.html|;
$noresave{$key} = "$nosave";
$key = q/fig:thresholdscanuntrimmed/;
$external_labels{$key} = "$URL/" . q|MYTHEN.html|;
$noresave{$key} = "$nosave";
$key = q/fig:trimdistribution/;
$external_labels{$key} = "$URL/" . q|MYTHEN.html|;
$noresave{$key} = "$nosave";
$key = q/sec:angcal/;
$external_labels{$key} = "$URL/" . q|How_is_channel_number_cover.html|;
$noresave{$key} = "$nosave";
$key = q/sec:trimdir/;
$external_labels{$key} = "$URL/" . q|What_are_settings_calibrati.html|;
$noresave{$key} = "$nosave";
$key = q/fig:trimplot/;
$external_labels{$key} = "$URL/" . q|MYTHEN.html|;
$noresave{$key} = "$nosave";
$key = q/fig:thresholdscantrimmed/;
$external_labels{$key} = "$URL/" . q|MYTHEN.html|;
$noresave{$key} = "$nosave";
$key = q/sec:noisetrim/;
$external_labels{$key} = "$URL/" . q|MYTHEN.html|;
$noresave{$key} = "$nosave";
$key = q/sec:encal/;
$external_labels{$key} = "$URL/" . q|In_what_consists_energy_cal.html|;
$noresave{$key} = "$nosave";
$key = q/fig:thrscan/;
$external_labels{$key} = "$URL/" . q|How_do_I_chose_comparator.html|;
$noresave{$key} = "$nosave";
1;
# LaTeX2HTML 2008 (1.71)
# labels from external_latex_labels array.
$key = q/sec:usersFunc/;
$external_latex_labels{$key} = q|1.10|;
$noresave{$key} = "$nosave";
$key = q/sec:merging/;
$external_latex_labels{$key} = q|5.2|;
$noresave{$key} = "$nosave";
$key = q/sec:timing/;
$external_latex_labels{$key} = q|1.8|;
$noresave{$key} = "$nosave";
$key = q/fig:gating/;
$external_latex_labels{$key} = q|1.4|;
$noresave{$key} = "$nosave";
$key = q/sec:improvetrimming/;
$external_latex_labels{$key} = q|3.4.1|;
$noresave{$key} = "$nosave";
$key = q/fig:multidet/;
$external_latex_labels{$key} = q|1.1|;
$noresave{$key} = "$nosave";
$key = q/eq:acqflow/;
$external_latex_labels{$key} = q|1.7|;
$noresave{$key} = "$nosave";
$key = q/fig:autotiming/;
$external_latex_labels{$key} = q|1.3|;
$noresave{$key} = "$nosave";
$key = q/sec:3/;
$external_latex_labels{$key} = q|5.2.6|;
$noresave{$key} = "$nosave";
$key = q/fig:samplefluo/;
$external_latex_labels{$key} = q|3.4|;
$noresave{$key} = "$nosave";
$key = q/fig:settings/;
$external_latex_labels{$key} = q|3.1|;
$noresave{$key} = "$nosave";
$key = q/sec:2/;
$external_latex_labels{$key} = q|5.2.3|;
$noresave{$key} = "$nosave";
$key = q/fig:effidet/;
$external_latex_labels{$key} = q|2.1|;
$noresave{$key} = "$nosave";
$key = q/sec:11/;
$external_latex_labels{$key} = q|5.2.2|;
$noresave{$key} = "$nosave";
$key = q/fig:thrscanfluo/;
$external_latex_labels{$key} = q|3.3|;
$noresave{$key} = "$nosave";
$key = q/sec:dataFormat/;
$external_latex_labels{$key} = q|1.11|;
$noresave{$key} = "$nosave";
$key = q/fig:mythensett/;
$external_latex_labels{$key} = q|2.3|;
$noresave{$key} = "$nosave";
$key = q/sec:sync/;
$external_latex_labels{$key} = q|1.9|;
$noresave{$key} = "$nosave";
$key = q/fig:badff/;
$external_latex_labels{$key} = q|3.5|;
$noresave{$key} = "$nosave";
$key = q/fig:datareceiver/;
$external_latex_labels{$key} = q|1.2|;
$noresave{$key} = "$nosave";
$key = q/fig:effiback/;
$external_latex_labels{$key} = q|2.2|;
$noresave{$key} = "$nosave";
$key = q/fig:trig/;
$external_latex_labels{$key} = q|1.6|;
$noresave{$key} = "$nosave";
$key = q/fig:ffsetup/;
$external_latex_labels{$key} = q|3.6|;
$noresave{$key} = "$nosave";
$key = q/fig:thresholdscanuntrimmed/;
$external_latex_labels{$key} = q|3.7|;
$noresave{$key} = "$nosave";
$key = q/fig:trimdistribution/;
$external_latex_labels{$key} = q|3.8|;
$noresave{$key} = "$nosave";
$key = q/sec:angcal/;
$external_latex_labels{$key} = q|5.1|;
$noresave{$key} = "$nosave";
$key = q/sec:trimdir/;
$external_latex_labels{$key} = q|1.4|;
$noresave{$key} = "$nosave";
$key = q/fig:trimplot/;
$external_latex_labels{$key} = q|3.9|;
$noresave{$key} = "$nosave";
$key = q/fig:thresholdscantrimmed/;
$external_latex_labels{$key} = q|3.10|;
$noresave{$key} = "$nosave";
$key = q/sec:noisetrim/;
$external_latex_labels{$key} = q|3.4.1|;
$noresave{$key} = "$nosave";
$key = q/sec:encal/;
$external_latex_labels{$key} = q|3.5|;
$noresave{$key} = "$nosave";
$key = q/fig:thrscan/;
$external_latex_labels{$key} = q|3.2|;
$noresave{$key} = "$nosave";
1;

View File

@ -0,0 +1,30 @@
/* Century Schoolbook font is very similar to Computer Modern Math: cmmi */
.MATH { font-family: "Century Schoolbook", serif; }
.MATH I { font-family: "Century Schoolbook", serif; font-style: italic }
.BOLDMATH { font-family: "Century Schoolbook", serif; font-weight: bold }
/* implement both fixed-size and relative sizes */
SMALL.XTINY { font-size : xx-small }
SMALL.TINY { font-size : x-small }
SMALL.SCRIPTSIZE { font-size : smaller }
SMALL.FOOTNOTESIZE { font-size : small }
SMALL.SMALL { }
BIG.LARGE { }
BIG.XLARGE { font-size : large }
BIG.XXLARGE { font-size : x-large }
BIG.HUGE { font-size : larger }
BIG.XHUGE { font-size : xx-large }
/* heading styles */
H1 { }
H2 { }
H3 { }
H4 { }
H5 { }
/* mathematics styles */
DIV.displaymath { } /* math displays */
TD.eqno { } /* equation-number cells */
/* document-specific styles come next */

View File

@ -0,0 +1,41 @@
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 3.2 Final//EN">
<!--Converted with LaTeX2HTML 2008 (1.71)
original version by: Nikos Drakos, CBLU, University of Leeds
* revised and updated by: Marcus Hennecke, Ross Moore, Herb Swan
* with significant contributions from:
Jens Lippmann, Marek Rouchal, Martin Wilck and others -->
<HTML>
<HEAD>
<TITLE>SLS Detectors
Frequently Asked Questions</TITLE>
<META NAME="description" CONTENT="SLS Detectors
Frequently Asked Questions">
<META NAME="keywords" CONTENT="slsDetectors-FAQ">
<META NAME="resource-type" CONTENT="document">
<META NAME="distribution" CONTENT="global">
<META NAME="Generator" CONTENT="LaTeX2HTML v2008">
<META HTTP-EQUIV="Content-Style-Type" CONTENT="text/css">
<LINK REL="STYLESHEET" HREF="slsDetectors-FAQ.css">
</HEAD>
<BODY >
<P>
<H1 ALIGN=CENTER>SLS Detectors
<BR>
Frequently Asked Questions</H1>
<P ALIGN=CENTER><STRONG>Anna Bergamaschi</STRONG>
</P>
<BR><P ALIGN=CENTER><B>Date:</B> February 27, 2018</P>
<HR>
<BR><HR>
</BODY>
</HTML>

Binary file not shown.

Binary file not shown.

View File

@ -1,17 +0,0 @@
add_executable(slsMultiReceiver
mainReceiver.cpp
)
set_target_properties(slsMultiReceiver PROPERTIES
RUNTIME_OUTPUT_DIRECTORY ${CMAKE_BINARY_DIR}/bin
)
target_link_libraries(slsMultiReceiver
slsReceiverShared
pthread
zmq
rt
)
install(TARGETS slsMultiReceiver
RUNTIME DESTINATION bin)

View File

@ -77,6 +77,7 @@ int main(int argc, char **argv) {
pDetector->enableDataStreamingToClient(1);
/** - ensuring detector status is idle before starting acquisition. exiting if not idle */
int status = pDetector->getDetectorStatus();
if (status != 0){
@ -93,7 +94,7 @@ int main(int argc, char **argv) {
/** - start measurement */
pDetector->startMeasurement();
std::cout << "measurement finished" << std::endl; usleep(1*1000*1000);
std::cout << "measurement finished" << std::endl;
/** - returning when acquisition is finished or data are avilable */

View File

@ -54,7 +54,7 @@ void sigInterruptHandler(int p){
*/
void printHelp() {
cprintf(RESET, "Usage:\n"
"./slsMultiReceiver(detReceiver) [start_tcp_port] [num_receivers] [1 for call back, 0 for none]\n\n");
"./detReceiver [start_tcp_port] [num_receivers] [1 for call back, 0 for none]\n\n");
exit(EXIT_FAILURE);
}
@ -86,77 +86,42 @@ void AcquisitionFinished(uint64_t frames, void*p){
cprintf(BLUE, "#### AcquisitionFinished: frames:%llu ####\n",frames);
}
/**
* Get Receiver Data Call back
* Prints in different colors(for each receiver process) the different headers for each image call back.
* @param metadata sls_receiver_header metadata
* @param frameNumber frame number
* @param expLength real time exposure length (in 100ns) or sub frame number (Eiger 32 bit mode only)
* @param packetNumber number of packets caught for this frame
* @param bunchId bunch id from beamline
* @param timestamp time stamp in 10MHz clock (not implemented for most)
* @param modId module id (not implemented for most)
* @param xCoord x coordinates (detector id in 1D)
* @param yCoord y coordinates (not implemented)
* @param zCoord z coordinates (not implemented)
* @param debug debug values if any
* @param roundRNumber (not implemented)
* @param detType detector type see :: detectorType
* @param version version of standard header (structure format)
* @param datapointer pointer to data
* @param datasize data size in bytes.
* @param datasize data size in bytes
* @param p pointer to object
*/
void GetData(char* metadata, char* datapointer, uint32_t datasize, void* p){
slsReceiverDefs::sls_receiver_header* header = (slsReceiverDefs::sls_receiver_header*)metadata;
slsReceiverDefs::sls_detector_header detectorHeader = header->detHeader;
void GetData(uint64_t frameNumber, uint32_t expLength, uint32_t packetNumber, uint64_t bunchId, uint64_t timestamp,
uint16_t modId, uint16_t xCoord, uint16_t yCoord, uint16_t zCoord, uint32_t debug, uint16_t roundRNumber, uint8_t detType, uint8_t version,
char* datapointer, uint32_t datasize, void* p){
PRINT_IN_COLOR (detectorHeader.modId?detectorHeader.modId:detectorHeader.xCoord,
PRINT_IN_COLOR (modId?modId:xCoord,
"#### %d GetData: ####\n"
"frameNumber: %llu\t\texpLength: %u\t\tpacketNumber: %u\t\tbunchId: %llu"
"\t\ttimestamp: %llu\t\tmodId: %u\t\t"
"xCoord: %u\t\tyCoord: %u\t\tzCoord: %u\t\tdebug: %u"
"\t\troundRNumber: %u\t\tdetType: %u\t\tversion: %u"
//"\t\tpacketsMask:%s"
"\t\tfirstbytedata: 0x%x\t\tdatsize: %u\n\n",
detectorHeader.xCoord, detectorHeader.frameNumber,
detectorHeader.expLength, detectorHeader.packetNumber, detectorHeader.bunchId,
detectorHeader.timestamp, detectorHeader.modId,
detectorHeader.xCoord, detectorHeader.yCoord, detectorHeader.zCoord,
detectorHeader.debug, detectorHeader.roundRNumber,
detectorHeader.detType, detectorHeader.version,
//header->packetsMask.to_string().c_str(),
((uint8_t)(*((uint8_t*)(datapointer)))), datasize);
"frameNumber: %llu\t\texpLength: %u\t\tpacketNumber: %u\t\tbunchId: %llu\t\ttimestamp: %llu\t\tmodId: %u\t\t"
"xCoord: %u\t\tyCoord: %u\t\tzCoord: %u\t\tdebug: %u\t\troundRNumber: %u\t\tdetType: %u\t\t"
"version: %u\t\tfirstbytedata: 0x%x\t\tdatsize: %u\n\n",
xCoord, frameNumber, expLength, packetNumber, bunchId, timestamp, modId,
xCoord, yCoord, zCoord, debug, roundRNumber, detType, version,
((uint8_t)(*((uint8_t*)(datapointer)))), datasize);
}
/**
* Get Receiver Data Call back (modified)
* Prints in different colors(for each receiver process) the different headers for each image call back.
* @param metadata sls_receiver_header metadata
* @param datapointer pointer to data
* @param datasize data size in bytes.
* @param revDatasize new data size in bytes after the callback.
* This will be the size written/streamed. (only smaller value is allowed).
* @param p pointer to object
*/
void GetData(char* metadata, char* datapointer, uint32_t &revDatasize, void* p){
slsReceiverDefs::sls_receiver_header* header = (slsReceiverDefs::sls_receiver_header*)metadata;
slsReceiverDefs::sls_detector_header detectorHeader = header->detHeader;
PRINT_IN_COLOR (detectorHeader.modId?detectorHeader.modId:detectorHeader.xCoord,
"#### %d GetData: ####\n"
"frameNumber: %llu\t\texpLength: %u\t\tpacketNumber: %u\t\tbunchId: %llu"
"\t\ttimestamp: %llu\t\tmodId: %u\t\t"
"xCoord: %u\t\tyCoord: %u\t\tzCoord: %u\t\tdebug: %u"
"\t\troundRNumber: %u\t\tdetType: %u\t\tversion: %u"
//"\t\tpacketsMask:%s"
"\t\tfirstbytedata: 0x%x\t\tdatsize: %u\n\n",
detectorHeader.xCoord, detectorHeader.frameNumber,
detectorHeader.expLength, detectorHeader.packetNumber, detectorHeader.bunchId,
detectorHeader.timestamp, detectorHeader.modId,
detectorHeader.xCoord, detectorHeader.yCoord, detectorHeader.zCoord,
detectorHeader.debug, detectorHeader.roundRNumber,
detectorHeader.detType, detectorHeader.version,
//header->packetsMask.to_string().c_str(),
((uint8_t)(*((uint8_t*)(datapointer)))), revDatasize);
// if data is modified, eg ROI and size is reduced
revDatasize = 26000;
}
/**
* Example of main program using the slsReceiverUsers class
*
@ -244,8 +209,7 @@ int main(int argc, char *argv[]) {
/* - Call back for raw data */
cprintf(BLUE, "Registering GetData() \n");
if (withCallback == 1) receiver->registerCallBackRawDataReady(GetData,NULL);
else if (withCallback == 2) receiver->registerCallBackRawDataModifyReady(GetData,NULL);
receiver->registerCallBackRawDataReady(GetData,NULL);
}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 432 KiB

