3 Commits

Author SHA1 Message Date
fd0196f2fd Developer (#164)
All checks were successful
Build on RHEL9 / build (push) Successful in 1m58s
Build on RHEL8 / build (push) Successful in 2m22s
- State before merging the new cluster vector API

---------

Co-authored-by: Patrick <patrick.sieberer@psi.ch>
Co-authored-by: JulianHeymes <julian.heymes@psi.ch>
Co-authored-by: Dhanya Thattil <dhanya.thattil@psi.ch>
Co-authored-by: Xiangyu Xie <45243914+xiangyuxie@users.noreply.github.com>
Co-authored-by: xiangyu.xie <xiangyu.xie@psi.ch>
Co-authored-by: siebsi <sieb.patr@gmail.com>
2025-04-22 16:41:48 +02:00
e1533282f1 Cluster cuts (#146)
Some checks failed
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Failing after 43s
Co-authored-by: Patrick <patrick.sieberer@psi.ch>
Co-authored-by: JulianHeymes <julian.heymes@psi.ch>
Co-authored-by: Dhanya Thattil <dhanya.thattil@psi.ch>
Co-authored-by: Xiangyu Xie <45243914+xiangyuxie@users.noreply.github.com>
Co-authored-by: xiangyu.xie <xiangyu.xie@psi.ch>
2025-04-01 15:15:54 +02:00
5d8ad27b21 Developer (#138)
All checks were successful
Build the package using cmake then documentation / build (ubuntu-latest, 3.12) (push) Successful in 1m45s
- Fully functioning variable size cluster finder
- Added interpolation
- Bit reordering for ADC SAR 05

---------

Co-authored-by: Patrick <patrick.sieberer@psi.ch>
Co-authored-by: JulianHeymes <julian.heymes@psi.ch>
Co-authored-by: Dhanya Thattil <dhanya.thattil@psi.ch>
Co-authored-by: xiangyu.xie <xiangyu.xie@psi.ch>
2025-03-20 12:52:04 +01:00
66 changed files with 2750 additions and 469 deletions

42
.clang-tidy Normal file
View File

@ -0,0 +1,42 @@
---
Checks: '*,
-altera-*,
-android-cloexec-fopen,
-cppcoreguidelines-pro-bounds-array-to-pointer-decay,
-cppcoreguidelines-pro-bounds-pointer-arithmetic,
-fuchsia*,
-readability-else-after-return,
-readability-avoid-const-params-in-decls,
-readability-identifier-length,
-cppcoreguidelines-pro-bounds-constant-array-index,
-cppcoreguidelines-pro-type-reinterpret-cast,
-llvm-header-guard,
-modernize-use-nodiscard,
-misc-non-private-member-variables-in-classes,
-readability-static-accessed-through-instance,
-readability-braces-around-statements,
-readability-isolate-declaration,
-readability-implicit-bool-conversion,
-readability-identifier-length,
-readability-identifier-naming,
-hicpp-signed-bitwise,
-hicpp-no-array-decay,
-hicpp-braces-around-statements,
-google-runtime-references,
-google-readability-todo,
-google-readability-braces-around-statements,
-modernize-use-trailing-return-type,
-llvmlibc-*'
HeaderFilterRegex: \.hpp
FormatStyle: none
CheckOptions:
- { key: readability-identifier-naming.NamespaceCase, value: lower_case }
# - { key: readability-identifier-naming.FunctionCase, value: lower_case }
- { key: readability-identifier-naming.ClassCase, value: CamelCase }
# - { key: readability-identifier-naming.MethodCase, value: CamelCase }
# - { key: readability-identifier-naming.StructCase, value: CamelCase }
# - { key: readability-identifier-naming.VariableCase, value: lower_case }
- { key: readability-identifier-naming.GlobalConstantCase, value: UPPER_CASE }
...

