Merge branch 'developer' into static

This commit is contained in:
2020-04-28 18:31:11 +02:00
9 changed files with 70 additions and 76 deletions

View File

@ -44,8 +44,8 @@ int virtual_stop = 0;
enum detectorSettings thisSettings = UNINITIALIZED; enum detectorSettings thisSettings = UNINITIALIZED;
int32_t clkPhase[NUM_CLOCKS] = {}; int32_t clkPhase[NUM_CLOCKS] = {};
uint32_t clkFrequency[NUM_CLOCKS] = {}; uint32_t clkDivider[NUM_CLOCKS] = {};
uint32_t systemFrequency = 0; double systemFrequency = 0;
int highvoltage = 0; int highvoltage = 0;
int dacValues[NDAC] = {}; int dacValues[NDAC] = {};
int onChipdacValues[ONCHIP_NDAC][NCHIP] = {}; int onChipdacValues[ONCHIP_NDAC][NCHIP] = {};
@ -353,12 +353,12 @@ void initStopServer() {
void setupDetector() { void setupDetector() {
LOG(logINFO, ("This Server is for 1 Gotthard2 module \n")); LOG(logINFO, ("This Server is for 1 Gotthard2 module \n"));
clkFrequency[READOUT_C0] = DEFAULT_READOUT_C0; clkDivider[READOUT_C0] = DEFAULT_READOUT_C0;
clkFrequency[READOUT_C1] = DEFAULT_READOUT_C1; clkDivider[READOUT_C1] = DEFAULT_READOUT_C1;
clkFrequency[SYSTEM_C0] = DEFAULT_SYSTEM_C0; clkDivider[SYSTEM_C0] = DEFAULT_SYSTEM_C0;
clkFrequency[SYSTEM_C1] = DEFAULT_SYSTEM_C1; clkDivider[SYSTEM_C1] = DEFAULT_SYSTEM_C1;
clkFrequency[SYSTEM_C2] = DEFAULT_SYSTEM_C2; clkDivider[SYSTEM_C2] = DEFAULT_SYSTEM_C2;
clkFrequency[SYSTEM_C3] = DEFAULT_SYSTEM_C3; clkDivider[SYSTEM_C3] = DEFAULT_SYSTEM_C3;
systemFrequency = INT_SYSTEM_C0_FREQUENCY; systemFrequency = INT_SYSTEM_C0_FREQUENCY;
detPos[0] = 0; detPos[0] = 0;
detPos[1] = 0; detPos[1] = 0;
@ -1450,13 +1450,12 @@ int getMaxPhase(enum CLKINDEX ind) {
LOG(logERROR, ("Unknown clock index %d to get max phase\n", ind)); LOG(logERROR, ("Unknown clock index %d to get max phase\n", ind));
return -1; return -1;
} }
int vcofreq = getVCOFrequency(ind);
int maxshiftstep = ALTERA_PLL_C10_GetMaxPhaseShiftStepsofVCO(); int maxshiftstep = ALTERA_PLL_C10_GetMaxPhaseShiftStepsofVCO();
int ret = ((double)vcofreq / (double)clkFrequency[ind]) * maxshiftstep; int ret = clkDivider[ind] * maxshiftstep;
char* clock_names[] = {CLK_NAMES}; char* clock_names[] = {CLK_NAMES};
LOG(logDEBUG1, ("\tMax Phase Shift (%s): %d (Clock: %d Hz, VCO:%d Hz)\n", LOG(logDEBUG1, ("\tMax Phase Shift (%s): %d (Clock Div: %d)\n",
clock_names[ind], ret, clkFrequency[ind], vcofreq)); clock_names[ind], ret, clkDivider[ind]));
return ret; return ret;
} }
@ -1489,7 +1488,7 @@ int getFrequency(enum CLKINDEX ind) {
LOG(logERROR, ("Unknown clock index %d to get frequency\n", ind)); LOG(logERROR, ("Unknown clock index %d to get frequency\n", ind));
return -1; return -1;
} }
return clkFrequency[ind]; return (((double)getVCOFrequency(ind) / (double)clkDivider[ind]) + 0.5);
} }
int getVCOFrequency(enum CLKINDEX ind) { int getVCOFrequency(enum CLKINDEX ind) {
@ -1514,28 +1513,28 @@ int setClockDivider(enum CLKINDEX ind, int val) {
return FAIL; return FAIL;
} }
char* clock_names[] = {CLK_NAMES}; char* clock_names[] = {CLK_NAMES};
int vcofreq = getVCOFrequency(ind);
int currentdiv = vcofreq / (int)clkFrequency[ind];
int newfreq = vcofreq / val;