Binary file not shown.

View File

@ -18,28 +18,17 @@
\tableofcontents
\section{Usage}
\subsection{Short description}
Figure ~\ref{boards} show the readout board basic components on an Eiger half module. An half module can read up to 4 readout chips.
\begin{figure}[t]
\begin{center}
\includegraphics[width=1\textwidth]{Boards}
\end{center}
\caption{Picture with most relevant components of the EIGER readout system. The readout system starts with the Front End Boards (FEB) which performs data descrambling (also converts the packets from 12 $\to$ 16 bits) and rate correction. The BackEndBoard (BEB) has 2x2GB DDR2 memories and can perform data buffering (storing images on board) and data summation (16 bit $\to$ 32 bits). The controls to the detector are passed through the 1Gb, while in most installations, the data are sent out through the 10GB ethernet connection.}
\label{boards}
\end{figure}
\subsection{Mandatory setup - Hardware}
An EIGER single module (500~kpixels) needs:
\begin{itemize}
\item A chilled (water+alcohol) at 21~$^{\circ}$C for a single module (500k pixels), which needs to dissipate 85~W (every module, i.e. for two half boards). For the 9M, 1.5M, a special cooling liquid is required: 2/3 deionized water and 1/3 ESA Type 48. This is important as the high temperature generated by the boards accelerate the corrosion due to Cu/Al reaction and the blockage of the small channels where the liquid flows, in particular near the face of the detector and if it is a parallel flow and not a single loop. The 9M and 1.5M run at 19~$^{\circ}$C.
\item A chilled (water+alcohol) at approximately 21~$^{\circ}$C, which needs to dissipate 85~W. For the 9M, a special cooling liquid is required: 2/3 deionized water and 1/3 ESA Type 48.
\item A power supply (12~V, 8~A). For the 9~M, a special cpu is give to remotely switch on and off the detector: see section~\ref{bchip100}.
\item 2$\times$1~Gb/s Ethernet connectors to control the detector and, optionally, receive data at low rate. A DHCP server that gives IPs to the 1~Gb/s connectors of the detector is needed. Note that flow control has to be enabled on the switch you are using, if you plan to read the data out from there. If not, you need to implement delays in the sending out of the data.
\item 2$\times$10~Gb/s transceivers to optionally, receive data at high rate. The 10Gb/s transceiver need to match the wavelength (long/short range) of the fibers chosen by the beamline infrastructure.
\item 2$\times$1~Gb/s Ethernet connectors to control the detector and, optionally, receive data at low rate. A DHCP server that gives IPs to the 1~Gb/s connectors of the detector is needed. Note that flow control has to be enabled on the switch you are using.
\item 2$\times$10~Gb/s transceivers to optionally, receive data at high rate.
\end{itemize}
The equipment scales linearly with the number of modules.
Figure~\ref{fig:1} shows the relationship between the \textbf{Client} (which sits on a beamline control PC), the \textbf{Receiver} (which can run in multiple instances on one or more PCs which receive data from the detector. The receiver(s) does not necessary have to be running on the same PC as the client.) The username under which the receiver runs is the owner of the data files, if using our implementation. It is important that the receiver is closely connected to the detector (they have to be on the same network). Note that if you implement the 1Gb/s readout only: client, receiver and detector have to be all three in the same network. If you implement the 10Gb/s readout, then client, the 1~GbE of the detector and the receiver have to stay on the 1GbE. But the receiver data receiving device and the 10GbE detector can be on their private network, minimizing the missing packets.
Figure~\ref{fig:1} shows the relationship between the \textbf{Client} (which sits on a beamline control PC), the \textbf{Receiver} (which can run in multiple instances on one or more PCs which receive data from the detector. The receiver(s) does not necessary have to be running on the same PC as the client.) It is important that the receiver is closely connected to the detector (they have to be on the same network). Note that if you implement the 1Gb/s readout only: client, receiver and detector have to be all three in the same network. If you implement the 10Gb/s readout, then client, the 1~GbE of the detector and the receiver have to stay on the 1GbE. But the receiver data receiving device and the 10GbE detector can be on their private network, minimizing the missing packets.
\begin{figure}[t]
\begin{center}
@ -52,7 +41,7 @@ Figure~\ref{fig:1} shows the relationship between the \textbf{Client} (which sit
The Client talks to control over 1~Gb Ethernet connection using TCP/IP to the detector and to the receiver. The detector sends data in UDP packets to the receiver. This data sending can be done over 1~Gb/s or 10~Gb/s.
\begin{itemize}
\item \textbf{Switch on the detector only after having started the chiller: the 500k single module and the 1.5M at cSAXS/OMNY have a hardware temperature sensor, which will power off the boards if the temperature is too high. Note that the detector will be power on again as soon as the temperature has been lowered. The 9M will not boot up without the correct waterflow and temperature has it has an integrated flowmeter.}
\item \textbf{Switch on the detector only after having started the chiller: the 500k single module and the 1.5M at cSAXS have a hardware temperature sensor, which will power off the boards if the temperature is too high. Note that the detector will be power on again as soon as the temperature has been lowered. The 9M will not boot up without the correct waterflow and temperature has it has an integrated flowmeter.}
\item \textbf{Switch on the detector only after having connected all the cables and network. EIGER is unable to get IP address after it has been switched on without a proper network set up. In that case switch off and on the detector again.}
\end{itemize}
@ -84,22 +73,28 @@ You can also Check temperatures and water flow in a browser (from the same subne
\subsection{Mandatory setup - Receiver}
The receiver is a process run on a PC closely connected to the detector. Open one receiver for every half module board (remember, a module has two receivers!!!) . Go to {\tt{slsDetectorsPackage/build/bin/}}, \textbf{slsReceiver} should be started on the machine expected to receive the data from the detector.
The receiver is a process run on a PC closely connected to the detector. Open one receiver for every half module board (remember, a module has two receivers!!!) . Go to {\tt{slsDetectorsPackage/bin/}}, \textbf{slsReceiver} should be started on the machine expected to receive the data from the detector.
\begin{itemize}
\item {\tt{./slsReceiver --rx\_tcpport xxxx}}
\item {\tt{./slsReceiver --rx\_tcpport yyyy}}
\end{itemize}
where xxxx, yyyy are the tcp port numbers. Use 1955 and 1956 for example. The receiver for the bottom is open without arguments but still in the configuration file one needs to write {\tt{n:flippeddatax 1}}, where {\tt{2n+1}} indicated the half module number, 1 if it is a module.
where xxxx, yyyy are the tcp port numbers. Use 1955 and 1956 for example. Note that in older version of the software {\tt{--mode 1}} was used only for the ``bottom'' half module. Now, the receiver for the bottom is open without arguments anymore, but still in the configuration file one needs to write {\tt{n:flippeddatax 1}}, where {\tt{n}} indicated the half module number, 1 if it is a module.
\\ Open as many receiver as half module boards. A single module has two half module boards.
From the software version 3.0.1, one can decide weather start a zmq callback from the receiver to the client (for example to visualize data in the slsDetectorGui or another gui). If the zmq steam is not required (cased of the command line for example, one can switch off the streaming with {\tt{./sls\_detector\_put rx\_datastream 0}}, enable it with {\tt{./sls\_detector\_put rx\_datastream 1}}. In the case of inizialising the stream to use the slsDetectorGui, nothing needs to be taken care of by the user. If instead you want to stream the streaming on different channels, the zmq port of the client can be set stealing from the slsDetectorGui stream having {\tt{./sls\_detector\_put zmqport 300y}}. Note that if this is done globally (not for every half module n independently, then the client automatically takes into account that for every half module, there are 2 zmq stream. The receiver stream {\tt{./sls\_detector\_put rx\_zmqport 300y}} has to match such that the GUI can work.
If one desires to set the zmqport manually, he offset has to be taken into account: {\tt{./sls\_detector\_put 0:rx\_zmqport 300y}}, {\tt{./sls\_detector\_put 1:rx\_zmqport 300y+2}} and so on..
From the software version 3.0.1, one can decide weather start a zmq callback from the receiver to the client (for example to visualize data in the slsDetectorGui or another gui). If the zmq steam is not required (cased of the command line for example, one can switch off the streaming with {\tt{./sls\_detector\_put rx\_datastream 0}}, enable it with {\tt{./sls\_detector\_put rx\_datastream 1}}. In the case of inizialising the stream to use the slsDetectorGui, nothing needs to be taken care of by the user. If instead you want to stream the streaming on different channels, the zmq port of the client can be set stealing from the slsDetectorGui stream having {\tt{./sls\_detector\_put n:zmqport 300y}}, where n is each half module independently, matching the receiver stream {\tt{./sls\_detector\_put n:rx\_zmqport 300y}}.
There is an example code that can be compiled in {\tt{manual/manual-api/mainReceiver.cpp}} and gives the executable {\tt{./detReceiver}}, use it with two or more receivers to open all receivers in one single terminal: {\tt{./detReceiver startTCPPort numReceivers withCallback}}, where startTCPPort assumes the other ports are consecutively increased.
\subsection{Mandatory setup - Client}
\underline{In the case of cSAXS, the detector software is installed on:}\\
\underline{/sls/X12SA/data/x12saop/EigerPackage/slsDetectorsPackage}
The command line interface consists in these main functions:
\begin{description}
\item[sls\_detector\_acquire] to acquire data from the detector
@ -171,15 +166,15 @@ Other important settings that are configured in the {\tt{setup.det}} file are:
\begin{itemize}
\item {\tt{tengiga 0/1}}, which sets whether the detector is enabled to send data through the 1~or the 10~Gb Ethernet.
\item {\tt{flags parallel/nonparallel}}, which sets whether the detector is set in parallel acquisition and readout or in sequential mode. This changes the readout time of the chip and affects the frame rate capability (faster is {\tt{parallel}}, with higher noise but needed when the frame rate is $>2$~kHz.
\item {\tt{dr 32/16/8/4}} sets the detector in autosumming mode (32 bit counter or not autosumming, 12 bit out of the chip). This is strictly connected to what is required for the readout clock of chip. See next point.
\item {\tt{dr 32/16}} sets the detector in autosumming mode (32 bit counter or not autosumming, 12 bit out of the chip). This is strictly connected to what is required for the readout clock of chip. See next point.
\item {\tt{clkdivider 0/1/2}}. Changes the readout clock: 200, 100, 50~MHz (also referred to as full, half, quarter speed). Note that autosumming mode ({\tt{dr 32}} only works at {clkdivider 2}=quarter speed). By selecting Refer to readout timing specifications in~section\ref{timing} for how to set the detector.
\item {\tt{flags continuous/storeinram}}. Allows to take frame continuously or storing them on memory. Users should use the {\tt{continuous}} flags. Enabling the {\tt{stroreinram}} flag makes the data to be sent out all at the end of the acquisition. Refer to readout timing specifications in section~\ref{timing} for how to set the detector. Examples will be given in section~\ref{}.
\item {\tt{flags continuous/storeinram}}. Allows to take frame continuously or storing them on memory. Normally {\tt{continuous}} should be used. Enabling the {\tt{stroreinram}} mode allows you to obtain the maximum frame rate, but at the expenses to have to receive the data all at the end of the acquisition. Refer to readout timing specifications in section~\ref{timing} for how to set the detector.
\end{itemize}
One should notice that, by default, by choosing the option {\tt{dr 32}}, then the software automatically sets the detector to {\tt{clkdivider 2}}. By choosing the option {\tt{dr 16}}, the software automatically sets the detector to {\tt{clkdivider 1}}. One needs to choose {\tt{clkdivider 0}} after setting the {\tt{dr 16}} option to have the fastest frame rate.