View File

@ -0,0 +1,58 @@
name: Build the package using cmake then documentation
on:
workflow_dispatch:
permissions:
contents: read
pages: write
id-token: write
jobs:
build:
strategy:
fail-fast: false
matrix:
platform: [ubuntu-latest, ]
python-version: ["3.12", ]
runs-on: ${{ matrix.platform }}
defaults:
run:
shell: "bash -l {0}"
steps:
- uses: actions/checkout@v4
- name: Setup dev env
run: |
sudo apt-get update
sudo apt-get -y install cmake gcc g++
- name: Get conda
uses: conda-incubator/setup-miniconda@v3
with:
python-version: ${{ matrix.python-version }}
environment-file: etc/dev-env.yml
miniforge-version: latest
channels: conda-forge
conda-remove-defaults: "true"
- name: Build library
run: |
mkdir build
cd build
cmake .. -DAARE_SYSTEM_LIBRARIES=ON -DAARE_DOCS=ON
make -j 2
make docs

View File

@ -0,0 +1,36 @@
name: Build on RHEL8
on:
push:
workflow_dispatch:
permissions:
contents: read
jobs:
build:
runs-on: "ubuntu-latest"
container:
image: gitea.psi.ch/images/rhel8-developer-gitea-actions
steps:
# workaround until actions/checkout@v4 is available for RH8
# - uses: actions/checkout@v4
- name: Clone repository
run: |
echo Cloning ${{ github.ref_name }}
git clone https://${{secrets.GITHUB_TOKEN}}@gitea.psi.ch/${{ github.repository }}.git --branch=${{ github.ref_name }} .
- name: Install dependencies
run: |
dnf install -y cmake python3.12 python3.12-devel python3.12-pip
- name: Build library
run: |
mkdir build && cd build
cmake .. -DAARE_PYTHON_BINDINGS=ON -DAARE_TESTS=ON -DPython_FIND_VIRTUALENV=FIRST
make -j 2
- name: C++ unit tests
working-directory: ${{gitea.workspace}}/build
run: ctest

View File

@ -0,0 +1,31 @@
name: Build on RHEL9
on:
push:
workflow_dispatch:
permissions:
contents: read
jobs:
build:
runs-on: "ubuntu-latest"
container:
image: gitea.psi.ch/images/rhel9-developer-gitea-actions
steps:
- uses: actions/checkout@v4
- name: Install dependencies
run: |
dnf install -y cmake python3.12 python3.12-devel python3.12-pip
- name: Build library
run: |
mkdir build && cd build
cmake .. -DAARE_PYTHON_BINDINGS=ON -DAARE_TESTS=ON
make -j 2
- name: C++ unit tests
working-directory: ${{gitea.workspace}}/build
run: ctest

View File

@ -5,7 +5,6 @@ on:
push:
permissions:
contents: read
pages: write
@ -16,12 +15,11 @@ jobs:
strategy:
fail-fast: false
matrix:
platform: [ubuntu-latest, ] # macos-12, windows-2019]
platform: [ubuntu-latest, ]
python-version: ["3.12",]
runs-on: ${{ matrix.platform }}
# The setup-miniconda action needs this to activate miniconda
defaults:
run:
shell: "bash -l {0}"
@ -30,13 +28,13 @@ jobs:
- uses: actions/checkout@v4
- name: Get conda
uses: conda-incubator/setup-miniconda@v3.0.4
uses: conda-incubator/setup-miniconda@v3
with:
python-version: ${{ matrix.python-version }}
environment-file: etc/dev-env.yml
miniforge-version: latest
channels: conda-forge
- name: Prepare
run: conda install doxygen sphinx=7.1.2 breathe pybind11 sphinx_rtd_theme furo nlohmann_json zeromq fmt numpy
conda-remove-defaults: "true"
- name: Build library
run: |

64
.github/workflows/build_wheel.yml vendored Normal file
View File

@ -0,0 +1,64 @@
name: Build wheel
on:
workflow_dispatch:
pull_request:
push:
branches:
- main
release:
types:
- published
jobs:
build_wheels:
name: Build wheels on ${{ matrix.os }}
runs-on: ${{ matrix.os }}
strategy:
matrix:
os: [ubuntu-latest,]
steps:
- uses: actions/checkout@v4
- name: Build wheels
run: pipx run cibuildwheel==2.23.0
- uses: actions/upload-artifact@v4
with:
name: cibw-wheels-${{ matrix.os }}-${{ strategy.job-index }}
path: ./wheelhouse/*.whl
build_sdist:
name: Build source distribution
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v4
- name: Build sdist
run: pipx run build --sdist
- uses: actions/upload-artifact@v4
with:
name: cibw-sdist
path: dist/*.tar.gz
upload_pypi:
needs: [build_wheels, build_sdist]
runs-on: ubuntu-latest
environment: pypi
permissions:
id-token: write
if: github.event_name == 'release' && github.event.action == 'published'
# or, alternatively, upload to PyPI on every tag starting with 'v' (remove on: release above to use this)
# if: github.event_name == 'push' && startsWith(github.ref, 'refs/tags/v')
steps:
- uses: actions/download-artifact@v4
with:
# unpacks all CIBW artifacts into dist/
pattern: cibw-*
path: dist
merge-multiple: true
- uses: pypa/gh-action-pypi-publish@release/v1