LOG(logINFO, ("\tSetting %s clock (%d) divider from %d (%d Hz) to %d (%d Hz). \n\t(Vcofreq: %d Hz)\n", clock_names[ind], ind, currentdiv, clkFrequency[ind], val, newfreq, vcofreq)); LOG(logINFO, ("\tSetting %s clock (%d) divider from %d to %d\n",
clock_names[ind], ind, clkDivider[ind], val));
// Remembering old phases in degrees // Remembering old phases in degrees
int oldPhases[NUM_CLOCKS]; int oldPhases[NUM_CLOCKS];
{ {
int i = 0; int i = 0;
for (i = 0; i < NUM_CLOCKS; ++i) { for (i = 0; i < NUM_CLOCKS; ++i) {
oldPhases [i] = getPhase(i, 1); oldPhases[i] = getPhase(i, 1);
LOG(logDEBUG1, ("\tRemembering %s clock (%d) phase: %d degrees\n", clock_names[ind], ind, oldPhases[i])); LOG(logDEBUG1, ("\tRemembering %s clock (%d) phase: %d degrees\n",
clock_names[ind], ind, oldPhases[i]));
} }
} }
// Calculate and set output frequency // Calculate and set output frequency
int pllIndex = (int)(ind >= SYSTEM_C0 ? SYSTEM_PLL : READOUT_PLL); int pllIndex = (int)(ind >= SYSTEM_C0 ? SYSTEM_PLL : READOUT_PLL);
int clkIndex = (int)(ind >= SYSTEM_C0 ? ind - SYSTEM_C0 : ind); int clkIndex = (int)(ind >= SYSTEM_C0 ? ind - SYSTEM_C0 : ind);
ALTERA_PLL_C10_SetOuputFrequency (pllIndex, clkIndex, newfreq); ALTERA_PLL_C10_SetOuputClockDivider (pllIndex, clkIndex, val);
clkFrequency[ind] = newfreq; clkDivider[ind] = val;
LOG(logINFO, ("\t%s clock (%d) divider set to %d (%d Hz)\n", clock_names[ind], ind, val, clkFrequency[ind])); LOG(logINFO, ("\t%s clock (%d) divider set to %d\n",
clock_names[ind], ind, clkDivider[ind]));
// update system frequency // update system frequency
if (ind == SYSTEM_C0) { if (ind == SYSTEM_C0) {
setTimingSource(getTimingSource()); setTimingSource(getTimingSource());
@ -1558,7 +1557,8 @@ int setClockDivider(enum CLKINDEX ind, int val) {
for (i = 0; i < NUM_CLOCKS; ++i) { for (i = 0; i < NUM_CLOCKS; ++i) {
int currPhaseDeg = getPhase(i, 1); int currPhaseDeg = getPhase(i, 1);
if (oldPhases[i] != currPhaseDeg) { if (oldPhases[i] != currPhaseDeg) {
LOG(logINFO, ("\tCorrecting %s clock (%d) phase from %d to %d degrees\n", clock_names[i], i, currPhaseDeg, oldPhases[i])); LOG(logINFO, ("\tCorrecting %s clock (%d) phase from %d to %d degrees\n",
clock_names[i], i, currPhaseDeg, oldPhases[i]));
setPhase(i, oldPhases[i], 1); setPhase(i, oldPhases[i], 1);
} }
} }
@ -1571,7 +1571,7 @@ int getClockDivider(enum CLKINDEX ind) {
LOG(logERROR, ("Unknown clock index %d to get clock divider\n", ind)); LOG(logERROR, ("Unknown clock index %d to get clock divider\n", ind));
return -1; return -1;
} }
return (getVCOFrequency(ind) / (int)clkFrequency[ind]); return clkDivider[ind];
} }
int setInjectChannel(int offset, int increment) { int setInjectChannel(int offset, int increment) {
@ -1991,7 +1991,7 @@ void setTimingSource(enum timingSourceType value) {
case TIMING_EXTERNAL: case TIMING_EXTERNAL:
LOG(logINFO, ("Setting timing source to exernal\n")); LOG(logINFO, ("Setting timing source to exernal\n"));
bus_w(addr, (bus_r(addr) | CONTROL_TIMING_SOURCE_EXT_MSK)); bus_w(addr, (bus_r(addr) | CONTROL_TIMING_SOURCE_EXT_MSK));
systemFrequency = clkFrequency[SYSTEM_C0]; systemFrequency = ((double)getVCOFrequency(SYSTEM_C0) / (double)clkDivider[SYSTEM_C0]);
break; break;
default: default:
LOG(logERROR, ("Unknown timing source %d\n", value)); LOG(logERROR, ("Unknown timing source %d\n", value));

