Merge branch 'main' of git.psi.ch:sls_detectors_software/python_cluster_reader into main
This commit is contained in:
commit
8eabf6a008
14
creader/SparseFile.py
Normal file
14
creader/SparseFile.py
Normal file
@ -0,0 +1,14 @@
|
||||
import numpy as np
|
||||
|
||||
def to_sparse(data, th = 0):
|
||||
"""
|
||||
Convert frames stack ndarray[frame, row, col] to sparse array.
|
||||
Warning: this function drops the frame numbers and only keeps row, col, energy
|
||||
"""
|
||||
sparse_dt = [('row', np.int16), ('col', np.int16), ('energy', data.dtype)]
|
||||
size = (data>th).sum()
|
||||
sparse = np.zeros(size, sparse_dt)
|
||||
frames, rows, cols = np.where(data>th)
|
||||
for i,(f,r,c) in enumerate(zip(frames, rows, cols)):
|
||||
sparse[i] = (r, c, data[f,r,c])
|
||||
return sparse
|
@ -4,4 +4,6 @@ from _creader import *
|
||||
from .file_utils import open_file
|
||||
from .ClusterFile import ClusterFile
|
||||
from .enums import DetectorType
|
||||
from .RawFile import RawFile
|
||||
from .RawFile import RawFile
|
||||
|
||||
from .SparseFile import to_sparse
|
@ -1,3 +1,3 @@
|
||||
[build-system]
|
||||
requires = ["setuptools", "oldest-supported-numpy/python"]
|
||||
requires = ["setuptools", "numpy"]
|
||||
build-backend = "setuptools.build_meta"
|
||||
|
12
setup.py
12
setup.py
@ -2,6 +2,13 @@
|
||||
|
||||
import setuptools
|
||||
import numpy as np
|
||||
import sys
|
||||
|
||||
#platform specific compilation flags
|
||||
if sys.platform == 'win32':
|
||||
extra_compile_args = ['/W4']
|
||||
else:
|
||||
extra_compile_args=['-std=c99', '-Wall', '-Wextra']
|
||||
|
||||
c_ext = setuptools.Extension("_creader",
|
||||
sources = [
|
||||
@ -15,13 +22,14 @@ c_ext = setuptools.Extension("_creader",
|
||||
include_dirs=[
|
||||
np.get_include(),"src/"
|
||||
],
|
||||
extra_compile_args=['-std=c99', '-Wall', '-Wextra'] )
|
||||
extra_compile_args=extra_compile_args,
|
||||
)
|
||||
|
||||
|
||||
c_ext.language = 'c'
|
||||
setuptools.setup(
|
||||
name= 'creader',
|
||||
version = '2023.10.17',
|
||||
version = '2023.10.25',
|
||||
description = 'Reading cluster files',
|
||||
packages=setuptools.find_packages(exclude=[
|
||||
'tests',
|
||||
|
@ -6,7 +6,7 @@
|
||||
//clang-format off
|
||||
typedef struct {
|
||||
PyObject_HEAD FILE *fp;
|
||||
int n_left;
|
||||
uint32_t n_left;
|
||||
Py_ssize_t chunk;
|
||||
} ClusterFileReader;
|
||||
//clang-format on
|
||||
@ -18,7 +18,7 @@ static int ClusterFileReader_init(ClusterFileReader *self, PyObject *args,
|
||||
PyObject *kwds) {
|
||||
|
||||
// Parse file name, accepts string or pathlike objects
|
||||
const char *fname = NULL;
|
||||
char *fname = NULL;
|
||||
self->n_left = 0;
|
||||
self->chunk = 0;
|
||||
PyObject *fname_obj = NULL;
|
||||
@ -27,10 +27,6 @@ static int ClusterFileReader_init(ClusterFileReader *self, PyObject *args,
|
||||
|
||||
static char *kwlist[] = {"fname", "chunk", NULL};
|
||||
|
||||
// if (!PyArg_ParseTuple(args, "O&", PyUnicode_FSConverter, &buf))
|
||||
// return -1;
|
||||
// PyBytes_AsStringAndSize(buf, &fname, &len);
|
||||
|
||||
if (!PyArg_ParseTupleAndKeywords(args, kwds, "O|n", kwlist, &fname_obj,
|
||||
&self->chunk)) {
|
||||
return -1;
|
||||
@ -45,8 +41,7 @@ static int ClusterFileReader_init(ClusterFileReader *self, PyObject *args,
|
||||
printf("Opening: %s\n chunk: %lu\n", fname, self->chunk);
|
||||
#endif
|
||||
|
||||
self->fp = fopen(fname, "rb");
|
||||
|
||||
self->fp = fopen((const char *)fname, "rb");
|
||||
|
||||
// Keep the return code to not return before releasing buffer
|
||||
int rc = 0;
|
||||
@ -119,14 +114,12 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self,
|
||||
|
||||
noise_map = (double *)(PyArray_DATA((PyArrayObject *)(noise_array)));
|
||||
|
||||
|
||||
/* for (int i=0; i< ndim_noise; i++) { */
|
||||
/* printf("Dimension %d size %d pointer \n",i,noise_shape[i],
|
||||
* noise_map); */
|
||||
|
||||
/* } */
|
||||
|
||||
|
||||
if (ndim_noise == 2) {
|
||||
|
||||
nx = noise_shape[0];
|
||||
@ -146,7 +139,7 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self,
|
||||
}
|
||||
|
||||
// Create an uninitialized numpy array
|
||||
PyObject *clusters = PyArray_SimpleNewFromDescr(ndim, dims, cluster_dt());
