import pytest import numpy as np from aare import apply_calibration def test_apply_calibration_small_data(): # The raw data consists of 10 4x5 images raw = np.zeros((10, 4, 5), dtype=np.uint16) # We need a pedestal for each gain, so 3 pedestal = np.zeros((3, 4, 5), dtype=np.float32) # And the same for calibration calibration = np.ones((3, 4, 5), dtype=np.float32) # Set the known values, probing one pixel in each gain raw[0, 0, 0] = 100 #ADC value of 100, gain 0 pedestal[0, 0, 0] = 10 calibration[0, 0, 0] = 43.7 raw[2, 3, 3] = (1<<14) + 1000 #ADC value of 1000, gain 1 pedestal[1, 3, 3] = 500 calibration[1, 3, 3] = 2.0 raw[1,1,4] = (3<<14) + 857 #ADC value of 857, gain 2 pedestal[2,1,4] = 100 calibration[2,1,4] = 3.0 data = apply_calibration(raw, pd = pedestal, cal = calibration) # The formula that is applied is: # calibrated = (raw - pedestal) / calibration assert data.shape == (10, 4, 5) assert data[0, 0, 0] == (100 - 10) / 43.7 assert data[2, 3, 3] == (1000 - 500) / 2.0 assert data[1, 1, 4] == (857 - 100) / 3.0 # Other pixels should be zero assert data[2,2,2] == 0 assert data[0,1,1] == 0 assert data[1,3,0] == 0