We would recommend expert users (beamline people) to write their parameters file for the users.
\section{API versioning} \label{api}
\section{API versioning}
The eigerDetectorServer running on the boards has a versioning API scheme that will make it crash if used with a wrong firmware.
You can also check your versioning by hand with the code:
\begin{verbatim}
@ -199,18 +194,12 @@ Killing and starting the server on the boards allows you to check the firmware v
\section{Setting up the threshold}
\begin{verbatim}
sls_detector_put 0-trimen N xxxx yyyy zzzz
sls_detector_put 0-settings standard
sls_detector_put 0-threshold energy_in_eV standard
sls_detector_put 0-settings standard #[veryhighgain/highgain/lowgain/verylowgain] also possible
sls_detector_put 0-threshold energy_in_eV
\end{verbatim}
The first line requires to specify how many ({\tt{N}}) and at which energies in eV {\{tt{xxxx}}, {\tt{yyyy}}, {\tt{zzzz}} and so on) trimmed files were generated (to allow for an interpolation). This line should normally be included into the {\tt{mydetector.config}} file and should be set for you by one of the detector group.
NORMALLY, in this new calibration scheme, only {\tt{settings standard}} will be provided to you, unless specific cases to be discussed.
The threshold at 6000 eV , for example would be set as:{\tt{sls\_detector\_put 0-threshold 6000 standard}}.
For \E, at the moment normally only {\tt{standard}} settings are possible.
{\tt{lowgain}}, {\tt{verylowgain}}, {\tt{veryhighgain}} and {\tt{highgain}} are theoretically possible, but we never calibrate like this. They could be implemented later if needed.
Notice that setting the threshold actually loads the trimbit files (and interpolate them between the closest calibration energies) so it is time consuming.
The threshold is expressed in (eV) as the proper threshold setting, i.e. normally is set to 50\% of the beam energy.
The threshold at 6000 eV , for example would be set as:{\tt{sls\_detector\_put 0-threshold 6000}}.
We have added a special command, {\tt{thresholdnotb}}, which allows to scan the threshold energy without reloading the trimbits at every stage. One can either keep the trimbits at a specific value (es.32 if the range of energies to scan is large) or use the trimbits from a specific energy (like a central energy).
\begin{verbatim}
@ -227,7 +216,12 @@ sls_detector_put 0-period 0[time_is_s]
\end{verbatim}
In this acquisition 10 consecutive 1~s frames will be acquired. Note that {\tt{period}} defines the sum of the acquisition time and the desired dead time before the next frame. If {\tt{period}} is set to 0, then the next frame will start as soon as the detector is ready to take another acquisition. \\
%\underline{At cSAXS, the {\tt{settingsdir}} and {\tt{caldir}} are in}\\\underline{/sls/X12SA/data/x12saop/EigerPackage/calibrations/}\\
For \E, at the moment 5 settings are possible: {\tt{standard}}, {\tt{lowgain}}, {\tt{verylowgain}}, {\tt{veryhighgain}} and {\tt{highgain}}. According to the setting chosen, one can reach different requirements (low noise or high rate). Refer to the settings requirements for your detector.\\
Notice that the option {\tt{settings standard/highgain/lowgain/veryhighgain/verylowgain}} actually loads the trimbit files so it is time consuming. Only setting the {\tt{threshold}} does not load trimbit files.
The threshold is expressed in (eV) as the proper threshold setting, i.e. normally is set to 50\% of the beam energy.
\underline{At cSAXS, the {\tt{settingsdir}} and {\tt{caldir}} are in}\\\underline{/sls/X12SA/data/x12saop/EigerPackage/calibrations/}\\
You need to setup where the files will be written to
\begin{verbatim}
@ -253,28 +247,23 @@ sls_detector_get receiver
\end{verbatim}
There is a more complex way of performing an acquisition, that is useful for debugging and in case one wants a non blocking behavior:
You can then reset to zero the number of frames caught, then start the receiver and the detector:
\begin{enumerate}
\item {\tt{sls\_detector\_put 0-resetframescaught 0}}
\begin{itemize}
\item {\tt{sls\_detector\_put 0-receiver start}}
\item {\tt{sls\_detector\_put 0-status start}}
\end{enumerate}
\end{itemize}
You can poll the detector status using:
\begin{verbatim}
sls_detector_get 0-status
\end{verbatim}
When the detector is {\tt{idle}}, then the acquisition is done but the receiver could still be receiving data. If you want, you can check if the receiver is finished receiving as many frames as you were expecting (this is optional but required for many many frames acquisition or when using some delays to send data at very high frame rate.
\begin{enumerate}
\setcounter{enumi}{3}
\item {\tt{sls\_detector\_get framescaught}}
\end{enumerate}
Then you can stop the receiver as well now:
\begin{enumerate}
\setcounter{enumi}{4}
When the detector is {\tt{idle}}, then you need to stop the receiver doing:
\begin{itemize}
\item {\tt{sls\_detector\_put 0-receiver stop}}
\end{enumerate}
\end{itemize}
You can then reset to zero the number of frames caught, if you desire:
\begin{itemize}
\item {\tt{sls\_detector\_put 0-resetframescaught 0}}
\end{itemize}
The detector will not accept other commands while acquiring. If an acquisition wishes to be properly aborted, then:
\begin{itemize}
@ -286,7 +275,7 @@ this same command can be used after a non proper abortion of the acquisition to
IMPORTANT: to have faster readout and smaller dead time, one can configure {\tt{clkdivider}}, i.e. the speed at which the data are read, i.e. 200/100/50~MHz for {\tt{clkdivider 0/1/2}} and the dead time between frames through {\tt{flags parallel}}, i.e. acquire and read at the same time or acquire and then read out.
The configuration of this timing variables allows to achieve different frame rates. NOTE THAT IN EIGER, WHATEVER YOU DO, THE FRAME RATE LIMITATIONS COME FROM THE NETWORK BOTTLENECK AS THE HARDWARE GOES FASTER THAN THE DATA OUT.
In the case of REAL CONTINUOUS readout, i.e. continuous acquire and readout from the boards (independent on how the chip is set), the continuous frame rates are listed in table~\ref{tcont}.
In the case of REAL CONTINUOUS readout, i.e. continuous acquire and readout from the boards (independent on how the chip is set), the continuous frame rates are listed in table~\ref{tcont}:
\begin{table}
\begin{tabular}{|c|c|c|c|}
\hline
@ -305,9 +294,10 @@ GbE & dynamic range & continuos maximum frame rate(Hz) & minimum period ($\mu$s)
10 & 4 & \textbf{10240} & 98\\
\hline
\end{tabular}
\caption{Frame rate limits for the CONTINUOS streaming out of images, i.e. the data rate out is just below 1Gb/s or 10Gb/s.}
\caption{Frame rate limits for the CONTINUOS streaming out of images.}
\label{tcont}\end{table}
Note that in the {\tt{continuous}} flag mode, some buffering is still done on the memories, so a higher frame rate than the proper real continuous one can be achieved. Still, this extra buffering is possible till the memories are not saturated. The number of images that can be stored on the DDR2 on board memories are listed in table~\ref{timgs}.
Note that in the {\tt{continuous}} flag mode, some buffering is still done on the memories, so a higher frame rate than the proper real continuous one can be achieved. Still, this extra buffering is possible till the memories are not saturated.
The number of images that can be stored on memories are listed in table~\ref{timgs}:
\begin{table}
\begin{tabular}{|c|c|}
\hline
@ -324,184 +314,72 @@ dynamic range & images\\
\label{timgs}
\end{table}
The maximum frame rate achievable with 10~GbE, {\tt{dr 16}}, {\tt{flags continuous}}, {\tt{flags parallel}},{\tt{clkdivider 0}}, \textbf{6.1~kHz}. This is currently limited by the connection between the Front End Board and the Backend board. We expect the 32 bit mode limit, internally, to be \textbf{2~kHz} ({\tt{clkdivider 2}}).
The maximum frame rate achievable with 10~GbE, {\tt{dr 16}}, {\tt{flags continuous}}, {\tt{flags parallel}},{\tt{clkdivider 0}}, \textbf{6.1~kHz}. This is currently limited by the connection between the Front End Board and the Backend board. We expect the 32 bit mode limit to be \textbf{2~kHz} ({\tt{clkdivider 2}}).
In dynamic range {\tt{dr 8}} the frame rate is \textbf{11~kHz} and for{\tt{dr 4}} is \textbf{22~kHz}. For 4 and 8 bit mode the frame rate are directly limited by the speed of the detector chip and not by the readout boards.
\subsection{Minimum time between frames and Maximum frame rate}
We need to leave enough time between an exposure and the following. This time is a combination of the time required by the chip, by the readout boards and eventually extra time to reduce some appearance of cross talk noise between the digital and analog parts of the chip.
\textbf{It is essential to set the {\tt{period}} of the detector, defined as the {\tt{exptime}} plus an extra time, that needs to be at least the chip/board readout time. If this is set wrong (it is $<$ {\tt{exptime}} plus chip/board readout time), then the detector takes the minimum time it can, but you are in a not controlled frame rate situation.}
The expected time difference between frames given by the pure chip readout time is in Table~\ref{tchipro}.
In table~\ref{tframes} is a list of all the readout times in the different configurations:
\begin{tiny}
\begin{table}
\begin{flushleft}
\begin{tabular}{|c|c|c|c|}
\begin{tabular}{|c|c|c|c|c|c|c|c|}
\hline
\tiny{dr} & \tiny{clkdivider} & \tiny{expected chip readout t($\mu$s)} & \tiny{measured chip readout t($\mu$s)}\\
\tiny{dr} & \tiny{clkdivider} & \tiny{flags} & \tiny{readout t($\mu$s)} & \tiny{max frame rate (kHz)} & \tiny{max exptime ($\mu$s)} & \tiny{min period ($\mu$s)} & \tiny{max imgs (nominal/our network)}\\
\hline
4 & 0 & 41 & 40\\
4 & 1 & 82 & 84\\
4 & 2 & 123 & 172\\
4 & 0 & parallel & 3.4 & 22 & 40 & 44 & 30k/50k\\
\hline
4 & 0 & nonparallel & 44 & 21 & 3 & 49 & 30k/50k\\
\hline
4 & 1 & parallel & 6 & 10.5 & 85 & 92 & 30k/100k\\
\hline
4 & 1 & nonparallel & 88.7 & 10.5 & 3 & 93 & 30k/100k\\
\hline
4 & 2 & parallel & 11.2 & 5.4 & 185 & 197 & infinite\\
\hline
4 & 2 & nonparallel & 176.5 & 5.4 & 3 & 180 & infinite\\
\hline
\hline
8 & 0 & 82 & 82\\
8 & 1 & 164 & 167\\
8 & 2 & 328 & 336\\
8 & 0 & parallel & 3.4 & 11.1 & 85 & 89 & 15k/24k\\
\hline
8 & 0 & nonparallel & 85.7 & 11.1 & 3 & 91 & 15k/24k\\
\hline
8 & 1 & parallel & 6.1 & 5.7 & 174 & 181 & 15k/52k\\
\hline
8 & 1 & nonparallel & 170.5 & 5.7 & 3 & 175 & 15k/52k\\
\hline
8 & 2 & parallel & 11.2 & 2.9 & 330 & 342 & infinite\\
\hline
8 & 2 & nonparallel & 340.3 & 2.9 & 3 & 344 & infinite\\
\hline
\hline
12 & 0 & 123 &122\\
12 & 1 & 246 & 251\\
12 & 2 & 491 & 500\\
16 & 0 & parallel & 3.4 & 6 & 164 & 168 & 8k/12k\\
\hline
16 & 0 & nonparallel & 126 & 3.4& 164 & 295 & 8k/23k\\
\hline
16 & 1 & parallel & 6.1 & 2.9& 339 & 346 & 8k/28k\\
\hline
16 & 1 & nonparallel & 255 & 1.7& 339 & 592 & infinite\\
\hline
16 & 2 & parallel & 11 & 1.5& 66 & 78 & infinite \\
\hline
16 & 2 & nonparallel & 504 & 0.85 & 7 & 512 & infinite\\
\hline
\hline
32 & 2 & parallel & 11 & 2& & &\\
\hline
32 & 2 & nonparallel & 504 & $<2$& & &\\
\hline
\end{tabular}
\caption{Readout time required from the chip to readout the pixels. The numbers are obtained using equation~\ref{dtnonparallel}.}
\label{tchipro}
\end{flushleft}
\end{table}
\end{tiny}
The {\tt{period}} is s is defined as:
\begin{equation} \label{period}
\textrm{period} = \textrm{exptime} + \textrm{minimum time between frames}
\end{equation}
where the 'minimum time between frames' and the minimum period will be discussed in Table~\ref{tframes}.
\begin{tiny}
\begin{table}
\begin{flushleft}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
\tiny{dr} & \tiny{clkdivider} & \tiny{flags} & \tiny{t between frames($\mu$s) } & \tiny{max frame rate (kHz)} & \tiny{min period ($\mu$s)} & \tiny{max imgs (nominal/our network)}\\
\hline
4 & 0 & parallel & 3.4 & 22 & 44 & 30k/50k\\
\hline
4 & 1 & parallel & 6 & 10.5 & 92 & 30k/100k\\
\hline
4 & 2 & parallel & 11.2 & 5.4 & 197 & infinite\\
\hline
\hline
8 & 0 & parallel & 3.4 & 11.1 & 89 & 15k/24k\\
\hline
8 & 1 & parallel & 6.1 & 5.7 & 181 & 15k/52k\\
\hline
8 & 2 & parallel & 11.2 & 2.9 & 342 & infinite\\
\hline
\hline
16 & 0 & parallel & 3.4 & 6.1 & (126+38)* =164 & 8k/12k\\
\hline
16 & 0 & nonparallel & 126 & 5.6 & (126+52)*= 179 & 8k/23k\\
\hline
16 & 1 & parallel & 6.1 & 3.9 & 257 & 8k/28k\\
\hline
16 & 1 & nonparallel & 255 & 3.3 & 303 & infinite\\
\hline
16 & 2 & parallel & 11 & 1.9 & 526 & infinite \\
\hline