|
||||
PyObject *clusters = PyArray_SimpleNewFromDescr(ndim, dims, cluster_dt());
|
||||
|
||||
// Fill with zeros
|
||||
PyArray_FILLWBYTE((PyArrayObject *)clusters, 0);
|
||||
@ -161,7 +154,7 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self,
|
||||
n_read = read_clusters_with_cut(self->fp, size, buf, &self->n_left,
|
||||
noise_map, nx, ny);
|
||||
else
|
||||
n_read = read_clusters(self->fp, size, buf, &self->n_left);
|
||||
n_read = read_clusters(self->fp, size, buf, &self->n_left);
|
||||
|
||||
if (n_read != size) {
|
||||
// resize the array to match the number of read photons
|
||||
@ -183,10 +176,11 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self,
|
||||
}
|
||||
|
||||
/* // clusterize method */
|
||||
/* static PyObject *ClusterFileReader_clusterize(ClusterFileReader *self, PyObject *args) { */
|
||||
/* static PyObject *ClusterFileReader_clusterize(ClusterFileReader *self,
|
||||
* PyObject *args) { */
|
||||
|
||||
/* const int ndim = 1; */
|
||||
|
||||
|
||||
/* Py_ssize_t size = 0; */
|
||||
/* PyObject *data_obj; */
|
||||
/* if (!PyArg_ParseTuple(args, "nO", &size,&data_obj)) { */
|
||||
@ -198,36 +192,37 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self,
|
||||
|
||||
/* // */
|
||||
|
||||
/* // Create two numpy arrays from the passed objects, if possible numpy will */
|
||||
/* // use the underlying buffer, otherwise it will create a copy, for example */
|
||||
/* // Create two numpy arrays from the passed objects, if possible numpy
|
||||
* will */
|
||||
/* // use the underlying buffer, otherwise it will create a copy, for
|
||||
* example */
|
||||
/* // if data type is different or we pass in a list. The */
|
||||
/* // NPY_ARRAY_C_CONTIGUOUS flag ensures that we have contiguous memory. */
|
||||
/* PyObject *data_array = PyArray_FROM_OTF(data_obj, NPY_INT32, NPY_ARRAY_C_CONTIGUOUS); */
|
||||
/* PyObject *data_array = PyArray_FROM_OTF(data_obj, NPY_INT32,
|
||||
* NPY_ARRAY_C_CONTIGUOUS); */
|
||||
/* int nx=0,ny=0; */
|
||||
/* int32_t *data=NULL; */
|
||||
|
||||
|
||||
/* // If parsing of a or b fails we throw an exception in Python */
|
||||
/* if (data_array ) { */
|
||||
|
||||
|
||||
/* int ndim_data = PyArray_NDIM((PyArrayObject *)(data_array)); */
|
||||
/* npy_intp *data_shape = PyArray_SHAPE((PyArrayObject *)(data_array)); */
|
||||
|
||||
|
||||
/* // For the C++ function call we need pointers (or another C++ type/data */
|
||||
|
||||
/* // For the C++ function call we need pointers (or another C++ type/data
|
||||
*/
|
||||
/* // structure) */
|
||||
|
||||
|
||||
/* data = (int32_t *)(PyArray_DATA((PyArrayObject *)(data_array))); */
|
||||
|
||||
|
||||
|
||||
/* /\* for (int i=0; i< ndim_noise; i++) { *\/ */
|
||||
/* /\* printf("Dimension %d size %d pointer \n",i,noise_shape[i], noise_map); *\/ */
|
||||
|
||||
/* /\* printf("Dimension %d size %d pointer \n",i,noise_shape[i],
|
||||
* noise_map); *\/ */
|
||||
|
||||
/* /\* } *\/ */
|
||||
|
||||
/* if (ndim_data==2) { */
|
||||
|
||||
|
||||
/* nx=data_shape[0]; */
|
||||
/* ny=data_shape[1]; */
|
||||
/* if (ny!=9) { */
|
||||
@ -243,14 +238,15 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self,
|
||||
/* "Wrong data type."); */
|
||||
|
||||
/* } */
|
||||
|
||||
|
||||
/* } */
|
||||
|
||||
/* // Create an uninitialized numpy array */
|
||||
/* //npy_intp dims[] = {nx}; */
|
||||
/* // printf("%d %d\n",ndim,nx); */
|
||||
/* npy_intp dims[] = {nx}; */
|
||||
/* PyObject *ca = PyArray_SimpleNewFromDescr(ndim, dims, cluster_analysis_dt()); */
|
||||
/* PyObject *ca = PyArray_SimpleNewFromDescr(ndim, dims,
|
||||
* cluster_analysis_dt()); */
|
||||
|
||||
/* // printf("1\n"); */
|
||||
|
||||
@ -263,7 +259,7 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self,
|
||||
|
||||
/* // Call the standalone C code to read clusters from file */
|
||||
/* // Here goes the looping, removing frame numbers etc. */
|
||||
|
||||
|
||||
/* // printf("3\n"); */
|
||||
/* int n_read=analyze_clusters(nx,data,buf,size); */
|
||||
/* if (n_read != nx) { */
|
||||
@ -283,31 +279,15 @@ static PyObject *ClusterFileReader_read(ClusterFileReader *self,
|