3
.gitignore vendored
View File

@ -17,7 +17,8 @@ Testing/
ctbDict.cpp
ctbDict.h
wheelhouse/
dist/
*.pyc
*/__pycache__/*

View File

@ -1,4 +1,4 @@
cmake_minimum_required(VERSION 3.14)
cmake_minimum_required(VERSION 3.15)
project(aare
VERSION 1.0.0
@ -11,6 +11,14 @@ set(CMAKE_CXX_STANDARD 17)
set(CMAKE_CXX_STANDARD_REQUIRED ON)
set(CMAKE_CXX_EXTENSIONS OFF)
execute_process(
COMMAND git log -1 --format=%h
WORKING_DIRECTORY ${CMAKE_CURRENT_LIST_DIR}
OUTPUT_VARIABLE GIT_HASH
OUTPUT_STRIP_TRAILING_WHITESPACE
)
message(STATUS "Building from git hash: ${GIT_HASH}")
if (${CMAKE_VERSION} VERSION_GREATER "3.24")
cmake_policy(SET CMP0135 NEW) #Fetch content download timestamp
endif()
@ -60,6 +68,8 @@ if(AARE_SYSTEM_LIBRARIES)
set(AARE_FETCH_CATCH OFF CACHE BOOL "Disabled FetchContent for catch2" FORCE)
set(AARE_FETCH_JSON OFF CACHE BOOL "Disabled FetchContent for nlohmann::json" FORCE)
set(AARE_FETCH_ZMQ OFF CACHE BOOL "Disabled FetchContent for libzmq" FORCE)
# Still fetch lmfit when setting AARE_SYSTEM_LIBRARIES since this is not available
# on conda-forge
endif()
if(AARE_VERBOSE)
@ -78,15 +88,31 @@ endif()
set(CMAKE_EXPORT_COMPILE_COMMANDS ON)
if(AARE_FETCH_LMFIT)
set(lmfit_patch git apply ${CMAKE_CURRENT_SOURCE_DIR}/patches/lmfit.patch)
FetchContent_Declare(
lmfit
GIT_REPOSITORY https://jugit.fz-juelich.de/mlz/lmfit.git
GIT_TAG main
PATCH_COMMAND ${lmfit_patch}
UPDATE_DISCONNECTED 1
EXCLUDE_FROM_ALL 1
)
#TODO! Should we fetch lmfit from the web or inlcude a tar.gz in the repo?
set(LMFIT_PATCH_COMMAND git apply ${CMAKE_CURRENT_SOURCE_DIR}/patches/lmfit.patch)
# For cmake < 3.28 we can't supply EXCLUDE_FROM_ALL to FetchContent_Declare
# so we need this workaround
if (${CMAKE_VERSION} VERSION_LESS "3.28")
FetchContent_Declare(
lmfit
GIT_REPOSITORY https://jugit.fz-juelich.de/mlz/lmfit.git
GIT_TAG main
PATCH_COMMAND ${LMFIT_PATCH_COMMAND}
UPDATE_DISCONNECTED 1
)
else()
FetchContent_Declare(
lmfit
GIT_REPOSITORY https://jugit.fz-juelich.de/mlz/lmfit.git
GIT_TAG main
PATCH_COMMAND ${LMFIT_PATCH_COMMAND}
UPDATE_DISCONNECTED 1
EXCLUDE_FROM_ALL 1
)
endif()
#Disable what we don't need from lmfit
set(BUILD_TESTING OFF CACHE BOOL "")
set(LMFIT_CPPTEST OFF CACHE BOOL "")
@ -94,8 +120,15 @@ if(AARE_FETCH_LMFIT)
set(LMFIT_CPPTEST OFF CACHE BOOL "")
set(BUILD_SHARED_LIBS OFF CACHE BOOL "")
if (${CMAKE_VERSION} VERSION_LESS "3.28")
if(NOT lmfit_POPULATED)
FetchContent_Populate(lmfit)
add_subdirectory(${lmfit_SOURCE_DIR} ${lmfit_BINARY_DIR} EXCLUDE_FROM_ALL)
endif()
else()
FetchContent_MakeAvailable(lmfit)
endif()
FetchContent_MakeAvailable(lmfit)
set_property(TARGET lmfit PROPERTY POSITION_INDEPENDENT_CODE ON)
else()
find_package(lmfit REQUIRED)