16 & 2 & nonparallel & 504 & 1.8 & 555 & infinite\\
\hline
%32 & 2 & parallel & 11 & 2& & &\\
%\hline
%32 & 2 & nonparallel & 504 & $<2$& & &\\
%\hline
\end{tabular}
\caption{Readout settings. The {\tiny{min exptime}} possible is 5$-$10~$\mu$s. This is due to the time to pass the pixel enable signal in the whole chip. The time between frames has been measured with the oscilloscope and the maximum frames rate has been tested with an external gating from a pulse generator at known frequence. The minimum period is obtained as 1/$\textrm{max frame rate}$.}
\caption{Readout settings. The {\tiny{min exptime}} possible is 5$-$10~$\mu$s. This is due to the time to pass the pixel enable signal in the whole chip.}
\label{tframes}
\end{flushleft}
\end{table}
\end{tiny}
\textbf{As if you run too fast, the detector could become noisier, it is important to match the detector settings to your frame rate. This can be done having more parameters files and load the one suitable with your experiment.} We experienced that {\tt{highgain}} settings could not be used at 6~kHz.
\textbf{We recommend to use the detector in 32 bit mode with {\tt{clkdivider 2}}, {\tt{flags parallel}}. We recommend to use the detector in 16 bit mode with {\tt{clkdivider 1}}, {\tt{flags parallel}}}. In general, choose first the desired dead time: this will tell you if you want to run in parallel or non parallel mode. Then, choose the maximum frame rate you want to aim, not exceeding what you aim for not to increase the noise.
\textbf{As if you run too fast, the detector could become noisier, it is important to match the detector settings to your frame rate. This can be done having more parameters files and load the one suitable with your experiment.} We experienced that with low energy settings could not reach 6~kHz and no noise.
In 16 bit mode, it could make sense, in case of noise and low threshold to either reduce the frame rate:
\begin{equation}
\textrm{new period} = \textrm{exptime} + \textrm{minimum time between frames} + (\textrm{10$-$20 }\mu \textrm{s})
\end{equation}
to let the signal settle or, if the frame rate is important, leave the {\tt{period}} at the same value but reduce the {\tt{exptime}}:
\begin{equation}
\textrm{new exptime} = \textrm{old exptime} - (\textrm{10$-$20 }\mu \textrm{s})
\end{equation}
In general, choose first the desired dead time: this will tell you if you want to run in parallel or non parallel mode, although most likely it is parallel mode. Then, choose the maximum frame rate you want to aim, not exceeding what you aim for not to increase the noise. In 4 and 8 bit modes it makes no sense to run nonparallel as the exposure time is too small compared to the readout time.
\subsubsection{4 and 8 bit mode}
In {\tt{parallel}} mode, the minimum time between frames is due to the time required to latch the values of the counter with capacitors. These values are determined in firmware and they can be estimated as:
\begin{equation} \label{dtparallel}
\textrm{time between frames, parallel} = 4 \mu s \cdot (clkdivider+1)
\end{equation}
This time is independent on the {\tt{dr}}.
In {\tt{nonparallel}} mode, it is easily possible to calculate the required asic readout time.
Indeed a block of (8*256) pixels are readout, the bits pixel are the {\tt{dr}} and the speed of readout is 5ns/bit *({\tt{clkdivider}}+1) :
\begin{equation}\label{dtnonparallel}
\textrm{asics readout time} = 5ns/bit \cdot 2^{(clkdivider+1)} \cdot dr \cdot (8*256) + 4 \mu s \cdot (clkdivider+1)
\end{equation}
While we expose the next frame, we still need to readout the previous frame, so we need to guarantee that the period is large enough at least to readout the frame. So the maximum frame rate has to be $1/(\textrm{asic readout time})$. The minimum period has to be equal to the asic readout time.
\subsubsection{16 bit mode}
A similar situation happens in 16 bit mode, where this is more complicated because of three things:
\begin{enumerate}
\item The chip actual {\tt{dr}} is 12 bit
\item The chip is readout as 12-bit/pixel, but the FEB inflates the pixel values to 16-bits when it passes to the BEB. This means that effectively the FEB to BEB connection limits the data throughput in the same way as if the {\tt{dr}} of the chip would really be 16 bits.
\item While in 4 and 8 bit mode it makes no sense to run in {\tt{nonparallel}} mode as the exptime/dead time ratio would be not advantageous, in 16 bit mode, one can choose how to run more freely.
\end{enumerate}
If we are in parallel mode, the dead time between frames, is also here described by equation~\ref{dtparallel}. If we are in {\tt{nonparallel}} mode, the dead time between frames is defined by \ref{dtnonparallel} ONLY for {\tt{clkdivider}} 1 and 2. So the maximum frame rate has to be $1/(\textrm{chip readout time})$ in this case. Only for {\tt{clkdivider}} 0 we hit some limitation in the bandwidth of The FEB $\to$ BEB connection. In this case, the maximum frame rate is lowered compared to what expected.
\subsubsection{32 bit mode}
The autosumming mode of Eiger is the intended for long exposure times (frame rate of order of 100Hz, PILATUS like). A single acquisition is broken down into many smaller 12-bit acquisitions, each of a {\tt{subexptime}} of 2.621440~ms by default. Normally, this is a good default value to sustain an intensity of $10^6$ photons/pixel/s with no saturation. To change the value of {\tt{subexptime}} see section~\ref{advanced}.
The time between 12-bit subframes are listed in table~\ref{t32bitframe}.
\begin{tiny}
\begin{table}
\begin{flushleft}
\begin{tabular}{|c|c|c|c|c|c|}
\hline
\tiny{dr} & \tiny{clkdivider} & \tiny{flags} & \tiny{t difference between subframes($\mu$s)} & \tiny{max internal subframe rate (kHz)} & \tiny{maximum frame rate (Hz)}\\
\hline
32 & 2 & parallel & 12 & 2 & 170\\
\hline
32 & 2 & nonparallel & 504 & $<2$ & 160\\
\hline
\end{tabular}
\caption{Timing for the 32bit case. The maximum frame rate has been computed assuming 2 subframes of default {\tt{subexptime}} of 2.62144 ms.}
\label{t32bitframe}
\end{flushleft}
\end{table}
\end{tiny}
\textbf{The exposure time brokend up rounding up to the full next complete subframe that can be started.}
The number of subframes composing a single 32bit acquisition can be calculated as:
\begin{equation}
\textrm{\# subframes}= (int) (\frac{\textrm{exptime (s)}}{\textrm{subexptime (s) + difference between frames (s)}}+0.5)
%\label{esubframes}
\end{equation}
This also means that {\tt{exptime}}$<${\tt{subexptime}} will be rounded to{\tt{subexptime}}. If you want shorter acquisitions, either reduce the {\tt{subexptime}} or switch two 16-bit mode (you can always sum offline if needed).
The UDP header will contain, after you receive the data, the effective number of subframe per image (see section~\ref{UDP}) as "SubFrame Num or Exp Time", i.e. the number of subframes recorded (32 bit eiger).
The effective time the detector has recorded data can be computed as:
\begin{equation}
\textrm{effective exptime}=(\textrm{subexptime})\cdot (\textrm{\# subframes})
%\label{esubframes}
\end{equation}
In the future release, a configurable extra time difference between subframes will be introduced for the parallel mode, so that some noise appearing in detectors at low threshold can be removed. This will enlarge the time difference between frames form the default 12~$\mu$s to something configurable, expected to be 15-40~$\mu$s (for the 9M it is currently 200~$\mu$s due to a noisier module).
\section{External triggering options}\label{triggering}
The detector can be setup such to receive external triggers. Connect a LEMO signal to the TRIGGER IN connector in the Power Distribution Board (see Fig.). The logic 0 for the board is passed by low level 0$-$0.7~V, the logic 1 is passed to the board with a signal between 1.2$-$5~V. Eiger is 50~$\Omega$ terminated. By default the positive polarity is used (negative should not be passed to the board).
\begin{figure}[t]
\begin{center}
\includegraphics[width=.4\textwidth]{tiggerIN}
\end{center}
\caption{\textbf{Trigger INPUT} (looking at a single module from the back, top) is the \textbf{rightmost, down}.}
\label{triggerIN}
\end{figure}
\section{External triggering options}
The detector can be setup such to receive external triggers. Connect a LEMO signal to the TRIGGER IN connector in the Power Distribution Board. The logic 0 for the board is passed by low level 0$-$0.7~V, the logic 1 is passed to the board with a signal between 1.2$-$5~V. Eiger is 50~$\Omega$ terminated. By default the positive polarity is used (negative should not be passed to the board).
\begin{verbatim}
sls_detector_put 0-timing [auto/trigger/burst_trigger/gating]
sls_detector_put 0-frames x
@ -512,17 +390,17 @@ No timeout is expected between the start of the acquisition and the arrival of t
Here are the implemented options so far:
\begin{itemize}
\item {\tt{auto}} is the software controlled acquisition (does not use triggers), where {\tt{exptime}} and {\tt{period}} have to be set. Set number of cycles (i.e. triggers) to 1 using {\tt{cycles}}. Set number of frames using {\tt{frames}}.
\item {\tt{trigger}} 1 frame taken for 1 trigger. Your {\tt{frames}} needs to be 1 always, {\tt{cycles}} can be changed and defines how many triggers are considered. {\tt{exptime}} needs to be set. In the GUI this is called trigger exposure series.
\item {\tt{burst\_trigger}} gets only 1 trigger, but allows to take many frames. With {\tt{frames}} one can change the number of frames. {\tt{cycles}} needs to be 1. {\tt{exptime}} and {\tt{period}} have to be set. In the gui it is called trigger readout.
\item{\tt{gating}} allows to get a frame only when the trigger pulse is gating. Note that in this case the exp time and period only depend on the gating signal. {\tt{cycles}} allows to select how many gates to consider. Set number of frames to 1 using {\tt{frames}}.
\item {\tt{auto}} is the software controlled acquisition, where {\tt{exptime}} and {\tt{period}} have to be set.
\item {\tt{trigger}} 1 frame taken for 1 trigger. You {\tt{frames}} needs to be 1 always, {\tt{cycles}} can be changed and defines how many triggers are considered. In the GUI this is called trigger exposure series.
\item {\tt{burst\_trigger}} gets only 1 trigger, but allows to take many frames. With {\tt{frames}} one can change the number of frames. {\tt{cycles}} needs to be 1. In the gui it is called trigger readout.
\item{\tt{gating}} allows to get a frame only when the trigger pulse is gating. Note that in this case the exp time and period only depend on the gating signal. {\tt{cycles}} allows to select how many gates to consider.
\end{itemize}
Hardware-wise, the ENABLE OUT signal outputs when the chips are really acquiring. This means that the single subframes will be output in 32 bit mode. The TRIGGER OUT outputs the sum-up-signal at the moment (which is useless). This will be changed in the future to output the envelop of the enable signal.
We are planning to change some functionality, i.e. unify the {\tt{trigger}} and {\tt{burst}} trigger modes and make both {\tt{frames}} and {\tt{cycles}} configurable at the same time.
\section{Autosumming and rate corrections} \label{advanced}
\section{Autosumming and rate corrections}
In the case of autosumming mode, i.e, {\tt{dr 32}}, the acquisition time ({\tt{exptime}} is broken in as many subframes as they fit into the acquisition time minus all the subframes readout times. By default the {\tt{subexptime}} is set to 2.621440~ms. This implies that 12 bit counter of \E will saturate when the rate is above or equal to 1.57~MHz/pixel. The minimum value is of order of 10~ns (although as explained values smaller than 500~$\mu$s do not make sense). The maximum value is 5.2~s.
@ -539,7 +417,7 @@ In the EIGER on board server, this look-up table is generated assuming that the
n_d= n_i \cdot exp(-n_i \cdot \tau),
\label{rate}
\end{equation}
where $\tau$ represents an effective parameter for the dead time and the loss in efficiency. The look-up table is necessary as we are interested to obtain $c_i(c_d)$ and equation~\ref{rate} is not invertible. One needs to notice that the paralyzable counter model to create a look-up tables applies only if photons arrive with a continuous pattern (like at the SLS). If photons are structured in fewer but intenser bunches, deviations may arise. This is the case for some operation modes at the ESRF. For those cases we are studying how to correct, probably from a simulated correction tables if an analytical curve cannot be found.