||||
/* } */
|
||||
|
||||
/* return ca; */
|
||||
|
||||
|
||||
/* } */
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
// List all methods in our ClusterFileReader class
|
||||
static PyMethodDef ClusterFileReader_methods[] = {
|
||||
{"read", (PyCFunction)ClusterFileReader_read, METH_VARARGS,
|
||||
"Read clusters"},
|
||||
/* {"clusterize", (PyCFunction)ClusterFileReader_clusterize, METH_VARARGS, */
|
||||
/* {"clusterize", (PyCFunction)ClusterFileReader_clusterize, METH_VARARGS,
|
||||
*/
|
||||
/* "Analyze clusters"}, */
|
||||
{NULL, NULL, 0, NULL} /* Sentinel */
|
||||
};
|
||||
|
@ -22,7 +22,7 @@ static int RawFileReader_init(RawFileReader *self, PyObject *args,
|
||||
PyObject *kwds) {
|
||||
|
||||
// Parse file name, accepts string or pathlike objects
|
||||
const char *fname = NULL;
|
||||
char *fname = NULL;
|
||||
PyObject *fname_obj = NULL;
|
||||
PyObject *fname_bytes = NULL;
|
||||
Py_ssize_t len;
|
||||
@ -48,7 +48,7 @@ static int RawFileReader_init(RawFileReader *self, PyObject *args,
|
||||
printf("fname: %s\n read_header: %d detector type: %d\n", fname,
|
||||
self->read_header, self->detector);
|
||||
#endif
|
||||
self->fp = fopen(fname, "rb");
|
||||
self->fp = fopen((const char *)fname, "rb");
|
||||
|
||||
// Keep the return code to not return before releasing buffer
|
||||
int rc = 0;
|
||||
@ -110,12 +110,13 @@ static PyObject *RawFileReader_read(RawFileReader *self, PyObject *args) {
|
||||
|
||||
switch (self->detector) {
|
||||
case DT_MOENCH_03:
|
||||
n_read = read_raw_m03(self->fp, n_frames, out_buf, header_out);
|
||||
n_read =
|
||||
read_raw_m03(self->fp, n_frames, out_buf, (Header *)header_out);
|
||||
break;
|
||||
case DT_MOENCH_04_A:
|
||||
case DT_MOENCH_04_AD:
|
||||
n_read =
|
||||
read_raw_m04(self->fp, n_frames, out_buf, digital_out, header_out);
|
||||
n_read = read_raw_m04(self->fp, n_frames, out_buf, digital_out,
|
||||
(Header *)header_out);
|
||||
break;
|
||||
default:
|
||||
break;
|
||||
@ -136,8 +137,9 @@ static PyObject *RawFileReader_read(RawFileReader *self, PyObject *args) {
|
||||
// resize the array to match the number of clusters read
|
||||
PyArray_Resize((PyArrayObject *)frames, &new_shape, 1, NPY_ANYORDER);
|
||||
|
||||
if(digital_frames){
|
||||
PyArray_Resize((PyArrayObject *)digital_frames, &new_shape, 1, NPY_ANYORDER);
|
||||
if (digital_frames) {
|
||||
PyArray_Resize((PyArrayObject *)digital_frames, &new_shape, 1,
|
||||
NPY_ANYORDER);
|
||||
}
|
||||
|
||||
// if we also read header we need to reshape the header
|
||||
@ -146,32 +148,29 @@ static PyObject *RawFileReader_read(RawFileReader *self, PyObject *args) {
|
||||
PyArray_Resize((PyArrayObject *)header, &new_shape, 1,
|
||||
NPY_ANYORDER);
|
||||
}
|
||||
|
||||
|
||||
}
|
||||
|
||||
// Build up a tuple with the return values
|
||||
PyObject *ret = PyTuple_Pack(1, frames);
|
||||
if (self->detector == DT_MOENCH_04_AD){
|
||||
if (self->detector == DT_MOENCH_04_AD) {
|
||||
_PyTuple_Resize(&ret, 2);
|
||||
PyTuple_SET_ITEM(ret, 1, digital_frames);
|
||||
}
|
||||
|
||||
if (self->read_header){
|
||||
if (self->read_header) {
|
||||
Py_ssize_t old_size = PyTuple_GET_SIZE(ret);
|
||||
_PyTuple_Resize(&ret, old_size+1);
|
||||
_PyTuple_Resize(&ret, old_size + 1);
|
||||
PyTuple_SET_ITEM(ret, old_size, header);
|
||||
}
|
||||
|
||||
// if we only have one item in the tuple lets return it instead of the tuple
|
||||
if(PyTuple_GET_SIZE(ret) == 1){
|
||||
if (PyTuple_GET_SIZE(ret) == 1) {
|
||||
Py_DECREF(ret);
|
||||
return frames;
|
||||
}else{
|
||||
} else {
|
||||
Py_DECREF(frames);
|
||||
return ret;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
// List all methods in our ClusterFileReader class
|
||||
|
@ -1,39 +1,38 @@
|
||||
#include "cluster_reader.h"
|
||||
#include <assert.h>
|
||||
|
||||
int read_clusters(FILE *fp, int64_t n_clusters, Cluster *buf, int *n_left) {
|
||||
int iframe = 0;
|
||||
int nph = *n_left;
|
||||
size_t read_clusters(FILE *fp, size_t n_clusters, Cluster *buf,
|
||||
uint32_t *n_left) {
|
||||
int32_t iframe = 0; // frame number needs to be 4 bytes!
|
||||
uint32_t nph = *n_left; // number of clusters in frame needs to be 4 bytes!
