Files
aare/python/tests/test_calibration.py
Erik Fröjdh abae2674a9 Apply calibration to Jungfrau raw data (#216)
- Added function to read calibration file
- Multi threaded pedestal subtraction and application of the calibration
2025-07-18 10:19:14 +02:00

44 lines
1.2 KiB
Python

import pytest
import numpy as np
from aare import apply_calibration
def test_apply_calibration_small_data():
# The raw data consists of 10 4x5 images
raw = np.zeros((10, 4, 5), dtype=np.uint16)
# We need a pedestal for each gain, so 3
pedestal = np.zeros((3, 4, 5), dtype=np.float32)
# And the same for calibration
calibration = np.ones((3, 4, 5), dtype=np.float32)
# Set the known values, probing one pixel in each gain
raw[0, 0, 0] = 100 #ADC value of 100, gain 0
pedestal[0, 0, 0] = 10
calibration[0, 0, 0] = 43.7
raw[2, 3, 3] = (1<<14) + 1000 #ADC value of 1000, gain 1
pedestal[1, 3, 3] = 500
calibration[1, 3, 3] = 2.0
raw[1,1,4] = (3<<14) + 857 #ADC value of 857, gain 2
pedestal[2,1,4] = 100
calibration[2,1,4] = 3.0
data = apply_calibration(raw, pd = pedestal, cal = calibration)
# The formula that is applied is:
# calibrated = (raw - pedestal) / calibration
assert data.shape == (10, 4, 5)
assert data[0, 0, 0] == (100 - 10) / 43.7
assert data[2, 3, 3] == (1000 - 500) / 2.0
assert data[1, 1, 4] == (857 - 100) / 3.0
# Other pixels should be zero
assert data[2,2,2] == 0
assert data[0,1,1] == 0
assert data[1,3,0] == 0