View File

@ -44,12 +44,12 @@
#define DEFAULT_CURRENT_SOURCE (0) #define DEFAULT_CURRENT_SOURCE (0)
#define DEFAULT_TIMING_SOURCE (TIMING_INTERNAL) #define DEFAULT_TIMING_SOURCE (TIMING_INTERNAL)
#define DEFAULT_READOUT_C0 (144444448) // rdo_clk, 144 MHz #define DEFAULT_READOUT_C0 (6)//(144444448) // rdo_clk, 144 MHz
#define DEFAULT_READOUT_C1 (144444448) // rdo_x2_clk, 144 MHz #define DEFAULT_READOUT_C1 (6)//(144444448) // rdo_x2_clk, 144 MHz
#define DEFAULT_SYSTEM_C0 (144444448) // run_clk, 144 MHz #define DEFAULT_SYSTEM_C0 (5)//(144444448) // run_clk, 144 MHz
#define DEFAULT_SYSTEM_C1 (72222224) // chip_clk, 72 MHz #define DEFAULT_SYSTEM_C1 (10)//(72222224) // chip_clk, 72 MHz
#define DEFAULT_SYSTEM_C2 (18055556) // sync_clk, 18 MHz #define DEFAULT_SYSTEM_C2 (40)//(18055556) // sync_clk, 18 MHz
#define DEFAULT_SYSTEM_C3 (144444448) // str_clk, 144 MHz #define DEFAULT_SYSTEM_C3 (5)//(144444448) // str_clk, 144 MHz
/* Firmware Definitions */ /* Firmware Definitions */
#define IP_HEADER_SIZE (20) #define IP_HEADER_SIZE (20)