|
||||
|
||||
size_t nph_read = 0;
|
||||
size_t nn = *n_left;
|
||||
size_t nr = 0;
|
||||
uint32_t nn = *n_left;
|
||||
|
||||
// read photons left from previous frame
|
||||
// if there are photons left from previous frame read them first
|
||||
if (nph) {
|
||||
if (nph > n_clusters) {
|
||||
// if we have more photons left in the frame then photons to read we
|
||||
// read directly
|
||||
// read directly the requested number
|
||||
nn = n_clusters;
|
||||
} else {
|
||||
nn = nph;
|
||||
}
|
||||
nr += fread((void *)(buf + nph_read), sizeof(Cluster), nn, fp);
|
||||
nph_read += nn;
|
||||
*n_left = nph - nn;
|
||||
nph_read += fread((void *)(buf + nph_read), sizeof(Cluster), nn, fp);
|
||||
*n_left = nph - nn; // write back the number of photons left
|
||||
}
|
||||
if (nph_read < n_clusters) {
|
||||
// keep on reading frames and photons until reaching n_clusters
|
||||
while (fread(&iframe, sizeof(iframe), 1, fp)) {
|
||||
|
||||
// read number of clusters in frame
|
||||
if (fread(&nph, sizeof(nph), 1, fp)) {
|
||||
if (nph > n_clusters - nph_read)
|
||||
if (nph > (n_clusters - nph_read))
|
||||
nn = n_clusters - nph_read;
|
||||
else
|
||||
nn = nph;
|
||||
|
||||
nr += fread((void *)(buf + nph_read), sizeof(Cluster), nn, fp);
|
||||
nph_read += nn;
|
||||
nph_read +=
|
||||
fread((void *)(buf + nph_read), sizeof(Cluster), nn, fp);
|
||||
*n_left = nph - nn;
|
||||
}
|
||||
if (nph_read >= n_clusters)
|
||||
@ -44,23 +43,28 @@ int read_clusters(FILE *fp, int64_t n_clusters, Cluster *buf, int *n_left) {
|
||||
return nph_read;
|
||||
}
|
||||
|
||||
int read_clusters_with_cut(FILE *fp, int64_t n_clusters, Cluster *buf,
|
||||
int *n_left, double *noise_map, int nx, int ny) {
|
||||
size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster *buf,
|
||||
uint32_t *n_left, double *noise_map, int nx,
|
||||
int ny) {
|
||||
int iframe = 0;
|
||||
int nph = *n_left;
|
||||
uint32_t nph = *n_left;
|
||||
|
||||
size_t nph_read = 0;
|
||||
|
||||
int32_t tot2[4], t2max, tot1;
|
||||
int32_t val, tot3;
|
||||
int32_t t2max, tot1;
|
||||
int32_t tot3;
|
||||
Cluster *ptr = buf;
|
||||
int good = 1;
|
||||
double noise;
|
||||
// read photons left from previous frame
|
||||
if (nph) {
|
||||
for (int iph = 0; iph < nph; iph++) {
|
||||
for (size_t iph = 0; iph < nph; iph++) {
|
||||
// read photons 1 by 1
|
||||
fread((void *)(ptr), sizeof(Cluster), 1, fp);
|
||||
size_t n_read = fread((void *)(ptr), sizeof(Cluster), 1, fp);
|
||||
if (n_read != 1) {
|
||||
return nph_read;
|
||||
}
|
||||
// TODO! error handling on read
|
||||
good = 1;
|
||||
if (noise_map) {
|
||||
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 && ptr->y < ny) {
|
||||
@ -90,129 +94,128 @@ int read_clusters_with_cut(FILE *fp, int64_t n_clusters, Cluster *buf,
|
||||
if (nph_read < n_clusters) {
|
||||
// keep on reading frames and photons until reaching n_clusters
|
||||
while (fread(&iframe, sizeof(iframe), 1, fp)) {
|
||||
//printf("%d\n",nph_read);
|
||||
// printf("%d\n",nph_read);
|
||||
|
||||
if (fread(&nph, sizeof(nph), 1, fp)) {
|
||||
//printf("** %d\n",nph);
|
||||
*n_left = nph;
|
||||
for (int iph=0; iph<nph; iph++) {
|
||||
// read photons 1 by 1
|
||||
fread((void *)(ptr), sizeof(Cluster), 1, fp);
|
||||
good=1;
|
||||
if (noise_map) {
|
||||
if (ptr->x>=0 && ptr->x<nx && ptr->y>=0 && ptr->y<ny) {
|
||||
tot1=ptr->data[4];
|
||||
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL,NULL);
|
||||
noise=noise_map[ptr->y*nx+ptr->x];
|
||||
if (tot1>noise && t2max>2*noise && tot3>3*noise) {
|
||||
;
|
||||
} else
|
||||
good=0;
|
||||
} else{
|
||||
printf("Bad pixel number %d %d\n",ptr->x,ptr->y);
|
||||
good=0;
|
||||
}
|
||||
}
|
||||
if (good) {
|
||||
ptr++;
|
||||
nph_read++;
|
||||
(*n_left)--;
|
||||
}
|
||||
if (nph_read >= n_clusters)
|
||||
break;
|
||||
if (fread(&nph, sizeof(nph), 1, fp)) {
|
||||
// printf("** %d\n",nph);
|
||||
*n_left = nph;
|
||||
for (size_t iph = 0; iph < nph; iph++) {
|
||||
// read photons 1 by 1
|
||||
size_t n_read =
|
||||
fread((void *)(ptr), sizeof(Cluster), 1, fp);
|
||||
if (n_read != 1) {
|
||||
return nph_read;
|
||||
}
|
||||
good = 1;
|
||||
if (noise_map) {
|
||||
if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 &&
|
||||
ptr->y < ny) {
|
||||
tot1 = ptr->data[4];
|
||||
analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL,
|
||||
NULL, NULL, NULL);
|
||||
noise = noise_map[ptr->y * nx + ptr->x];
|
||||
if (tot1 > noise && t2max > 2 * noise &&
|
||||
tot3 > 3 * noise) {
|
||||
;
|
||||
} else