where $\tau$ represents an effective parameter for the dead time and the loss in efficiency. The look-up table is necessary as we are interested to obtain $c_i(c_d)$ and equation~\ref{rate} is not invertible. One needs to notice that the paralizable counter model to create a look-up tables applies only if photons arrive with a continuous pattern (like at the SLS). If photons are structured in fewer but intenser bunches, deviations may arise. This is the case for some operation modes at the ESRF. For those cases we are studying how to correct, probably from a simulated correction tables if an analytical curve cannot be found.
\textbf{In the new calibration scheme, $\tau$ is given as a function of the energy. It is loaded from the trimbit files and interpolation between two trimbit files are performed.} One needs to make sure the appropriate $\tau$ value is written in the trimbit files, then need to load the appropriate {\tt{settings}} and {\tt{vthreshold}} before.
Online rate corrections can be activated for {\tt{dr=32}}. They are particularly useful in the autosumming mode as every single subframe is corrected before summing it. To correct for rate, the subframe duration has to be known to the correction algorithm. Rate corrections for {\tt{dr=16}} will be activated as well in the next firmware release.
@ -576,37 +454,20 @@ Here is a list of limits that should be checked:
If \textbf{dr} is 32 and \textbf{clkdivider} is not 2, whatever the detector gets out is wrong (the boards cannot properly keep up)
\item If the variable \textbf{frames} is greater than what the memory can store (table~\ref{timgs}) and the frame rate exceed the continuos streaming (table~\ref{tcont}), limits on the maximum number of images need to be implemented if the period is lower than the one listed in table~\ref{tcont}. Check table~\ref{tframes} to see the different cases.
\item Running at a speed that does not support the frame rate you are asking: see table~\ref{tframes} to check if the frame rate (\textbf{period}) you are asking is compatible with the \textbf{clkdivider} you are asking.
\item Running at a readout time that does not support the frame rate you are asking. Check table~\ref{tframes} to check if the frame rate (\textbf{period}) you are asking is compatible with the \textbf{flags} you are asking.
\item Running at a redout time that does not support the frame rate you are asking. Check table~\ref{tframes} to check if the frame rate (\textbf{period}) you are asking is compatible with the \textbf{flags} you are asking.
\item The minimum allowed value for \textbf{exptime} should be 10~$\mu$s.
\item By default the {\textbf{subexptime}} is set to 2.621440~ms. Values smaller than 500~$\mu$s do not make sense. The maximum value is 5.2~s. This limits should be checked.
\end{enumerate}
Here is a list of parameters that should be reset:
\begin{enumerate}
\item \textbf{resetframescaught} should be reset to zero after every acquisition taken with {\tt{receiver start}},{\tt{status start}},{\tt{receiver stop}}. If the acquisition is taken with {\tt{sls\_detector\_acquire}}, there is no need to reset this.
\item After changing the {\tt{timing}} mode of the detector, one should reset to '1' the unused value, in that specific timing mode, between \textbf{frames} and \textbf{cycles}. See section~\ref{triggering} for how to use the timing. At the present moment the detector will acquire more frames than planned if the variable not used between \textbf{frames} and \textbf{cycles} is not reset. In future releases, the unused variable will be ignored. Still resetting is a good practice.
\end{enumerate}
\section{1Gb/s, 10Gb/s links}
\subsection{Checking the 1Gb/s, 10Gb/s physical links}\label{led}
LEDs on the backpanel board at the back of each half module signal:
\begin{itemize}
\item the 1Gb/s physical link is signaled by the most external LED (should be green). For top half modules is at the extreme left. For bottom half modules is at the extreme right.
\item the 10Gb/s physical link is signaled by the second most external LED next to the 1Gb/s one (should be green).
\item the 1Gb/s physical link is signaled by the most external LED (should be green)
\item the 10Gb/s physical link is signaled by the second most external LED next to the 1Gb/s one (should be green)
\end{itemize}
\begin{figure}[t]
\begin{center}
\includegraphics[width=.7\textwidth]{LEDSim}
\end{center}
\caption{1 and 10GB LEDs position.}
\label{fLEDs}
\end{figure}
\subsection{Delays in sending for 1Gb/s, 10Gb/s, 10Gb flow control, receiver fifo}
Extremely advanced options allow to:
@ -625,10 +486,10 @@ Extremely advanced options allow to:
\end{verbatim}
As example:
\begin{verbatim}
for X in $(seq 0 4); do ./sls_detector_put $X:txndelay_left $((X*100000)); done
for X in \$(seq 0 4); do ./sls_detector_put \$X:txndelay_left \$((X*100000)); done
\end{verbatim}
\begin{verbatim}
./sls_detector_put $X:txndelay_right $((X*100000)); X=$((X+1)); done
./sls_detector_put \$X:txndelay_right \$((X*100000)); X=\$((X+1)); done
\end{verbatim}
\item Set transmission delay of the entire frame. This is required as you want to finish sending the first frame to all receivers before starting sending the second frame to the receivers with shorter delay time. This value has to be greater than the maximum of the transmission delays of each port.
@ -678,15 +539,9 @@ Very important is to activate the flow control in 10Gb (in 1Gb it is on by defau
\end{verbatim}
Set the transmission delays as explained in the manual.
It can help to increase the fifo size of the receiver to {\tt{rx\_fifodepth}} to 1000 images
\begin{verbatim}
./sls_detector_put rx_fifodepth 1000
\end{verbatim}
One needs to keep into account that in 16 bit mode for 1 image we expect each slsReceiver to allocate 0.5MB. So for 1000 images, we expect 500MB memory for each receiver. This can be monitored in Linux with "top" or "free -m".
\section{Offline processing and monitoring}
\subsection{Data out of the detector: UDP packets}\label{UDP}
\subsection{Data out of the detector: UDP packets}
The current UDP header format is described in figure~\ref{UDPheader}.
\begin{figure}[t]
@ -753,9 +608,9 @@ Header Version : 1 byte
Note that if one wants to reconstruct the real time the detector was acquiring in 32 bit (autosumming mode), one would have to multiply the SubExptime (ns) for the SubFrame Number.
\subsection{Offline image reconstruction}
The offline image reconstruction{\tt{slsImageReconstruction}} is not part of the package anymore.
The offline image reconstruction is in {\tt{slsDetectorsPackage/slsImageReconstruction}}.
The detector writes 2 raw files per receiver. An offline image reconstruction executable has been written to collate the possible files together and produce cbf files. The executable uses the CBFlib-0.9.5 library (downloaded from the web as it download some architecture dependent packages at installation).\\
The detector writes a raw file per receiver. An offline image reconstruction executable has been written to collate the possible files together and produce cbf files. The executable uses the CBFlib-0.9.5 library (downloaded from the web as it download some architecture dependent packages at installation).\\
\underline{At cSAXS, the CBFlib-0.9.5 has been compiled -such that the required packages are}\\\underline{ downloaded in /sls/X12SA/data/x12saop/EigerPackage/CBFlib-0.9.5.}\\
To use it for a single module:
@ -771,7 +626,7 @@ cbfMaker [filename] [pixels x] [pixels y] ([singlemodulelongside_x] [start det])
\end{verbatim}
eg.
{\tt cbfMaker /scratch/run\_63\_d0\_f000000000000\_3.raw 3072 512 1 0}.\\
The {\tt{[singlemodulelongside\_x]}} {\tt{[option to interpolate gap pixels]}} param are optional. Defaults are ``1'', the detector long side is on the x coordinate and start to reconstruct from module 0.
The {\tt{[singlemodulelongside\_x]}} and {\tt{[start det]}} param are optional. Defaults are ``1'', the detector long side is on the x coordinate and start to reconstruct from module 0.
The executables:
\begin{verbatim}
bcfMaker1.5M [file_name_with_dir]
@ -839,15 +694,7 @@ Start the server again:
\begin{verbatim}
./eigerDetectorServer &
\end{verbatim}
\textbf{Note that the server appropriate for the software version used is located inside the package: {\tt{slsDetectorsPackage/serverBin/eigerDetectorServerxx.yy.}}}.
To copy the detector server on many boards, a script can be implemented on the lines of:
\begin{verbatim}
for i in beb111 beb070;
do ssh root@$i killall eigerDetectorServer;
scp eigerDetectorServer root@$i:~/executables/eigerDetectorServer ;
ssh root@$i sync; done
\end{verbatim}
\section{Loading firmware bitfiles}
@ -861,7 +708,7 @@ cd executables
./boot_recovery
\end{verbatim}
\end{enumerate}
In both case, after booting, only the central LED should be on green and red alternating.
In both case, after booting, only the central one should be on green and red alternating.
From a terminal, do:
\begin{verbatim}
@ -922,9 +769,17 @@ To load the special noise file look at {\tt{settingsdir/eiger/standard/eigernois
sls_detector_put trimbits ../settingsdir/eiger/standard/eigernoise
\end{verbatim}
\section{Running the (9M at cSAXS. For now)}
\begin{itemize}
\item login as {\tt{x12saop@xbl-daq-27}}
\item {\tt{setup\_eiger}} \#loads environmental variables and brings you to the right directory to execute commands
\item slsReceiverScript3 1991 36 \# from one shell.. opens 36 receivers
\item p config ../../eiger\_9m\_10gb\_xbl-daq-27\_withbottom.config
\end{itemize}
\section{Troubleshooting}
\subsection{Cannot successfully finish an acquisition}
\subsubsection{Only master module return from acquisition}
\subsubsection{only master module return from acquisition}
When no packets are received AND detector states in 'running status'. Widest list of causes.
Query the status of each half module till the maximum number {\tt{N}}, {\tt{for i in \$(seq\ 0\ N); do sls\_detector\_get \$i:status; done}}, to check if there are half modules that are still running.
@ -935,7 +790,7 @@ If only the master modules return but ALL the other half modules do not:
\item It can be that the synchronization cable is not connected or the termination board at the synchronization does not work. Check.
\end{itemize}
\subsubsection{A few modules do not return from acquisition}
\subsubsection{a few modules do not return from acquisition}
If only a few modules are still running but the others return, it is a real problem with a backend board or a synchronization bug.
If you can, ssh into the board, kill and start the eigerDetectorServer again (see Section~\ref{server} for how to do this). Keep the terminal with the output from the eigerDetectorServer and repeat the acquisition.
\begin{itemize}
@ -945,33 +800,11 @@ If you can, ssh into the board, kill and start the eigerDetectorServer again (se
\subsection{No packets (or very little) are received}
In both cases running \textbf{wireshark} set to receive UDP packets on the ethernet interface of the receiver (filter the UDPport$>=$xxxx, where xxxx is written in the configuration file) can help you understanding if NO packets are seen or some packets are seen. You have to set the buffer size of the receiving device in wireshark to 100Mbyte minimum. If no packets are received, check that your receiving interface and detector UDPIPs are correct (if in 10Gb). Most of the time in this case it is a basic configuration problem.
It can help looking at the receiver output, shown in an example here:
\begin{verbatim}
Missing Packets : 224064
Complete Frames : 3499
Last Frame Caught : 3499
\end{verbatim}
The {\tt{Last Frame Caught}}, meaning the packet from the last frame that was sent out by the detector, can help in understanding the problem:
\begin{enumerate}
\item If some packets are received, but not all, it could be a network optimization problem. In this case, the {\tt{Last Frame Caught}} will be a value close to the expected number of frames with missing frames distributed over the whole frame range. In this case:
If some packets are received, but not all, then it is an optimization problem:
\begin{itemize}
\item For receiving data over 1Gb, the switch must have FLOW CONTROL enabled
\item If using 10GbE, check that the 10Gb link is active on the backpanel board. Then refer to Section~\ref{10g} to see how to configure the 10Gb ports on the receiving machine correctly.
\end{itemize}
\item If the {\tt{Last Frame Caught}} value is much lower than the expected frames and you are missing a bunch of frames from a point onwards, and you are using {\tt{receiver start, status start}}: then it can be that you are stopping the receiver too early. In particular when you are using {\tt{delay}} it might be that there is some time between when the detector is already done and in {\tt{idle}} state but the receiver is still receiving data. Check with {\tt{./sls\_detector\_get framescaught}} if the receiver is already done before doing {\tt{./sls\_detector\_put receiver stop}}.