View File

@ -40,7 +40,7 @@ int virtual_stop = 0;
#endif #endif
int32_t clkPhase[NUM_CLOCKS] = {}; int32_t clkPhase[NUM_CLOCKS] = {};
uint32_t clkFrequency[NUM_CLOCKS] = {}; uint32_t clkDivider[NUM_CLOCKS] = {};
int highvoltage = 0; int highvoltage = 0;
int dacValues[NDAC] = {}; int dacValues[NDAC] = {};
@ -340,11 +340,11 @@ void initStopServer() {
void setupDetector() { void setupDetector() {
LOG(logINFO, ("This Server is for 1 Mythen3 module \n")); LOG(logINFO, ("This Server is for 1 Mythen3 module \n"));
clkFrequency[READOUT_C0] = DEFAULT_READOUT_C0; clkDivider[READOUT_C0] = DEFAULT_READOUT_C0;
clkFrequency[READOUT_C1] = DEFAULT_READOUT_C1; clkDivider[READOUT_C1] = DEFAULT_READOUT_C1;
clkFrequency[SYSTEM_C0] = DEFAULT_SYSTEM_C0; clkDivider[SYSTEM_C0] = DEFAULT_SYSTEM_C0;
clkFrequency[SYSTEM_C1] = DEFAULT_SYSTEM_C1; clkDivider[SYSTEM_C1] = DEFAULT_SYSTEM_C1;
clkFrequency[SYSTEM_C2] = DEFAULT_SYSTEM_C2; clkDivider[SYSTEM_C2] = DEFAULT_SYSTEM_C2;
highvoltage = 0; highvoltage = 0;
{ {
@ -509,12 +509,12 @@ int setExpTime(int64_t val) {
return FAIL; return FAIL;
} }
LOG(logINFO, ("Setting exptime %lld ns\n", (long long int)val)); LOG(logINFO, ("Setting exptime %lld ns\n", (long long int)val));
val *= (1E-9 * clkFrequency[SYSTEM_C0]); val *= (1E-9 * getFrequency(SYSTEM_C0));
setPatternWaitTime(0, val); setPatternWaitTime(0, val);
// validate for tolerance // validate for tolerance
int64_t retval = getExpTime(); int64_t retval = getExpTime();
val /= (1E-9 * clkFrequency[SYSTEM_C0]); val /= (1E-9 * getFrequency(SYSTEM_C0));
if (val != retval) { if (val != retval) {
return FAIL; return FAIL;
} }
@ -522,7 +522,7 @@ int setExpTime(int64_t val) {
} }
int64_t getExpTime() { int64_t getExpTime() {
return setPatternWaitTime(0, -1) / (1E-9 * clkFrequency[SYSTEM_C0]); return setPatternWaitTime(0, -1) / (1E-9 * getFrequency(SYSTEM_C0));
} }
int setPeriod(int64_t val) { int setPeriod(int64_t val) {
@ -1236,13 +1236,12 @@ int getMaxPhase(enum CLKINDEX ind) {
LOG(logERROR, ("Unknown clock index %d to get max phase\n", ind)); LOG(logERROR, ("Unknown clock index %d to get max phase\n", ind));
return -1; return -1;
} }
int vcofreq = getVCOFrequency(ind);
int maxshiftstep = ALTERA_PLL_C10_GetMaxPhaseShiftStepsofVCO(); int maxshiftstep = ALTERA_PLL_C10_GetMaxPhaseShiftStepsofVCO();
int ret = ((double)vcofreq / (double)clkFrequency[ind]) * maxshiftstep; int ret = clkDivider[ind] * maxshiftstep;
char* clock_names[] = {CLK_NAMES}; char* clock_names[] = {CLK_NAMES};
LOG(logDEBUG1, ("\tMax Phase Shift (%s): %d (Clock: %d Hz, VCO:%d Hz)\n", LOG(logDEBUG1, ("\tMax Phase Shift (%s): %d (Clock Div: %d)\n",
clock_names[ind], ret, clkFrequency[ind], vcofreq)); clock_names[ind], ret, clkDivider[ind]));
return ret; return ret;
} }
@ -1275,7 +1274,7 @@ int getFrequency(enum CLKINDEX ind) {
LOG(logERROR, ("Unknown clock index %d to get frequency\n", ind)); LOG(logERROR, ("Unknown clock index %d to get frequency\n", ind));
return -1; return -1;
} }