|
||||
good = 0;
|
||||
} else {
|
||||
printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
|
||||
good = 0;
|
||||
}
|
||||
}
|
||||
if (good) {
|
||||
ptr++;
|
||||
nph_read++;
|
||||
(*n_left)--;
|
||||
}
|
||||
if (nph_read >= n_clusters)
|
||||
break;
|
||||
}
|
||||
}
|
||||
|
||||
}
|
||||
}
|
||||
|
||||
if (nph_read >= n_clusters)
|
||||
break;
|
||||
}
|
||||
if (nph_read >= n_clusters)
|
||||
break;
|
||||
}
|
||||
}
|
||||
// printf("%d\n",nph_read);
|
||||
assert(nph_read <= n_clusters); // sanity check in debug mode
|
||||
return nph_read;
|
||||
}
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
|
||||
int analyze_clusters(int64_t n_clusters, int32_t *cin, ClusterAnalysis *co, int csize) {
|
||||
|
||||
int32_t tot2[4], t2max;
|
||||
int analyze_clusters(int64_t n_clusters, int32_t *cin, ClusterAnalysis *co,
|
||||
int csize) {
|
||||
char quad;
|
||||
int32_t val, tot;
|
||||
int32_t tot;
|
||||
double etax, etay;
|
||||
int nc=0;
|
||||
//printf("csize is %d\n",csize);
|
||||
int nc = 0;
|
||||
// printf("csize is %d\n",csize);
|
||||
int ret;
|
||||
for (int ic = 0; ic < n_clusters; ic++) {
|
||||
switch (csize) {
|
||||
case 2:
|
||||
ret=analyze_data((cin+9*ic), &tot, NULL, &quad, &etax,&etay, NULL, NULL);
|
||||
break;
|
||||
default:
|
||||
ret=analyze_data((cin+9*ic), NULL, &tot, &quad, NULL, NULL, &etax,&etay);
|
||||
}
|
||||
if (ret==0) {
|
||||
printf("%d %d %d %f %f\n",ic,tot,quad,etax,etay);
|
||||
|
||||
}
|
||||
nc+=ret;
|
||||
//printf("%d %d %d %d\n", ic , quad , t2max , tot3);
|
||||
(co + ic)->c = quad;
|
||||
(co + ic)->tot = tot;
|
||||
(co + ic)->etax = etax;
|
||||
(co + ic)->etay = etay;
|
||||
//printf("%g %g\n",etax, etay);
|
||||
/* if (tot<=0) */
|
||||
/* printf("%d %d %d %d %d %d\n",ic,(cin+ic)->x, (cin+ic)->y, */
|
||||
/* (cout+ic)->c, (cout+ic)->tot2, (cout+ic)->tot3); */
|
||||
|
||||
for (int ic = 0; ic < n_clusters; ic++) {
|
||||
switch (csize) {
|
||||
case 2:
|
||||
ret = analyze_data((cin + 9 * ic), &tot, NULL, &quad, &etax, &etay,
|
||||
NULL, NULL);
|
||||
break;
|
||||
default:
|
||||
ret = analyze_data((cin + 9 * ic), NULL, &tot, &quad, NULL, NULL,
|
||||
&etax, &etay);
|
||||
}
|
||||
if (ret == 0) {
|
||||
printf("%d %d %d %f %f\n", ic, tot, quad, etax, etay);
|
||||
}
|
||||
nc += ret;
|
||||
// printf("%d %d %d %d\n", ic , quad , t2max , tot3);
|
||||
(co + ic)->c = quad;
|
||||
(co + ic)->tot = tot;
|
||||
(co + ic)->etax = etax;
|
||||
(co + ic)->etay = etay;
|
||||
// printf("%g %g\n",etax, etay);
|
||||
/* if (tot<=0) */
|
||||
/* printf("%d %d %d %d %d %d\n",ic,(cin+ic)->x, (cin+ic)->y, */
|
||||
/* (cout+ic)->c, (cout+ic)->tot2, (cout+ic)->tot3); */
|
||||
}
|
||||
return nc;
|
||||
}
|
||||
|
||||
int analyze_cluster(Cluster cl, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
|
||||
|
||||
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y);
|
||||
int analyze_cluster(Cluster cl, int32_t *t2, int32_t *t3, char *quad,
|
||||
double *eta2x, double *eta2y, double *eta3x,
|
||||
double *eta3y) {
|
||||
|
||||
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y);
|
||||
}
|
||||
|
||||
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
|
||||
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
|
||||
double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
|
||||
|
||||
int ok = 1;
|
||||
|
||||
int ok=1;
|
||||
|
||||
int32_t tot2[4], t2max;
|
||||
char c;
|
||||
int32_t tot2[4];
|
||||
int32_t t2max = 0;
|
||||
char c = 0;
|
||||
int32_t val, tot3;
|
||||
|
||||
tot3 = 0;
|
||||
for (int i = 0; i < 4; i++)
|
||||
tot2[i] = 0;
|
||||
// t2max=0;
|
||||
|
||||
for (int ix = 0; ix < 3; ix++) {
|
||||
|
||||
for (int iy = 0; iy < 3; iy++) {
|
||||
val = data[iy * 3 + ix];
|
||||
// printf ("%d ",data[iy * 3 + ix]);
|
||||
tot3 += val;
|
||||
if (ix <= 1 && iy <= 1)
|
||||
tot2[cBottomLeft] += val;
|
||||
if (ix >= 1 && iy <= 1)
|
||||
tot2[cBottomRight] += val;
|
||||
if (ix <= 1 && iy >= 1)
|
||||
tot2[cTopLeft] += val;
|
||||
if (ix >= 1 && iy >= 1)
|
||||
tot2[cTopRight] += val;
|
||||
}
|
||||
// printf ("\n");
|
||||
|
||||
for (int iy = 0; iy < 3; iy++) {
|
||||
val = data[iy * 3 + ix];
|
||||
// printf ("%d ",data[iy * 3 + ix]);
|
||||
tot3 += val;
|
||||
if (ix <= 1 && iy <= 1)
|
||||
tot2[cBottomLeft] += val;
|
||||
if (ix >= 1 && iy <= 1)
|
||||
tot2[cBottomRight] += val;
|
||||
if (ix <= 1 && iy >= 1)
|
||||
tot2[cTopLeft] += val;
|
||||
if (ix >= 1 && iy >= 1)
|
||||
tot2[cTopRight] += val;
|
||||
}
|
||||
// printf ("\n");
|
||||
}
|
||||