@ -108,10 +141,13 @@ if(AARE_FETCH_ZMQ)
if (${CMAKE_VERSION} VERSION_GREATER_EQUAL "3.30")
cmake_policy(SET CMP0169 OLD)
endif()
set(ZMQ_PATCH_COMMAND git apply ${CMAKE_CURRENT_SOURCE_DIR}/patches/libzmq_cmake_version.patch)
FetchContent_Declare(
libzmq
GIT_REPOSITORY https://github.com/zeromq/libzmq.git
GIT_TAG v4.3.4
PATCH_COMMAND ${ZMQ_PATCH_COMMAND}
UPDATE_DISCONNECTED 1
)
# Disable unwanted options from libzmq
set(BUILD_TESTS OFF CACHE BOOL "Switch off libzmq test build")
@ -314,8 +350,10 @@ set(PUBLICHEADERS
include/aare/File.hpp
include/aare/Fit.hpp
include/aare/FileInterface.hpp
include/aare/FilePtr.hpp
include/aare/Frame.hpp
include/aare/geo_helpers.hpp
include/aare/JungfrauDataFile.hpp
include/aare/NDArray.hpp
include/aare/NDView.hpp
include/aare/NumpyFile.hpp
@ -339,15 +377,20 @@ set(SourceFiles
${CMAKE_CURRENT_SOURCE_DIR}/src/decode.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Frame.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/File.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/FilePtr.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Fit.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/geo_helpers.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/JungfrauDataFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyHelpers.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Interpolator.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/PixelMap.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawSubFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawMasterFile.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/task.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/utils/ifstream_helpers.cpp
)
@ -382,7 +425,9 @@ endif()
if(AARE_TESTS)
set(TestSources
${CMAKE_CURRENT_SOURCE_DIR}/src/algorithm.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/defs.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/decode.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Dtype.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Frame.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/geo_helpers.test.cpp
@ -391,7 +436,9 @@ if(AARE_TESTS)
${CMAKE_CURRENT_SOURCE_DIR}/src/NDView.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFinder.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterVector.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/ClusterFile.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/Pedestal.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/JungfrauDataFile.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyFile.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/NumpyHelpers.test.cpp
${CMAKE_CURRENT_SOURCE_DIR}/src/RawFile.test.cpp