\item If the {\tt{Last Frame Caught}} value is much lower than the expected frames and you are missing a bunch of frames from a point onwards and you are running at a higher frame rate than the continuous framerate (see table~\ref{tcont}) with more images than the size of the memory (see table~\ref{timgs}). It might be that you are running out of memory to store images. There is no protection for this. see point~\ref{outmemory}
\end{enumerate}
\subsection{'Got Frame Number Zero from Firmware'}\label{outmemory}
In this case, you have run out of memory size (see table~\ref{timgs} for the size) on the boards so you are trying to store on the DDR2 memories more images that they can contain and the network is not fast enough to send everything out from the 10GbE.
So if you see:
\begin{verbatim}
Got Frame Number Zero from Firmware. Discarding Packet
\end{verbatim}
it means that you run out of memory at the previous acquisition. The cure is taking 2 or 3 SINGLE images in a raw to clear out the memories.
\subsection{The module seems dead, no lights on BEBs, no IP addresses}
\begin{itemize}
@ -987,7 +820,7 @@ If the 1G LED (see Section~\ref{led}) on the backpanel board is not green:
\item The IP address is assigned only at booting up of the boards. Try to reboot in case the board booted before it could have an IP address.
\item Check that you did not run out of IP addresses
\end{itemize}
Check that the board is not in recovery mode (i.e. the central LED on the back is stable green, see Fig~\ref{fLEDs}). In this case reboot the board with the soft reset or power cycle it.
Check that the board is not in recovery mode (i.e. the central LED on the back is stable green). In this case reboot the board with the soft reset or power cycle it.
If the 1Gb LED on the backpanel board is green (see Section~\ref{led}):
\begin{itemize}
@ -1002,14 +835,6 @@ It is connected to the TCPport which the receiver uses:
%%%#To display only open UDP ports try the following command: netstat -vaun
\end{itemize}
\subsection{The client ignores the commands}
Make sure that in the configuration file you do not have {\tt{lock 1}} activated, as this will let only one username from one IP address talk to the detector.
To deactivate it, you need to run {\tt{lock 0}} from the client session where you locked it.
\subsection{Zmq socket is blocked}
It is connected to the TCPport which is used. In rare cases, it might be that the TCP port crashes. To find out which process uses the TCPPOrt do: \textbf{netstat -nlp | grep xxxx}, where xxxx is the tcpport number. To display open ports and established TCP connections, enter: \textbf{netstat -vatn}. Kill the process.
\subsection{Client has \textbf{shmget error}}
Note that occasionally if there is a shared memory of a different size (from an older software version), it will return also a line like this:
\begin{verbatim}
@ -1018,18 +843,14 @@ Note that occasionally if there is a shared memory of a different size (from an
This needs to be cleaned with {\tt{ipcs -m}} and then {\tt{ipcrm -M xxx}}, where xxx are the keys with nattch 0. Alternative in the main slsDetectorFolder there is a script that can be used as {\tt{sh cleansharedmemory.sh}}. Note that you need to run the script with the account of the client user, as the shared memory belongs to the client. It is good procedure to implement an automatic cleanup of the shared memory if the client user changes often.
\subsection{Measure the HV}
For every system:
For every system but not the 9M:
\begin{itemize}
\item Software-wise measure it (now the software returns the measured value), with {\tt{sls\_detector\_get vhighvoltage}}. The returned value is the HV (for proper Eiger setting is approximately 150~V) if it is correctly set. If two master modules are presents (multi systems), the average is returned (still to be tested). If one asks for the individual $n$ half module bias voltage through {\tt{sls\_detector\_get n:vhighvoltage}}, if the $n$ module is a master, the actual voltage will be returned. If it is a slave, -999 will be returned.
\item Hardware-wise (opening the detector) measure value of HV on C14 on the power distribution board. Check also that the small HV connector cable is really connected.
\item Hardware-wise measure value of HV on C14 on the power distribution board. Check also that the small HV connector cable is really connected.
\end{itemize}
The 2M system at ESRF has a HV enable signal that needs to be shortcut in order to overwrite vacuum protections (when not in vacuum).
The 1.5M for OMNY has a relay system that enables HV only when the vacuum is good.
For both systems, it makes sense not to set the HV while running the configuration file but set it at a later stage when sure about the vacuum.
\subsection{The image now has a vertical line}
Check if the vertical line has a length of 256 pixels and a width of 8 columns. In this case it is a dataline being bad. It can be either a wirebond problem or a frontend board problem. try to read the FEB temperature (see Section~\ref{}) and report the problem to the SLSDetector group. Most likely it will be a long term fix by checking the hardware.
Check if the vertical line has a length of 256 pixels and a width of 8 columns. In this case it is a dataline beeing bad. It can be either a wirebond problem or a frontend board problem. try to read the FEB temperature (see Section~\ref{}) and report the problem to the SLSDetector group. Most likely it will be a long term fix by checking the hardware.
\subsection{The image now has more vertical lines}
@ -1039,7 +860,7 @@ If you see strange lines in vertical occurring at period patterns, it is a memor
Depending on your network setup, to speed up the ssh to the boards from a pc with internal dhcp server running: \textbf{iptables -t nat -A POSTROUTING -o eth1 -j MASQUERADE; echo "1" > /proc/sys/net/ipv4/ip\_forward}, where eth1 has to be the 1Gb network device on the pc
\subsection{Check firmware version installed on BEB}
You can either ask in the client as described in section~\ref{api}, or login to the boards directly. Follow some steps described in Section~\ref{server}.
Follow some steps described in Section~\label{server}.
\begin{verbatim}
ssh root@bebxxx #password is root
killall eigerDetectorServer # kill server and stopserver
@ -1049,7 +870,7 @@ cd executables/
Scroll up in the terminal till you find {\tt{Firmware Version: xx}}
\subsection{Check if half-module is a master, a slave, a top or a bottom}
Follow some steps described in Section~\ref{server}.
Follow some steps described in Section~\label{server}.
\begin{verbatim}
ssh root@bebxxx #password is root
killall eigerDetectorServer # kill server and stopserver
@ -1061,34 +882,9 @@ Scroll up in the terminal till you find:\\
*************** MASTER/SLAVE ***************\\
*************** NORMAL/SPECIAL ***************\\
\subsection{'Cannot connect to socket'}
This error is typically due to the detector server not running. For why, see section~\ref{servernot}.
\subsection{Detector server is not running}\label{servernot}
The detector server could not be running: either the detector was powered off, or it powered off itself due to too high temperature or, in the case of the 9M, if the waterflow sensor detected no flux and powered it off (the chiller stops occasionally as cSAXS).
If the powering and the temperature are OK, instead, it can be that the firmware version is incompatible to the server version and/or the client software version. So check the consistency of firmware/software/server versions.
\subsection{'Acquire has already started' error message}
If you see the client returning the following error message:\\
``Acquire has already started. If previous acquisition terminated unexpectedly, reset busy flag to restart.(sls\_detector\_put busy 0)''\\
You need to run the command:
\begin{verbatim}
./sls_detector_put busy 0
\end{verbatim}
\subsection{There is noise running the detector in 32-bit}
Short story (for now): You are running in {\tt{parallel}} mode, switch {\tt{flags}} to non {\tt{nonparallel}} mode.
Long story: If you are running the detector in 32-bit (autosumming), there might be some noise, particularly at lower thereshold energies. This is due to the fact that the analog part of the chips require some latency time to settle which is larger than the redout time. At the present moment it is possible to run the detector only in {\tt{parallel}} or {\tt{nonparallel}} mode, respectively with readout times between frames of 12~$\mu$s and 504~$\mu$s. If you switch {\tt{flags}} to non {\tt{nonparallel}} mode you will giveenough time for teh signals to settle. For future realeas we are planning to introduce some configurable delay, such that you can remain with the {\tt{parallel}} flag, but can obtain a configurable dead time between frames in the range 12$-$504~$\mu$s.
\subsection{There is noise running the detector at high frame rate(4,8,16 bit)}
If are running in {\tt{parallel}} mode, in particular at low thereshold energies, you might encounter some noise. The reason is that the analog part of the chips require some latency time to settle which is larger than the redout time.
\begin{enumerate}
\item You can lower the frame rate and relax requirements on period:
At low frame rate, you normally leave enough time between the end of the acquisition and the starting of the next, so you should not see this effect. In any case setting a {\tt{period}}={\tt{exptime}}+readout time from Table~\ref{tchipro} +extra 20$\mu$s cures the problem. The 20$\mu$s could also be 10~$\mu$s, they are very hardware dependent.
\item The frame rate requirement are stingent (as for time resolved measurements): the only option here is to reduce the {\tt{exptime}} to let the extra 20~$\mu$s (or 10)~$\mu$s. The {\tt{period}} remains the same.
\end{enumerate}
\section{Client checks - command line}
Guide on returned strings:
@ -1229,74 +1025,7 @@ where {\tt{number}} is a string that should be interpreted as an int for 0/1 me
\end{enumerate}
\section{Complete data out rate tables}
In table~\ref{tframescomplete} is a list of all the readout times in the different configurations.
\begin{tiny}
\begin{table}
\begin{flushleft}
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline
\tiny{dr} & \tiny{clkdivider} & \tiny{flags} & \tiny{readout t($\mu$s)} & \tiny{max frame rate (kHz)} & \tiny{min period ($\mu$s)} & \tiny{max imgs (nominal/our network)}\\
\hline
4 & 0 & parallel & 3.4 & 22 & 44 & 30k/50k\\
\hline
4 & 0 & nonparallel & 44 & 21 & 49 & 30k/50k\\
\hline
4 & 1 & parallel & 6 & 10.5 & 92 & 30k/100k\\
\hline
4 & 1 & nonparallel & 88.7 & 10.5 & 93 & 30k/100k\\
\hline
4 & 2 & parallel & 11.2 & 5.4 & 197 & infinite\\
\hline
4 & 2 & nonparallel & 176.5 & 5.4 & 180 & infinite\\
\hline
\hline
8 & 0 & parallel & 3.4 & 11.1 & 89 & 15k/24k\\
\hline
8 & 0 & nonparallel & 85.7 & 11.1 & 91 & 15k/24k\\
\hline
8 & 1 & parallel & 6.1 & 5.7 & 181 & 15k/52k\\
\hline
8 & 1 & nonparallel & 170.5 & 5.7 & 175 & 15k/52k\\
\hline
8 & 2 & parallel & 11.2 & 2.9 & 342 & infinite\\
\hline
8 & 2 & nonparallel & 340.3 & 2.9 & 344 & infinite\\
\hline
\hline
16 & 0 & parallel & 3.4 & 6.1 & 164 & 8k/12k\\
\hline
16 & 0 & nonparallel & 126 & 5.6& 179 & 8k/23k\\
\hline
16 & 1 & parallel & 6.1 & 3.9& 257 & 8k/28k\\
\hline
16 & 1 & nonparallel & 255 & 3.3& 303 & infinite\\
\hline
16 & 2 & parallel & 11 & 1.9 & 526 &infinite \\
\hline
16 & 2 & nonparallel & 504 & 1.8 & 555 & infinite\\
\hline
\hline
32 & 2 & parallel & 11 & 2 & &\\
\hline
32 & 2 & nonparallel & 504 & $<2$ & &\\
\hline
\end{tabular}
\caption{Readout settings. The {\tiny{min exptime}} possible is 5$-$10~$\mu$s. This is due to the time to pass the pixel enable signal in the whole chip.}
\label{tframescomplete}
\end{flushleft}
\end{table}
\end{tiny}
Table~\ref{tx} shows the bandwidth of data trasnferring between the FEB and BEB and of the DDR2 memory access. the GTX lanes are only capable of 25.6~Gbit/s. This limits the 12/16 bit frame rate. The 2$\times$DDR2 memories have a bandwidth or 2$\cdot$25.6~Gb/s=51.2~Gb/s. Due to this memory access bandwidth, the 32 bit autosumming mode can only run in {\tt{clkdivider}} 2.
\begin{figure}[t]
\begin{center}
\includegraphics[width=1.\textwidth]{TansmissionRates}
\end{center}
\caption{Transmission bandwidth for the FEB $\to$BEB transfer (second column) and the DDR2 memories (fourth column). }
\label{tx}
\end{figure}
\end{document}