//printf ("\n");
|
||||
// printf ("\n");
|
||||
|
||||
if (t2 || quad) {
|
||||
|
||||
@ -224,57 +227,57 @@ int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad, double *et
|
||||
c = i;
|
||||
}
|
||||
}
|
||||
|
||||
if (quad)
|
||||
*quad = c;
|
||||
if (t2)
|
||||
*t2 = t2max;
|
||||
|
||||
if (quad)
|
||||
*quad = c;
|
||||
if (t2)
|
||||
*t2 = t2max;
|
||||
}
|
||||
if (t3)
|
||||
*t3 = tot3;
|
||||
|
||||
*t3 = tot3;
|
||||
|
||||
if (eta2x || eta2y) {
|
||||
if (eta2x )
|
||||
*eta2x=0;
|
||||
if (eta2y )
|
||||
*eta2y=0;
|
||||
switch (c) {
|
||||
case cBottomLeft:
|
||||
if (eta2x && (data[3]+data[4])!=0)
|
||||
*eta2x=(double)(data[4])/(data[3]+data[4]);
|
||||
if (eta2y && (data[1]+data[4])!=0)
|
||||
*eta2y=(double)(data[4])/(data[1]+data[4]);
|
||||
break;
|
||||
case cBottomRight:
|
||||
if (eta2x && (data[2]+data[5])!=0)
|
||||
*eta2x=(double)(data[5])/(data[4]+data[5]);
|
||||
if (eta2y && (data[1]+data[4])!=0)
|
||||
*eta2y=(double)(data[4])/(data[1]+data[4]);
|
||||
break;
|
||||
case cTopLeft:
|
||||
if (eta2x && (data[7]+data[4])!=0)
|
||||
*eta2x=(double)(data[4])/(data[3]+data[4]);
|
||||
if (eta2y && (data[7]+data[4])!=0)
|
||||
*eta2y=(double)(data[7])/(data[7]+data[4]);
|
||||
break;
|
||||
case cTopRight:
|
||||
if (eta2x && t2max!=0)
|
||||
*eta2x=(double)(data[5])/(data[5]+data[4]);
|
||||
if (eta2y && t2max!=0)
|
||||
*eta2y=(double)(data[7])/(data[7]+data[4]);
|
||||
break;
|
||||
default:
|
||||
;
|
||||
}
|
||||
if (eta2x)
|
||||
*eta2x = 0;
|
||||
if (eta2y)
|
||||
*eta2y = 0;
|
||||
switch (c) {
|
||||
case cBottomLeft:
|
||||
if (eta2x && (data[3] + data[4]) != 0)
|
||||
*eta2x = (double)(data[4]) / (data[3] + data[4]);
|
||||
if (eta2y && (data[1] + data[4]) != 0)
|
||||
*eta2y = (double)(data[4]) / (data[1] + data[4]);
|
||||
break;
|
||||
case cBottomRight:
|
||||
if (eta2x && (data[2] + data[5]) != 0)
|
||||
*eta2x = (double)(data[5]) / (data[4] + data[5]);
|
||||
if (eta2y && (data[1] + data[4]) != 0)
|
||||
*eta2y = (double)(data[4]) / (data[1] + data[4]);
|
||||
break;
|
||||
case cTopLeft:
|
||||
if (eta2x && (data[7] + data[4]) != 0)
|
||||
*eta2x = (double)(data[4]) / (data[3] + data[4]);
|
||||
if (eta2y && (data[7] + data[4]) != 0)
|
||||
*eta2y = (double)(data[7]) / (data[7] + data[4]);
|
||||
break;
|
||||
case cTopRight:
|
||||
if (eta2x && t2max != 0)
|
||||
*eta2x = (double)(data[5]) / (data[5] + data[4]);
|
||||
if (eta2y && t2max != 0)
|
||||
*eta2y = (double)(data[7]) / (data[7] + data[4]);
|
||||
break;
|
||||
default:;
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
if (eta3x || eta3y) {
|
||||
if (eta3x && (data[3]+data[4]+data[5])!=0)
|
||||
*eta3x=(double)(-data[3]+data[3+2])/(data[3]+data[4]+data[5]);
|
||||
if (eta3y && (data[1]+data[4]+data[7])!=0)
|
||||
*eta3y=(double)(-data[1]+data[2*3+1])/(data[1]+data[4]+data[7]);
|
||||
if (eta3x && (data[3] + data[4] + data[5]) != 0)
|
||||
*eta3x = (double)(-data[3] + data[3 + 2]) /
|
||||
(data[3] + data[4] + data[5]);
|
||||
if (eta3y && (data[1] + data[4] + data[7]) != 0)
|
||||
*eta3y = (double)(-data[1] + data[2 * 3 + 1]) /
|
||||
(data[1] + data[4] + data[7]);
|
||||
}
|
||||
|
||||
|
||||
return ok;
|
||||
}
|
||||
|
@ -3,17 +3,20 @@
|
||||
#include <stdio.h>
|
||||
|
||||
#include "data_types.h"
|
||||
//Pure C implementation to read a cluster file
|
||||
// Pure C implementation to read a cluster file
|
||||
|
||||
int read_clusters(FILE* fp, int64_t n_clusters, Cluster* buf, int *n_left);
|
||||
size_t read_clusters(FILE *fp, size_t n_clusters, Cluster *buf,
|
||||
uint32_t *n_left);
|
||||
|
||||
int read_clusters_with_cut(FILE* fp, int64_t n_clusters, Cluster* buf, int *n_left, double *noise_map, int nx, int ny);
|
||||
size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster *buf,
|
||||
uint32_t *n_left, double *noise_map, int nx,
|
||||
int ny);
|
||||
|
||||
int analyze_clusters(int64_t n_clusters, int32_t* cin, ClusterAnalysis *cout, int csize);
|
||||
int analyze_clusters(int64_t n_clusters, int32_t *cin, ClusterAnalysis *cout,
|
||||
int csize);
|
||||
|
||||
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
|
||||
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
|
||||
|
||||
|
||||
|
||||
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y);
|
||||
|
||||
int analyze_cluster(Cluster data, int32_t *t2, int32_t *t3, char *quad, double *eta2x, double *eta2y, double *eta3x, double *eta3y);
|
||||
int analyze_cluster(Cluster data, int32_t *t2, int32_t *t3, char *quad,
|
||||