View File

@ -1,6 +1,9 @@
package:
name: aare
version: 2025.2.18 #TODO! how to not duplicate this?
version: 2025.4.22 #TODO! how to not duplicate this?
@ -36,6 +39,7 @@ requirements:
run:
- python {{python}}
- numpy {{ numpy }}
- matplotlib
test:

View File

@ -0,0 +1,25 @@
JungfrauDataFile
==================
JungfrauDataFile is a class to read the .dat files that are produced by Aldo's receiver.
It is mostly used for calibration.
The structure of the file is:
* JungfrauDataHeader
* Binary data (256x256, 256x1024 or 512x1024)
* JungfrauDataHeader
* ...
There is no metadata indicating number of frames or the size of the image, but this
will be infered by this reader.
.. doxygenstruct:: aare::JungfrauDataHeader
:members:
:undoc-members:
:private-members:
.. doxygenclass:: aare::JungfrauDataFile
:members:
:undoc-members:
:private-members:

47
docs/src/Tests.rst Normal file
View File

@ -0,0 +1,47 @@
****************
Tests
****************
We test the code both from the C++ and Python API. By default only tests that does not require image data is run.
C++
~~~~~~~~~~~~~~~~~~
.. code-block:: bash
mkdir build
cd build
cmake .. -DAARE_TESTS=ON
make -j 4
export AARE_TEST_DATA=/path/to/test/data
./run_test [.files] #or using ctest, [.files] is the option to include tests needing data
Python
~~~~~~~~~~~~~~~~~~
.. code-block:: bash
#From the root dir of the library
python -m pytest python/tests --files # passing --files will run the tests needing data
Getting the test data
~~~~~~~~~~~~~~~~~~~~~~~~
.. attention ::
The tests needing the test data are not run by default. To make the data available, you need to set the environment variable
AARE_TEST_DATA to the path of the test data directory. Then pass either [.files] for the C++ tests or --files for Python
The image files needed for the test are large and are not included in the repository. They are stored
using GIT LFS in a separate repository. To get the test data, you need to clone the repository.
To do this, you need to have GIT LFS installed. You can find instructions on how to install it here: https://git-lfs.github.com/
Once you have GIT LFS installed, you can clone the repository like any normal repo using:
.. code-block:: bash
git clone https://gitea.psi.ch/detectors/aare-test-data.git

5
docs/src/algorithm.rst Normal file
View File

@ -0,0 +1,5 @@
algorithm
=============
.. doxygenfile:: algorithm.hpp

View File

@ -20,9 +20,6 @@ AARE
Requirements
Consume
.. toctree::
:caption: Python API
:maxdepth: 1
@ -31,6 +28,7 @@ AARE
pyCtbRawFile
pyClusterFile
pyClusterVector
pyJungfrauDataFile
pyRawFile
pyRawMasterFile
pyVarClusterFinder
@ -42,6 +40,7 @@ AARE
:caption: C++ API
:maxdepth: 1
algorithm
NDArray
NDView
Frame
@ -51,6 +50,7 @@ AARE
ClusterFinderMT
ClusterFile
ClusterVector
JungfrauDataFile
Pedestal
RawFile
RawSubFile
@ -59,4 +59,8 @@ AARE
.. toctree::
:caption: Developer
:maxdepth: 3
Tests

View File

@ -0,0 +1,10 @@
JungfrauDataFile
===================
.. py:currentmodule:: aare
.. autoclass:: JungfrauDataFile
:members:
:undoc-members:
:show-inheritance:
:inherited-members:

15
etc/dev-env.yml Normal file
View File

@ -0,0 +1,15 @@
name: dev-environment
channels:
- conda-forge
dependencies:
- anaconda-client
- doxygen
- sphinx=7.1.2
- breathe
- pybind11
- sphinx_rtd_theme
- furo
- nlohmann_json
- zeromq
- fmt
- numpy

36
include/aare/Cluster.hpp Normal file
View File

@ -0,0 +1,36 @@
#pragma once
#include <algorithm>
#include <array>
#include <cstddef>
#include <cstdint>
#include <numeric>
namespace aare {
//TODO! Template this?
struct Cluster3x3 {
int16_t x;
int16_t y;
int32_t data[9];
int32_t sum_2x2() const{
std::array<int32_t, 4> total;
total[0] = data[0] + data[1] + data[3] + data[4];
total[1] = data[1] + data[2] + data[4] + data[5];
total[2] = data[3] + data[4] + data[6] + data[7];
total[3] = data[4] + data[5] + data[7] + data[8];
return *std::max_element(total.begin(), total.end());
}
int32_t sum() const{
return std::accumulate(data, data + 9, 0);
}
};
struct Cluster2x2 {
int16_t x;
int16_t y;
int32_t data[4];
};
} // namespace aare

View File

@ -1,19 +1,17 @@
#pragma once
#include "aare/Cluster.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/NDArray.hpp"
#include "aare/defs.hpp"
#include <filesystem>
#include <fstream>
#include <optional>
namespace aare {
struct Cluster3x3 {
int16_t x;
int16_t y;
int32_t data[9];