Binary file not shown.

Before

Width:  |  Height:  |  Size: 863 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 28 KiB

Binary file not shown.

Before

Width:  |  Height:  |  Size: 167 KiB

View File

@ -4,46 +4,31 @@ DESTDIR=../docs
TEX=latex
MAINTEXS2= slsDetectorInstall.tex
MAINTEXS=slsDetectors-FAQ.tex
MAINTEXS= slsDetectorInstall.tex slsDetectors-FAQ.tex
TEXS=slsDetector-softFAQ.tex singlePhotonCounting-FAQ.tex angConv-FAQ.tex generalDet-FAQ.tex
DVIS = $(MAINTEXS:.tex=.dvi)
PSS = $(MAINTEXS:.tex=.ps)
PDFS = $(MAINTEXS:.tex=.pdf)
PDFS2 = $(MAINTEXS2:.tex=.pdf)
HTMLS = $(MAINTEXS:%.tex=%)
HTMLS2 = $(MAINTEXS2:%.tex=%)
all: pdf html
echo $(PWD)
echo $(PDFS)
echo $(PDFS2)
echo $(HTMLS)
echo $(HTMLS2)
pdf: $(PDFS) $(PDFS2)
pdf: $(PDFS)
$(shell test -d $(DESTDIR) || mkdir -p $(DESTDIR))
$(shell test -d $(DESTDIR)/pdf || mkdir -p $(DESTDIR)/pdf)
mv $(PDFS) $(DESTDIR)/pdf
mv $(PDFS2) $(DESTDIR)/pdf
mv $(PDFS) $(DESTDIR)/pdf
html: $(HTMLS) $(HTMLS2)
html: $(HTMLS)
$(HTMLS): $(TEXS) $(MAINTEXS)
$(shell test -d $(DESTDIR) || mkdir -p $(DESTDIR))
$(shell test -d $(DESTDIR)/html || mkdir -p $(DESTDIR)/html)
$(shell test -d $(DESTDIR)/html/$@ && rm -fr $(DESTDIR)/html/$@)
echo "***************************** $@"
latex $@.tex
latex2html $@.tex
mv $@ $(DESTDIR)/html
$(HTMLS2): $(MAINTEXS2)
$(shell test -d $(DESTDIR) || mkdir -p $(DESTDIR))
$(shell test -d $(DESTDIR)/html || mkdir -p $(DESTDIR)/html)
$(shell test -d $(DESTDIR)/html/$@ && rm -fr $(DESTDIR)/html/$@)
@ -68,7 +53,7 @@ $(HTMLS2): $(MAINTEXS2)
clean:
rm -rf *.aux *.log *.toc *.out $(DVIS) $(PSS) $(PDFS) $(PDFS2) $(HTMLS) $(HTMLS2)
rm -rf *.aux *.log *.toc *.out $(DVIS) $(PSS) $(PDFS) $(HTMLS)
rm -rf $(DESTDIR)/html/slsDetectors-FAQ
rm -rf $(DESTDIR)/html/slsDetectorInstall
rm -rf $(DESTDIR)/pdf/slsDetectors-FAQ.pdf

View File

@ -28,10 +28,9 @@
The SLS detectors software is intended to control the detectors developed by
the SLS Detectors group. The detectors currently supported are:
\indent MYTHEN, GOTTHARD, EIGER and JUNGFRAU.
MYTHEN, GOTTHARD, EIGER and JUNGFRAU.\bigskip
The package provides software for the distributed system that comprises of
\noindent The package provides software for the distributed system that comprises of
detectors, data receivers (to process detector data), and the client (to control
or monitor the system). The client and data receivers can be embedded in
the user's acquisitions system. Furthermore, the package also provides some
@ -79,28 +78,18 @@ However, only control commands work, not the data acquisition itself.
\section{Install Binaries via Conda}
This section is useful only if one wants to download only the binaries for
specific distribution and use the package via command line. Please refer later
sections to download source code and compile them.
sections to download source code and compile them.\bigskip
\noindent One can download and install Miniconda via
One can download and install Miniconda via
\url{https://conda.io/miniconda.html} \bigskip
\url{https://conda.io/miniconda.html}
The conda package uses Travis CI for continuous integration with
\noindent The conda package uses Travis CI for continuous integration with
automatic deployment to Anaconda Cloud. One can download only the package or the
package including the python interface.
package including the python interface. \bigskip
\noindent After the installation, the binaries will be available in your path.
After the installation, the binaries will be available in your path.
Please remember to clear shared memory after installation.
\begin{verbatim}
#displays list of shared memeory segments
ipcs -m
#remove segments that have nattach equal to zero. They key is the first column
ipcrm -M [key]
\end{verbatim}
\begin{itemize}
\item Only the package
@ -113,10 +102,10 @@ conda config --add channels slsdetectorgroup
conda install sls_detector_software
#Install specific release (GLIBC2.14)
conda install sls_detector_software=3.1.0
conda install sls_detector_software=3.0.1
#Scientific Linux 6 version (GLIBC2.12)
conda install sls_detector_software=SL6_3.1.0
conda install sls_detector_software=SL6_3.0.1
\end{verbatim}
\item The package including Python interface
\begin{verbatim}
@ -128,10 +117,10 @@ conda config --add channels sls_detector
conda install sls_detector
#Install specific release (GLIBC2.14)
conda install sls_detector=3.1.0
conda install sls_detector=3.0.1
#Scientific Linux 6 version (GLIBC2.12)
conda install sls_detector=SL6_3.1.0
conda install sls_detector=SL6_3.0.1
\end{verbatim}
\end{itemize}
@ -148,13 +137,13 @@ acquisition system, or if one wants to download the source code and compile.
\begin{verbatim}
#Clone source code with specific release
git clone https://github.com/slsdetectorgroup/slsDetectorPackage.git --branch
3.1.0
3.0.1
\end{verbatim}
\item The package including Python interface
\begin{verbatim}
#Clone source code with specific release
git clone https://github.com/slsdetectorgroup/sls_detector.git --branch
3.1.0
3.0.1
\end{verbatim}
\end{itemize}
@ -205,10 +194,9 @@ required. One can install it:
\item via download from:\\
\url{
https://download.qt.io/archive/qt/4.8/4.8.2/qt-everywhere-opensource-src-4.8.2.t
ar.gz}
ar.gz} \bigskip
To install:
\noindent To install:
\begin{verbatim}
> gunzip qt-everywhere-opensource-src-4.8.2.tar.gz
> tar xvf qt-everywhere-opensource-src-4.8.2.tar
@ -219,17 +207,14 @@ To install:
By default Qt4 will be installed in /usr/local/Trolltech/Qt-4.8.2/.
\end{itemize}
\noindent \textbf{Setup Environment}
\textbf{Setup Environment}
One has to ensure that \verb=PATH= and \verb=LD_LIBRARY_PATH= have
\noindent One has to ensure that \verb=PATH= and \verb=LD_LIBRARY_PATH= have
been updated to include Qt4 install path, binaries and libraries.
Confirm by executing \verb=qmake -v= and ensuring the result points to Qt4 (not
Qt3 or Qt5).
Qt3 or Qt5). \bigskip
If the environment is not set up, one can add the libraries and
\noindent If the environment is not set up, one can add the libraries and
executables to the .bashrc by adding
\verb=LD_LIBRARY_PATH= and \verb=PATH=:
\begin{verbatim}
@ -243,10 +228,9 @@ export LD_LIBRARY_PATH=$QTDIR/lib:$LD_LIBRARY_PATH
Before installing Qwt, one must install Qt
and ensure that \verb=QTDIR=, \verb=LD_LIBRARY_PATH= and \verb=PATH= point to
the correct Qt4
version.
version. \bigskip
A Qwt version equal or higher than 6 is required. One can
\noindent A Qwt version equal or higher than 6 is required. One can
install it:
\begin{itemize}
\item via YUM:
@ -256,9 +240,9 @@ install it:
\item via download from:\\
\url{
https://sourceforge.net/projects/qwt/files/qwt/6.0.0/qwt-6.0.0.zip/download}
\bigskip
To install:
\noindent To install:
\begin{verbatim}
> cd qwt-6.0.0
> qmake
@ -268,14 +252,12 @@ To install:
By default Qwt will be installed int /usr/local/qwt-6.0.0
\end{itemize}
\textbf{Setup Environment}
\noindent \textbf{Setup Environment}
\noindent One has to ensure that \verb=QWTDIR= and \verb=LD_LIBRARY_PATH= have
been updated to include Qwt install path and libraries. \bigskip
One has to ensure that \verb=QWTDIR= and \verb=LD_LIBRARY_PATH= have
been updated to include Qwt install path and libraries.
If the environment is not set up, one can add the libraries to the
\noindent If the environment is not set up, one can add the libraries to the
.bashrc by adding \verb=LD_LIBRARY_PATH=:
\begin{verbatim}
export QWTDIR=/usr/local/qwt-6.0.0/
@ -342,8 +324,6 @@ Usage: [-c] [-b] [-h] [-d HDF5 directory] [-j]
Some example options for compilation:
Most basic option: \verb=./cmk.sh -b=
For only make: \verb=./cmk.sh=
For make clean;make: \verb=./cmk.sh -c=
@ -387,69 +367,10 @@ sls_detector_help sls_detector_put slsReceiver
\subsection{Setting environment variables}
One can set up the environment variables in the following ways.
\subsubsection{Using .bashrc file}
\begin{enumerate}
\item \verb=emacs ~/.bashrc=
\item Add the following function \verb=setup_slsdet= and replace \verb=path=
with absolute path of installed directory
\begin{verbatim}
function setup_slsdet
{
export PKGPATH=[path]
export LD_LIBRARY_PATH=$PKGPATH/slsDetectorPackage/build/bin:$LD_LIBRARY_PATH
export PATH=$PKGPATH/slsDetectorPackage/build/bin:$PATH
cd $PKGPATH/slsDetectorPackage/build/bin
}
\end{verbatim}
\item \verb=source ~/.bashrc=
\item Next time, just run \verb=setup_slsdet= to load the environment
variables.
\end{enumerate}
One can also add the GUI environment variables if installed locally by adding
the following in the function \verb=setup_sldet= \\
\begin{verbatim}
export QTDIR=/path-where-it-is/Qt-4.8.2
export QWTDIR=/path-where-it-is/qwt-6.0.1
export QWT3D=/path-where-it-is/qwtplot3d
export QMAKESPEC=$QTDIR/mkspecs/linux-g++
export LD_LIBRARY_PATH=$QTDIR/lib:$QWTDIR/lib:$QWT3D/lib:$LD_LIBRARY _PATH
export PATH=$QTDIR/bin:$PATH
\end{verbatim}
\subsubsection{Without .bashrc file}
Go to binaries folder slsDetectorPackage/build/bin and execute the following:
\begin{verbatim}
export LD_LIBRARY_PATH=$PWD:$LD_LIBRARY_PATH
export PATH=$PWD:$PATH
\end{verbatim}
\subsection{Clean Shared Memory}
It is very crucial to clean the shared memory, before using a new version of
the SLS Detector Package or a different detector type.
One can use the \verb=cleansharedmemory.sh= script available under the
slsDetector Package.
One can also just use the following commands to clean the shared memory
segments one by one.
\begin{verbatim}
#displays list of shared memeory segments
ipcs -m
#remove segments that have nattach equal to zero. They key is the first column
ipcrm -M [key]
\end{verbatim}
\section{Software Upgrade}
The upgrade of the package could require an upgrade of the on-board detector
server and/or firmware running on the detector as well.
server and/or firmware running on the detector as well.
\subsection{MYTHEN}
@ -458,7 +379,7 @@ themselves (which would require dedicated softwares) but only to download on the
detector board the programming files and/or software package provided by
the SLS Detectors group.
\subsubsection{MYTHEN Firmware}
\subsubsection{Firmware}
To upgrade the firmware you need either a working version of the Altera
Quartus software or of the Quartus programmer, which can easily be downloaded
@ -468,10 +389,9 @@ from: \\
\noindent Normally, installation of the software and of the driver for the
USB-Blaster (provided together with the MYTHEN detector) are simpler under
Windows.
Windows. \bigskip
Under Windows, the first time that you connect the USB-Blaster to one
\noindent Under Windows, the first time that you connect the USB-Blaster to one
of your USB ports, you will be asked to install new hardware. Set the path to
search for the driver to:
\verb=C:\altera\80sp1\qprogrammer\drivers\usb-blasterp= (where
@ -494,7 +414,7 @@ your cable (pin1 corresponds) and that you have selected the correct programming
connector.
\end{enumerate}
\subsubsection{MYTHEN On-board Software}
\subsubsection{On-board Software}
\begin{enumerate}
\item Connect to the board using telnet:
\begin{verbatim}
@ -534,297 +454,6 @@ acqusition program correctly start.
\end{enumerate}
\subsection{GOTTHARD}
In such cases, the users are not expected to compile the software
themselves (which would require dedicated softwares) but only to download on the
detector board the programming files and/or software package provided by
the SLS Detectors group.
\subsubsection{GOTTHARD Firmware}
\textit{For SLS Detector Package v3.1.0} \\
\indent Minimum compatible version: \\
\indent \indent 11.01.2013 \\
\indent Latest version: \\
\indent \indent 08.02.2018 (50um and 25um Master) \\
\indent \indent 09.02.2018 (25 um Slave) \\
Normally, the firmware will be upgraded by us as it requires programming the
FPGA via the USB-Blaster.
To upgrade the firmware you need either a working version of the Altera
Quartus software or of the Quartus programmer, which can easily be downloaded
from: \\
\url{https://www.altera.com/download/programming/quartus2/pq2-index.jsp}
Normally, installation of the software and of the driver for the
USB-Blaster (provided together with the MYTHEN detector) are simpler under
Windows.
Under Windows, the first time that you connect the USB-Blaster to one
of your USB ports, you will be asked to install new hardware. Set the path to
search for the driver to:
\verb=C:\altera\80sp1\qprogrammer\drivers\usb-blasterp= (where
\verb=C:\altera\80sp1\qprogrammer\= is assumed to be ther path where your
Quartus version is installed).
\begin{enumerate}
\item After starting the Quartus programmer, click on Hardware Setup and in the
"Currently selected hardware" window select USB-Blaster.
\item In the Mode combo box select "Active Serial Programming".
\item Plug the end of your USB-Blaster WITH THE ADAPTER PROVIDED in the
connector ASMI on the MCS board taking care that pin1 corresponds to the one
indexed and with the rectangualr pad.
\item Click on add file and from select the programming file provided when
the upgrade has been reccomended.
\item Check "Program/Configure" and "Verify".
\item Push the start button and wait until the programming process is
finished (progress bar top left).
\item In case the programmer gives you error messages, check the polarity of
your cable (pin1 corresponds) and that you have selected the correct programming
connector.
\end{enumerate}
\subsubsection{GOTTHARD On-board Software}
Every SLS Detector package release will have its coresponding matching on-board
server under \textbf{slsDetectorPackage/serverBin}.
\begin{enumerate}
\item Install tftp if the pc does not have it.
\item Copy the server from serverBin folder to /tftpboot (or equivalent tftp
folder) of the pc
\item Copy the server to the detector by:
\begin{enumerate}
\item Connect to the blackfin on the detector\\
\verb=telnet bchipxxx=
\item Prevent existing on-board server from respawning by:
\begin{enumerate}
\item Edit \verb=/etc/inittab=
\item Comment out the line
\verb=#ttyS0::respawn:/gotthardDetectorServervxxx=
\item Reboot blackfin using \verb=reboot=
\item Run \verb=ps= to ensure no gotthardDetectorServers are running
\end{enumerate}
\item Copy new on-board server from pc to the blackfin using: \\
\verb=tftp pcxxx -r gotthardDetectorServerxxx -g=
\item Respawn the new server (server starts at detector statup):
\begin{enumerate}
\item Edit \verb=/etc/inittab=
\item Uncomment out the line
\verb=ttyS0::respawn:/gotthardDetectorServervxxx=
\item Reboot blackfin using \verb=reboot=
\item Run \verb=ps= to ensure that both the gotthardDetectorServers are
running.\\
\verb=gotthardDetectorServerxxx= \\
\verb=gotthardDetectorServerxxx 1953=
\end{enumerate}
\end{enumerate}
\end{enumerate}
\subsection{EIGER}
In such cases, the users are not expected to compile the software
themselves (which would require dedicated softwares) but only to download on the
detector board the programming files and/or software package provided by
the SLS Detectors group.
\subsubsection{EIGER Firmware}
\textit{For SLS Detector Package v3.1.0} \\
\indent Minimum compatible version: 16 \\
\indent Latest version: 20 \\
\begin{enumerate}
\item One must get the latest package's corresponding bit files from the SLS
Detector Group.
\item If one does not have the bcp script, that should also be obtained from
the SLS Detector Group. It is required to program the bit files and requires
that tftp be installed on the pc.
\item Run the following to update firmware
\begin{verbatim}
#update back end fpga
bcp download.bit bebxxx:/fw0
#update front left fpga
bcp download.bit bebxxx:/febl
#update front right fpga
bcp download.bit bebxxx:/febr
#update kernel
bcp download.bit bebxxx:/kernel
\end{verbatim}
Please update bit files with great caution as it could make your board
inaccessible, if done incorrectly.
\end{enumerate}
\subsubsection{EIGER On-board Software}
Every SLS Detector package release will have its coresponding matching on-board
server under \textbf{slsDetectorPackage/serverBin}.
Update the on-board software without connecting to the detector
\begin{verbatim}
#password for the boards: root
#Kill existing servers that are running on the detector
ssh root@beb031 killall eigerDetectorServer;
#Copy on-board server to detector inside executables folder
scp ~/path-where-it-is/eigerDetectorServerxxx root@bebxxx:~/executables;
#Overwrite the actual eigerDetectorServer on board
scp ~/path-where-it-is/eigerDetectorServerxxx
root@bebxxx:~/executables/eigerDetectorServer;
#sync
ssh root@bebxxx sync;
#reboot the eiger board
\end{verbatim}
\bigskip One can connect to the detector by:
\begin{verbatim}
ssh root@bebxxx
password: root
\end{verbatim}
The on-board server is in ~/executables folder and respawned at startup in \\
\verb=/etc/rc5.d/S50board_com.sh=
\subsection{JUNGFRAU}
In such cases, the users are not expected to compile the software
themselves (which would require dedicated softwares) but only to download on the
detector board the programming files and/or software package provided by
the SLS Detectors group.
\subsubsection{JUNGFRAU Firmware}
\textit{For SLS Detector Package v3.1.0} \\
\indent Minimum compatible version: 13.11.2017 \\
\indent Latest version: 13.11.2017 \\
At times, one has to update the firmware, which then also requires updating the
on-board software.
\textbf{\textit{Jungfrau firmware can be upgraded via the SLS Detector Package
binaries from the command line.}}
\begin{enumerate}
\item One must get the latest package's corresponding POF file from the SLS
Detector Group.
\item Update the latest SLS Detector package installed.
\item Update the on-board software as per the instructions in the next
section.
\item Start the on-board server in debug mode:
\begin{enumerate}
\item Connect to the blackfin on the detector\\
\verb=telnet bchipxxx=
\item Prevent existing on-board server from respawning by:
\begin{enumerate}
\item Edit \verb=/etc/inittab=
\item Comment out the line
\verb=#ttyS0::respawn:/jungfrauDetectorServervxxx=
\item Reboot blackfin using \verb=reboot=
\item Run \verb=ps= to ensure no gotthardDetectorServers are running
\end{enumerate}
\item Start the server in debug mode using: \\
\verb=./jungfrauDetectorServerxxx -debug= \\
Leave this console on to come back to it later.
\end{enumerate}
\item From the command line of the pc, clear shared memory \\
\verb=./sls_detector_get free= \\
If one gets shmget error, please clean the shared memory properly using the
script in \verb=slsDetectorPackage/cleansharedmemory.sh=
\item Add the detector to shared memory using \\
\verb=./sls_detector_put hostname bchipxxx=
\item Program the FPGA using \\
\verb=./sls_detector_put programfpga xxx.pof=
\item Once the programming is done:
\begin{enumerate}
\item Switch to the console that has the debug server running and kill it
using Ctrl+C and ensure no jungfrauDetectorServers are
running
\item Restart the new server to see if it runs with the new firmware \\
\verb=./jungfrauDetectorServerxxx= \\
If the server didn't start properly, please contact us with the error message
shown when starting the server up, else continue with the following steps.
\item Respawn the new server (server starts at detector statup):
\begin{enumerate}
\item Edit \verb=/etc/inittab=
\item Uncomment out the line
\verb=ttyS0::respawn:/jungfrauDetectorServervxxx=
\item Reboot blackfin using \verb=reboot=
\item Run \verb=ps= to ensure that both the gotthardDetectorServers are
running.\\
\verb=jungfrauDetectorServervxxx= \\
\verb=jungfrauDetectorServervxxx 1953=
\end{enumerate}
\end{enumerate}
\end{enumerate}
\subsubsection{JUNGFRAU On-board Software}
Every SLS Detector package release will have its coresponding matching on-board
server under \textbf{slsDetectorPackage/serverBin}.
\begin{enumerate}
\item Install tftp if the pc does not have it.
\item Copy the server from serverBin folder to /tftpboot (or equivalent tftp
folder) of the pc
\item Copy the server to the detector by:
\begin{enumerate}
\item Connect to the blackfin on the detector\\
\verb=telnet bchipxxx=
\item Prevent existing on-board server from respawning by:
\begin{enumerate}
\item Edit \verb=/etc/inittab=
\item Comment out the line
\verb=#ttyS0::respawn:/jungfrauDetectorServervxxx=
\item Reboot blackfin using \verb=reboot=
\item Run \verb=ps= to ensure no gotthardDetectorServers are running
\end{enumerate}
\item Copy new on-board server from pc to the blackfin using: \\
\verb=tftp pcxxx -r jungfrauDetectorServervxxx -g=
\item Respawn the new server (server starts at detector statup):
\begin{enumerate}
\item Edit \verb=/etc/inittab=
\item Uncomment out the line
\verb=ttyS0::respawn:/jungfrauDetectorServervxxx=
\item Reboot blackfin using \verb=reboot=
\item Run \verb=ps= to ensure that both the gotthardDetectorServers are
running.\\
\verb=jungfrauDetectorServervxxx= \\
\verb=jungfrauDetectorServervxxx 1953=
\end{enumerate}
\end{enumerate}
\end{enumerate}
\begin{comment}
\section{Detector system architecture}