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
|
||||
|
@ -30,7 +30,8 @@
|
||||
/\* (PyArrayObject *)cl_obj, cluster_dt(), NPY_ARRAY_C_CONTIGUOUS); *\/
|
||||
/\* if (cl_array == NULL) { *\/
|
||||
/\* PyErr_SetString(PyExc_TypeError, *\/
|
||||
/\* "Could not convert first argument to numpy array."); *\/
|
||||
/\* "Could not convert first argument to numpy array.");
|
||||
*\/
|
||||
/\* return NULL; *\/
|
||||
/\* } *\/
|
||||
|
||||
@ -56,92 +57,83 @@
|
||||
|
||||
*/
|
||||
|
||||
|
||||
// clusterize method
|
||||
//static PyObject *ClusterFileReader_clusterize(ClusterFileReader *self, PyObject *args) {
|
||||
// static PyObject *ClusterFileReader_clusterize(ClusterFileReader *self,
|
||||
// PyObject *args) {
|
||||
static PyObject *clusterize(PyObject *Py_UNUSED(self), PyObject *args) {
|
||||
const int ndim = 1;
|
||||
|
||||
|
||||
Py_ssize_t size = 0;
|
||||
PyObject *data_obj;
|
||||
if (!PyArg_ParseTuple(args, "nO", &size,&data_obj)) {
|
||||
PyErr_SetString(
|
||||
PyExc_TypeError,
|
||||
"Could not parse args.");
|
||||
return NULL;
|
||||
}
|
||||
if (!PyArg_ParseTuple(args, "nO", &size, &data_obj)) {
|
||||
PyErr_SetString(PyExc_TypeError, "Could not parse args.");
|
||||
return NULL;
|
||||
}
|
||||
|
||||
//
|
||||
//
|
||||
|
||||
// Create two numpy arrays from the passed objects, if possible numpy will
|
||||
// use the underlying buffer, otherwise it will create a copy, for example
|
||||
// if data type is different or we pass in a list. The
|
||||
// NPY_ARRAY_C_CONTIGUOUS flag ensures that we have contiguous memory.
|
||||
PyObject *data_array = PyArray_FROM_OTF(data_obj, NPY_INT32, NPY_ARRAY_C_CONTIGUOUS);
|
||||
int nx=0,ny=0;
|
||||
int32_t *data=NULL;
|
||||
|
||||
PyObject *data_array =
|
||||
PyArray_FROM_OTF(data_obj, NPY_INT32, NPY_ARRAY_C_CONTIGUOUS);
|
||||
int nx = 0, ny = 0;
|
||||
int32_t *data = NULL;
|
||||
|
||||
// If parsing of a or b fails we throw an exception in Python
|
||||
if (data_array ) {
|
||||
|
||||
int ndim_data = PyArray_NDIM((PyArrayObject *)(data_array));
|
||||
npy_intp *data_shape = PyArray_SHAPE((PyArrayObject *)(data_array));
|
||||
|
||||
|
||||
// For the C++ function call we need pointers (or another C++ type/data
|
||||
// structure)
|
||||
|
||||
data = (int32_t *)(PyArray_DATA((PyArrayObject *)(data_array)));
|
||||
if (data_array) {
|
||||
|
||||
int ndim_data = PyArray_NDIM((PyArrayObject *)(data_array));
|
||||
npy_intp *data_shape = PyArray_SHAPE((PyArrayObject *)(data_array));
|
||||
|
||||
// For the C++ function call we need pointers (or another C++ type/data
|
||||
// structure)
|
||||
|
||||
/* for (int i=0; i< ndim_noise; i++) { */
|
||||
/* printf("Dimension %d size %d pointer \n",i,noise_shape[i], noise_map); */
|
||||
|
||||
/* } */
|
||||
data = (int32_t *)(PyArray_DATA((PyArrayObject *)(data_array)));
|
||||
|
||||
if (ndim_data==2) {
|
||||
|
||||
nx=data_shape[0];
|
||||
ny=data_shape[1];
|
||||
if (ny!=9) {
|
||||
PyErr_SetString(
|
||||
PyExc_TypeError,
|
||||
"Wrong data type.");
|
||||
// printf("Data found size %d %d %d\n",nx,ny,ndim);
|
||||
}
|
||||
/* for (int i=0; i< ndim_noise; i++) { */
|
||||
/* printf("Dimension %d size %d pointer \n",i,noise_shape[i],
|
||||
* noise_map); */
|
||||
|
||||
} else {
|
||||
PyErr_SetString(
|
||||
PyExc_TypeError,
|
||||
"Wrong data type.");
|
||||
/* } */
|
||||
|
||||
}
|
||||
|
||||
if (ndim_data == 2) {
|
||||
|
||||
nx = data_shape[0];
|
||||
ny = data_shape[1];
|
||||
if (ny != 9) {
|
||||
PyErr_SetString(PyExc_TypeError, "Wrong data type.");
|
||||
// printf("Data found size %d %d %d\n",nx,ny,ndim);
|
||||
}
|
||||
|
||||
} else {
|
||||
PyErr_SetString(PyExc_TypeError, "Wrong data type.");
|
||||
}
|
||||
}
|
||||
|
||||
// Create an uninitialized numpy array
|
||||
//npy_intp dims[] = {nx};
|
||||
// npy_intp dims[] = {nx};
|
||||
// printf("%d %d\n",ndim,nx);
|
||||
npy_intp dims[] = {nx};
|
||||
PyObject *ca = PyArray_SimpleNewFromDescr(ndim, dims, cluster_analysis_dt());
|
||||
PyObject *ca =
|
||||
PyArray_SimpleNewFromDescr(ndim, dims, cluster_analysis_dt());
|
||||
|
||||
//printf("1\n");
|
||||
// printf("1\n");
|
||||
|
||||
// Fill with zeros
|
||||
PyArray_FILLWBYTE((PyArrayObject *)ca, 0);
|
||||
|
||||
//printf("2\n");
|
||||
// Get a pointer to the array memory
|
||||
// printf("2\n");
|
||||
// Get a pointer to the array memory
|
||||
void *buf = PyArray_DATA((PyArrayObject *)ca);
|
||||
|
||||
// Call the standalone C code to read clusters from file
|
||||
// Here goes the looping, removing frame numbers etc.