return clkFrequency[ind]; return (getVCOFrequency(ind) / clkDivider[ind]);
} }
int getVCOFrequency(enum CLKINDEX ind) { int getVCOFrequency(enum CLKINDEX ind) {
@ -1300,27 +1299,28 @@ int setClockDivider(enum CLKINDEX ind, int val) {
return FAIL; return FAIL;
} }
char* clock_names[] = {CLK_NAMES}; char* clock_names[] = {CLK_NAMES};
int vcofreq = getVCOFrequency(ind);
int currentdiv = vcofreq / (int)clkFrequency[ind];
int newfreq = vcofreq / val;
LOG(logINFO, ("\tSetting %s clock (%d) divider from %d (%d Hz) to %d (%d Hz). \n\t(Vcofreq: %d Hz)\n", clock_names[ind], ind, currentdiv, clkFrequency[ind], val, newfreq, vcofreq)); LOG(logINFO, ("\tSetting %s clock (%d) divider from %d to %d\n",
clock_names[ind], ind, clkDivider[ind], val));
// Remembering old phases in degrees // Remembering old phases in degrees
int oldPhases[NUM_CLOCKS]; int oldPhases[NUM_CLOCKS];
{ {
int i = 0; int i = 0;
for (i = 0; i < NUM_CLOCKS; ++i) { for (i = 0; i < NUM_CLOCKS; ++i) {
oldPhases [i] = getPhase(i, 1); oldPhases[i] = getPhase(i, 1);
LOG(logDEBUG1, ("\tRemembering %s clock (%d) phase: %d degrees\n",
clock_names[ind], ind, oldPhases[i]));
} }
} }
// Calculate and set output frequency // Calculate and set output frequency
int pllIndex = (int)(ind >= SYSTEM_C0 ? SYSTEM_PLL : READOUT_PLL); int pllIndex = (int)(ind >= SYSTEM_C0 ? SYSTEM_PLL : READOUT_PLL);
int clkIndex = (int)(ind >= SYSTEM_C0 ? ind - SYSTEM_C0 : ind); int clkIndex = (int)(ind >= SYSTEM_C0 ? ind - SYSTEM_C0 : ind);
ALTERA_PLL_C10_SetOuputFrequency (pllIndex, clkIndex, newfreq); ALTERA_PLL_C10_SetOuputClockDivider (pllIndex, clkIndex, val);
clkFrequency[ind] = newfreq; clkDivider[ind] = val;
LOG(logINFO, ("\t%s clock (%d) divider set to %d (%d Hz)\n", clock_names[ind], ind, val, clkFrequency[ind])); LOG(logINFO, ("\t%s clock (%d) divider set to %d\n",
clock_names[ind], ind, clkDivider[ind]));
// phase is reset by pll (when setting output frequency) // phase is reset by pll (when setting output frequency)
if (ind >= READOUT_C0) { if (ind >= READOUT_C0) {
@ -1338,7 +1338,8 @@ int setClockDivider(enum CLKINDEX ind, int val) {
for (i = 0; i < NUM_CLOCKS; ++i) { for (i = 0; i < NUM_CLOCKS; ++i) {
int currPhaseDeg = getPhase(i, 1); int currPhaseDeg = getPhase(i, 1);
if (oldPhases[i] != currPhaseDeg) { if (oldPhases[i] != currPhaseDeg) {
LOG(logINFO, ("\tCorrecting %s clock (%d) phase from %d to %d degrees\n", clock_names[i], i, currPhaseDeg, oldPhases[i])); LOG(logINFO, ("\tCorrecting %s clock (%d) phase from %d to %d degrees\n",
clock_names[i], i, currPhaseDeg, oldPhases[i]));
setPhase(i, oldPhases[i], 1); setPhase(i, oldPhases[i], 1);
} }
} }
@ -1351,7 +1352,7 @@ int getClockDivider(enum CLKINDEX ind) {
LOG(logERROR, ("Unknown clock index %d to get clock divider\n", ind)); LOG(logERROR, ("Unknown clock index %d to get clock divider\n", ind));
return -1; return -1;
} }
return (getVCOFrequency(ind) / (int)clkFrequency[ind]); return clkDivider[ind];
} }
/* aquisition */ /* aquisition */