View File

@ -1 +0,0 @@
../slsDetectorSoftware/eigerDetectorServer/bin/eigerDetectorServer_developer

View File

@ -1 +0,0 @@
../slsDetectorSoftware/eigerDetectorServer/bin/eigerDetectorServer_virtualMaster

View File

@ -1 +0,0 @@
../slsDetectorSoftware/eigerDetectorServer/bin/eigerDetectorServer_virtualSlave

View File

@ -0,0 +1 @@
../slsDetectorSoftware/eigerDetectorServer/bin/eigerDetectorServerv3.0.0.16.10

View File

@ -1 +0,0 @@
../slsDetectorSoftware/gotthardDetectorServer/gotthardDetectorServer_developer

View File

@ -1 +0,0 @@
../slsDetectorSoftware/gotthardDetectorServer/gotthardDetectorServer_virtual

View File

@ -0,0 +1 @@
../slsDetectorSoftware/gotthardDetectorServer/gotthardDetectorServerv3.0.0.6

View File

@ -1 +0,0 @@
../slsDetectorSoftware/jungfrauDetectorServer/bin/jungfrauDetectorServer_developer

View File

@ -1 +0,0 @@
../slsDetectorSoftware/jungfrauDetectorServer/bin/jungfrauDetectorServer_virtual

View File

@ -0,0 +1 @@
../slsDetectorSoftware/jungfrauDetectorServer/bin/jungfrauDetectorServerv3.0.0.6.3

View File

@ -0,0 +1 @@
../slsDetectorSoftware/moenchDetectorServer/moenchDetectorServerv2.0.3

View File

@ -0,0 +1 @@
227 5.6

View File

@ -0,0 +1,8 @@
Vref 660
VcascN 650
VcascP 1480
Vout 1520
Vcasc 1320
Vin 1350
Vref_comp 350
Vib_test 2001

View File

@ -0,0 +1 @@
227 5.6

View File

@ -0,0 +1,8 @@
Vref 660
VcascN 650
VcascP 1480
Vout 1520
Vcasc 1320
Vin 1350
Vref_comp 350
Vib_test 2001

View File

@ -0,0 +1 @@
227 5.6

View File

@ -0,0 +1,8 @@
Vref 660
VcascN 650
VcascP 1480
Vout 1520
Vcasc 1320
Vin 1350
Vref_comp 350
Vib_test 2001

View File

@ -0,0 +1 @@
227 5.6

View File

@ -0,0 +1,8 @@
Vref 660
VcascN 650
VcascP 1480
Vout 1520
Vcasc 1320
Vin 1350
Vref_comp 350
Vib_test 2001

View File

@ -0,0 +1 @@
227 5.6

View File

@ -0,0 +1,8 @@
Vref 660
VcascN 650
VcascP 1480
Vout 1520
Vcasc 1320
Vin 1350
Vref_comp 350
Vib_test 2001

View File

@ -0,0 +1 @@
227 5.6

View File

@ -0,0 +1,8 @@
VDAC0 1220
VDAC1 3000
VDAC2 1053
VDAC3 1450
VDAC4 750
VDAC5 1000
VDAC6 480
VDAC7 420

View File

@ -0,0 +1 @@
dynamicgain

View File

@ -0,0 +1 @@
dynamicgain

View File

@ -0,0 +1 @@
dynamicgain

View File

@ -0,0 +1 @@
dynamicgain

View File

@ -0,0 +1 @@
dynamicgain

View File

@ -0,0 +1 @@
227 5.6

View File

@ -0,0 +1,8 @@
VDAC0 660
VDAC1 650
VDAC2 1480
VDAC3 1520
VDAC4 1320
VDAC5 1350
VDAC6 887
VDAC7 2001

View File

@ -0,0 +1 @@
227 5.6

View File

@ -0,0 +1,8 @@
VDAC0 660
VDAC1 650
VDAC2 1480
VDAC3 1520
VDAC4 1320
VDAC5 1350
VDAC6 887
VDAC7 2001

View File

@ -0,0 +1 @@
227 5.6

Some files were not shown because too many files have changed in this diff Show More