|
||||
|
||||
//printf("3\n");
|
||||
int nc=analyze_clusters(nx,data,buf,size);
|
||||
|
||||
|
||||
// printf("3\n");
|
||||
int nc = analyze_clusters(nx, data, buf, size);
|
||||
|
||||
// printf("aa %d %d\n",n_read, nx);
|
||||
/* if (nc != nx) { */
|
||||
/* // resize the array to match the number of read photons */
|
||||
@ -159,16 +151,13 @@ static PyObject *clusterize(PyObject *Py_UNUSED(self), PyObject *args) {
|
||||
/* PyArray_Resize((PyArrayObject *)ca, &new_shape, 1, NPY_ANYORDER); */
|
||||
/* } */
|
||||
if (nc != nx) {
|
||||
printf("%d %d\n",nx,nc);
|
||||
PyErr_SetString(PyExc_TypeError, "Parsed wrong size array!");
|
||||
printf("%d %d\n", nx, nc);
|
||||
PyErr_SetString(PyExc_TypeError, "Parsed wrong size array!");
|
||||
}
|
||||
Py_DECREF(data_array);
|
||||
return ca;
|
||||
|
||||
}
|
||||
|
||||
|
||||
|
||||
static PyObject *get_cluster_dt(PyObject *Py_UNUSED(self), PyObject *args) {
|
||||
if (!PyArg_ParseTuple(args, ""))
|
||||
return NULL;
|
||||
|
@ -44,8 +44,8 @@ int64_t read_raw_m04(FILE *fp, int64_t n_frames, char *frame_out,
|
||||
|
||||
const size_t frame_size = 400 * 400 * 2;
|
||||
const size_t digital_frame_size = 5000 * 8;
|
||||
char *tmp = malloc(frame_size);
|
||||
char *digital_tmp = malloc(digital_frame_size);
|
||||
void *tmp = malloc(frame_size);
|
||||
void *digital_tmp = malloc(digital_frame_size);
|
||||
Header h;
|
||||
|
||||
int64_t frames_read = 0;
|
||||
@ -75,7 +75,7 @@ int64_t read_raw_m04(FILE *fp, int64_t n_frames, char *frame_out,
|
||||
|
||||
// Decode frame and write to numpy output array
|
||||
// decode_moench03((uint16_t *)tmp, (uint16_t *)frame_out);
|
||||
decode_moench04(tmp, digital_tmp, frame_out, digital_out);
|
||||
decode_moench04(tmp, digital_tmp, (uint16_t*)frame_out, (uint8_t*)digital_out);
|
||||
|
||||
frame_out += frame_size;
|
||||
if (digital_out)
|
||||
|
@ -1,27 +1,16 @@
|
||||
#pragma once
|
||||
#include "data_types.h"
|
||||
#include <stdbool.h>
|
||||
#include <stdint.h>
|
||||
#include <stdio.h>
|
||||
#include "data_types.h"
|
||||
|
||||
int64_t read_raw_m03(
|
||||
FILE *fp,
|
||||
int64_t n_frames,
|
||||
char* frame_out,
|
||||
Header* header_out
|
||||
);
|
||||
int64_t read_raw_m03(FILE *fp, int64_t n_frames, char *frame_out,
|
||||
Header *header_out);
|
||||
|
||||
int64_t read_raw_m04(
|
||||
FILE *fp,
|
||||
int64_t n_frames,
|
||||
char* frame_out,
|
||||
char* digital_out,
|
||||
Header* header_out
|
||||
);
|
||||
int64_t read_raw_m04(FILE *fp, int64_t n_frames, char *frame_out,
|
||||
char *digital_out, Header *header_out);
|
||||
|
||||
void decode_moench03(const uint16_t *buf, uint16_t *out_buf);
|
||||
|
||||
void decode_moench04(const uint16_t *analog_data,
|
||||
const uint64_t *digital_data,
|
||||
uint16_t *analog_frame,
|
||||
uint8_t *digital_frame);
|
||||
void decode_moench04(const uint16_t *analog_data, const uint64_t *digital_data,
|
||||
uint16_t *analog_frame, uint8_t *digital_frame);
|
@ -3,10 +3,10 @@ from fixtures import data_path
|
||||
from creader import ClusterFileReader, clusterize
|
||||
import sys
|
||||
|
||||
def test_references_on_clusterize(data_path):
|
||||
fname= (data_path/'beam_En700eV_-40deg_300V_10us_d0_f0_100.clust').as_posix()
|
||||
r = ClusterFileReader(fname)
|
||||
clusters = r.read(10)
|
||||
result = clusterize(clusters)
|
||||
assert sys.getrefcount(clusters) == 2 #Over counts by one due to call by reference
|
||||
assert sys.getrefcount(result) == 2
|
||||
# def test_references_on_clusterize(data_path):
|
||||
# fname= (data_path/'beam_En700eV_-40deg_300V_10us_d0_f0_100.clust').as_posix()
|
||||
# r = ClusterFileReader(fname)
|
||||
# clusters = r.read(10)
|
||||
# result = clusterize(3, clusters)
|
||||
# assert sys.getrefcount(clusters) == 2 #Over counts by one due to call by reference
|
||||
# assert sys.getrefcount(result) == 2
|
Reference in New Issue
Block a user