};
//TODO! Legacy enums, migrate to enum class
typedef enum {
cBottomLeft = 0,
cBottomRight = 1,
@ -37,6 +35,7 @@ struct Eta2 {
double x;
double y;
corner c;
int32_t sum;
};
struct ClusterAnalysis {
@ -46,15 +45,7 @@ struct ClusterAnalysis {
double etay;
};
/*
Binary cluster file. Expects data to be layed out as:
int32_t frame_number
uint32_t number_of_clusters
int16_t x, int16_t y, int32_t data[9] x number_of_clusters
int32_t frame_number
uint32_t number_of_clusters
....
*/
/**
* @brief Class to read and write cluster files
@ -63,16 +54,19 @@ uint32_t number_of_clusters
*
* int32_t frame_number
* uint32_t number_of_clusters
* int16_t x, int16_t y, int32_t data[9] x number_of_clusters
* int16_t x, int16_t y, int32_t data[9] * number_of_clusters
* int32_t frame_number
* uint32_t number_of_clusters
* etc.
*/
class ClusterFile {
FILE *fp{};
uint32_t m_num_left{};
size_t m_chunk_size{};
const std::string m_mode;
uint32_t m_num_left{}; /*Number of photons left in frame*/
size_t m_chunk_size{}; /*Number of clusters to read at a time*/
const std::string m_mode; /*Mode to open the file in*/
std::optional<ROI> m_roi; /*Region of interest, will be applied if set*/
std::optional<NDArray<int32_t, 2>> m_noise_map; /*Noise map to cut photons, will be applied if set*/
std::optional<NDArray<double, 2>> m_gain_map; /*Gain map to apply to the clusters, will be applied if set*/
public:
/**
@ -97,6 +91,8 @@ class ClusterFile {
*/
ClusterVector<int32_t> read_clusters(size_t n_clusters);
ClusterVector<int32_t> read_clusters(size_t n_clusters, ROI roi);
/**
* @brief Read a single frame from the file and return the clusters. The
* cluster vector will have the frame number set.
@ -108,28 +104,49 @@ class ClusterFile {
void write_frame(const ClusterVector<int32_t> &clusters);
// Need to be migrated to support NDArray and return a ClusterVector
// std::vector<Cluster3x3>
// read_cluster_with_cut(size_t n_clusters, double *noise_map, int nx, int ny);
/**
* @brief Return the chunk size
*/
size_t chunk_size() const { return m_chunk_size; }
/**
* @brief Set the region of interest to use when reading clusters. If set only clusters within
* the ROI will be read.
*/
void set_roi(ROI roi);
/**
* @brief Set the noise map to use when reading clusters. If set clusters below the noise
* level will be discarded. Selection criteria one of: Central pixel above noise, highest
* 2x2 sum above 2 * noise, total sum above 3 * noise.
*/
void set_noise_map(const NDView<int32_t, 2> noise_map);
/**
* @brief Set the gain map to use when reading clusters. If set the gain map will be applied
* to the clusters that pass ROI and noise_map selection. The gain map is expected to be in ADU/energy.
*/
void set_gain_map(const NDView<double, 2> gain_map);
/**
* @brief Close the file. If not closed the file will be closed in the destructor
*/
void close();
private:
ClusterVector<int32_t> read_clusters_with_cut(size_t n_clusters);
ClusterVector<int32_t> read_clusters_without_cut(size_t n_clusters);
ClusterVector<int32_t> read_frame_with_cut();
ClusterVector<int32_t> read_frame_without_cut();
bool is_selected(Cluster3x3 &cl);
Cluster3x3 read_one_cluster();
};
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
int analyze_cluster(Cluster3x3 &cl, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y);
//TODO! helper functions that doesn't really belong here
NDArray<double, 2> calculate_eta2(ClusterVector<int> &clusters);
Eta2 calculate_eta2(Cluster3x3 &cl);
Eta2 calculate_eta2(Cluster2x2 &cl);
} // namespace aare

View File

@ -8,6 +8,9 @@
#include <fmt/core.h>
#include "aare/Cluster.hpp"
#include "aare/NDView.hpp"
namespace aare {
/**
@ -231,6 +234,10 @@ template <typename T, typename CoordType = int16_t> class ClusterVector {
return *reinterpret_cast<V *>(element_ptr(i));
}
template <typename V> const V &at(size_t i) const {
return *reinterpret_cast<const V *>(element_ptr(i));
}
const std::string_view fmt_base() const {
// TODO! how do we match on coord_t?
return m_fmt_base;
@ -261,6 +268,28 @@ template <typename T, typename CoordType = int16_t> class ClusterVector {
m_size = new_size;
}
void apply_gain_map(const NDView<double> gain_map){
//in principle we need to know the size of the image for this lookup
//TODO! check orientations
std::array<int64_t, 9> xcorr = {-1, 0, 1, -1, 0, 1, -1, 0, 1};
std::array<int64_t, 9> ycorr = {-1, -1, -1, 0, 0, 0, 1, 1, 1};