View File

@ -32,11 +32,11 @@
#define DEFAULT_DELAY_AFTER_TRIGGER (0) #define DEFAULT_DELAY_AFTER_TRIGGER (0)
#define DEFAULT_HIGH_VOLTAGE (0) #define DEFAULT_HIGH_VOLTAGE (0)
#define DEFAULT_TIMING_MODE (AUTO_TIMING) #define DEFAULT_TIMING_MODE (AUTO_TIMING)
#define DEFAULT_READOUT_C0 (125000000) // rdo_clk, 125 MHz #define DEFAULT_READOUT_C0 (10)//(125000000) // rdo_clk, 125 MHz
#define DEFAULT_READOUT_C1 (125000000) // rdo_x2_clk, 125 MHz #define DEFAULT_READOUT_C1 (10)//(125000000) // rdo_x2_clk, 125 MHz
#define DEFAULT_SYSTEM_C0 (250000000) // run_clk, 250 MHz #define DEFAULT_SYSTEM_C0 (5)//(250000000) // run_clk, 250 MHz
#define DEFAULT_SYSTEM_C1 (125000000) // chip_clk, 125 MHz #define DEFAULT_SYSTEM_C1 (10)//(125000000) // chip_clk, 125 MHz
#define DEFAULT_SYSTEM_C2 (125000000) // sync_clk, 125 MHz #define DEFAULT_SYSTEM_C2 (10)//(125000000) // sync_clk, 125 MHz
/* Firmware Definitions */ /* Firmware Definitions */

View File

@ -59,7 +59,7 @@ void ALTERA_PLL_C10_SetPhaseShift(int pllIndex, int clkIndex, int phase, int pos
* Calculate and write output frequency * Calculate and write output frequency
* @param pllIndex pll index * @param pllIndex pll index
* @param clkIndex clock index * @param clkIndex clock index
* @param value frequency in Hz to set to * @param value clock divider to set to
*/ */
void ALTERA_PLL_C10_SetOuputFrequency (int pllIndex, int clkIndex, int value); void ALTERA_PLL_C10_SetOuputClockDivider (int pllIndex, int clkIndex, int value);

View File

@ -113,21 +113,16 @@ void ALTERA_PLL_C10_SetPhaseShift(int pllIndex, int clkIndex, int phase, int pos
} }
} }
void ALTERA_PLL_C10_SetOuputClockDivider (int pllIndex, int clkIndex, int value) {
void ALTERA_PLL_C10_SetOuputFrequency (int pllIndex, int clkIndex, int value) { LOG(logDEBUG1, ("\tC%d: Setting output clock divider for pll%d to %d\n", clkIndex, pllIndex, value));
int pllVCOFreqHz = ALTERA_PLL_C10_VCO_FREQ[pllIndex];
LOG(logDEBUG1, ("\tC%d: Setting output frequency for pll %d to %d (pllvcofreq: %dHz)\n", clkIndex, pllIndex, value, pllVCOFreqHz));
// calculate output frequency
float total_div = (float)pllVCOFreqHz / (float)value;
// assume 50% duty cycle // assume 50% duty cycle
uint32_t low_count = total_div / 2; uint32_t low_count = value / 2;
uint32_t high_count = low_count; uint32_t high_count = low_count;
uint32_t odd_division = 0; uint32_t odd_division = 0;
// odd division // odd division
if (total_div > (float)(2 * low_count)) { if (value > (int)(2 * low_count)) {
++high_count; ++high_count;
odd_division = 1; odd_division = 1;
} }
@ -146,7 +141,5 @@ void ALTERA_PLL_C10_SetOuputFrequency (int pllIndex, int clkIndex, int value) {
ALTERA_PLL_C10_Reconfigure(pllIndex); ALTERA_PLL_C10_Reconfigure(pllIndex);
// reset required to keep the phase relationships // reset required to keep the phase relationships
ALTERA_PLL_C10_ResetPLL (pllIndex); ALTERA_PLL_C10_ResetPLL (pllIndex);
} }

View File

@ -6,7 +6,7 @@
#define APIEIGER 0x200409 #define APIEIGER 0x200409
#define APICTB 0x200409 #define APICTB 0x200409
#define APIGOTTHARD 0x200409 #define APIGOTTHARD 0x200409
#define APIGOTTHARD2 0x200409
#define APIJUNGFRAU 0x200409 #define APIJUNGFRAU 0x200409
#define APIMYTHEN3 0x200409
#define APIMOENCH 0x200409 #define APIMOENCH 0x200409
#define APIMYTHEN3 0x200428
#define APIGOTTHARD2 0x200428