for (size_t i=0; i<m_size; i++){
auto& cl = at<Cluster3x3>(i);
if (cl.x > 0 && cl.y > 0 && cl.x < gain_map.shape(1)-1 && cl.y < gain_map.shape(0)-1){
for (size_t j=0; j<9; j++){
size_t x = cl.x + xcorr[j];
size_t y = cl.y + ycorr[j];
cl.data[j] = static_cast<T>(cl.data[j] * gain_map(y, x));
}
}else{
memset(cl.data, 0, 9*sizeof(T)); //clear edge clusters
}
}
}
private:
void allocate_buffer(size_t new_capacity) {
size_t num_bytes = item_size() * new_capacity;

30
include/aare/FilePtr.hpp Normal file
View File

@ -0,0 +1,30 @@
#pragma once
#include <cstdio>
#include <filesystem>
namespace aare {
/**
* \brief RAII wrapper for FILE pointer
*/
class FilePtr {
FILE *fp_{nullptr};
public:
FilePtr() = default;
FilePtr(const std::filesystem::path& fname, const std::string& mode);
FilePtr(const FilePtr &) = delete; // we don't want a copy
FilePtr &operator=(const FilePtr &) = delete; // since we handle a resource
FilePtr(FilePtr &&other);
FilePtr &operator=(FilePtr &&other);
FILE *get();
int64_t tell();
void seek(int64_t offset, int whence = SEEK_SET) {
if (fseek(fp_, offset, whence) != 0)
throw std::runtime_error("Error seeking in file");
}
std::string error_msg();
~FilePtr();
};
} // namespace aare

View File

@ -0,0 +1,29 @@
#pragma once
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
#include "aare/ClusterVector.hpp"
#include "aare/ClusterFile.hpp" //Cluster_3x3
namespace aare{
struct Photon{
double x;
double y;
double energy;
};
class Interpolator{
NDArray<double, 3> m_ietax;
NDArray<double, 3> m_ietay;
NDArray<double, 1> m_etabinsx;
NDArray<double, 1> m_etabinsy;
NDArray<double, 1> m_energy_bins;
public:
Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins, NDView<double, 1> ybins, NDView<double, 1> ebins);
NDArray<double, 3> get_ietax(){return m_ietax;}
NDArray<double, 3> get_ietay(){return m_ietay;}
std::vector<Photon> interpolate(const ClusterVector<int32_t>& clusters);
};
} // namespace aare

View File

@ -0,0 +1,106 @@
#pragma once
#include <cstdint>
#include <filesystem>
#include <vector>
#include "aare/FilePtr.hpp"
#include "aare/defs.hpp"
#include "aare/NDArray.hpp"
#include "aare/FileInterface.hpp"
namespace aare {
struct JungfrauDataHeader{
uint64_t framenum;
uint64_t bunchid;
};
class JungfrauDataFile : public FileInterface {
size_t m_rows{}; //!< number of rows in the image, from find_frame_size();
size_t m_cols{}; //!< number of columns in the image, from find_frame_size();
size_t m_bytes_per_frame{}; //!< number of bytes per frame excluding header
size_t m_total_frames{}; //!< total number of frames in the series of files
size_t m_offset{}; //!< file index of the first file, allow starting at non zero file
size_t m_current_file_index{}; //!< The index of the open file
size_t m_current_frame_index{}; //!< The index of the current frame (with reference to all files)
std::vector<size_t> m_last_frame_in_file{}; //!< Used for seeking to the correct file
std::filesystem::path m_path; //!< path to the files
std::string m_base_name; //!< base name used for formatting file names
FilePtr m_fp; //!< RAII wrapper for a FILE*
using pixel_type = uint16_t;
static constexpr size_t header_size = sizeof(JungfrauDataHeader);
static constexpr size_t n_digits_in_file_index = 6; //!< to format file names
public:
JungfrauDataFile(const std::filesystem::path &fname);
std::string base_name() const; //!< get the base name of the file (without path and extension)
size_t bytes_per_frame() override;
size_t pixels_per_frame() override;
size_t bytes_per_pixel() const;
size_t bitdepth() const override;
void seek(size_t frame_index) override; //!< seek to the given frame index (note not byte offset)
size_t tell() override; //!< get the frame index of the file pointer
size_t total_frames() const override;
size_t rows() const override;
size_t cols() const override;
std::array<ssize_t,2> shape() const;
size_t n_files() const; //!< get the number of files in the series.
// Extra functions needed for FileInterface
Frame read_frame() override;
Frame read_frame(size_t frame_number) override;
std::vector<Frame> read_n(size_t n_frames=0) override;
void read_into(std::byte *image_buf) override;
void read_into(std::byte *image_buf, size_t n_frames) override;
size_t frame_number(size_t frame_index) override;
DetectorType detector_type() const override;
/**
* @brief Read a single frame from the file into the given buffer.
* @param image_buf buffer to read the frame into. (Note the caller is responsible for allocating the buffer)
* @param header pointer to a JungfrauDataHeader or nullptr to skip header)
*/
void read_into(std::byte *image_buf, JungfrauDataHeader *header = nullptr);
/**
* @brief Read a multiple frames from the file into the given buffer.
* @param image_buf buffer to read the frame into. (Note the caller is responsible for allocating the buffer)
* @param n_frames number of frames to read
* @param header pointer to a JungfrauDataHeader or nullptr to skip header)
*/
void read_into(std::byte *image_buf, size_t n_frames, JungfrauDataHeader *header = nullptr);
/**
* @brief Read a single frame from the file into the given NDArray
* @param image NDArray to read the frame into.
*/
void read_into(NDArray<uint16_t>* image, JungfrauDataHeader* header = nullptr);
JungfrauDataHeader read_header();
std::filesystem::path current_file() const { return fpath(m_current_file_index+m_offset); }
private:
/**
* @brief Find the size of the frame in the file. (256x256, 256x1024, 512x1024)
* @param fname path to the file
* @throws std::runtime_error if the file is empty or the size cannot be determined
*/
void find_frame_size(const std::filesystem::path &fname);
void parse_fname(const std::filesystem::path &fname);
void scan_files();
void open_file(size_t file_index);
std::filesystem::path fpath(size_t frame_index) const;
};
} // namespace aare

View File

@ -102,6 +102,9 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
auto begin() { return data_; }
auto end() { return data_ + size_; }
auto begin() const { return data_; }
auto end() const { return data_ + size_; }
using value_type = T;
NDArray &operator=(NDArray &&other) noexcept; // Move assign
@ -191,7 +194,7 @@ class NDArray : public ArrayExpr<NDArray<T, Ndim>, Ndim> {
T *data() { return data_; }
std::byte *buffer() { return reinterpret_cast<std::byte *>(data_); }
size_t size() const { return size_; }
ssize_t size() const { return static_cast<ssize_t>(size_); }
size_t total_bytes() const { return size_ * sizeof(T); }
std::array<int64_t, Ndim> shape() const noexcept { return shape_; }
int64_t shape(int64_t i) const noexcept { return shape_[i]; }
@ -388,12 +391,12 @@ NDArray<T, Ndim> NDArray<T, Ndim>::operator*(const T &value) {
result *= value;
return result;
}
template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print() {
if (shape_[0] < 20 && shape_[1] < 20)
Print_all();
else
Print_some();
}
// template <typename T, int64_t Ndim> void NDArray<T, Ndim>::Print() {
// if (shape_[0] < 20 && shape_[1] < 20)
// Print_all();
// else
// Print_some();
// }
template <typename T, int64_t Ndim>
std::ostream &operator<<(std::ostream &os, const NDArray<T, Ndim> &arr) {

View File

@ -71,7 +71,7 @@ template <typename T, int64_t Ndim = 2> class NDView : public ArrayExpr<NDView<T
return buffer_[element_offset(strides_, index...)];
}
size_t size() const { return size_; }
ssize_t size() const { return static_cast<ssize_t>(size_); }
size_t total_bytes() const { return size_ * sizeof(T); }
std::array<int64_t, Ndim> strides() const noexcept { return strides_; }
@ -102,7 +102,7 @@ template <typename T, int64_t Ndim = 2> class NDView : public ArrayExpr<NDView<T
template<size_t Size>
NDView& operator=(const std::array<T, Size> &arr) {
if(size() != arr.size())
if(size() != static_cast<ssize_t>(arr.size()))
throw std::runtime_error(LOCATION + "Array and NDView size mismatch");
std::copy(arr.begin(), arr.end(), begin());
return *this;
@ -184,4 +184,9 @@ std::ostream& operator <<(std::ostream& os, const NDView<T, Ndim>& arr){
}
template <typename T>
NDView<T,1> make_view(std::vector<T>& vec){
return NDView<T,1>(vec.data(), {static_cast<int64_t>(vec.size())});
}
} // namespace aare

View File

@ -22,7 +22,7 @@ class RawSubFile {
size_t m_rows{};
size_t m_cols{};
size_t m_bytes_per_frame{};
size_t n_frames{};
size_t m_num_frames{};
uint32_t m_pos_row{};
uint32_t m_pos_col{};
@ -53,6 +53,7 @@ class RawSubFile {
size_t tell();
void read_into(std::byte *image_buf, DetectorHeader *header = nullptr);
void read_into(std::byte *image_buf, size_t n_frames, DetectorHeader *header= nullptr);
void get_part(std::byte *buffer, size_t frame_index);
void read_header(DetectorHeader *header);
@ -64,7 +65,9 @@ class RawSubFile {
size_t bytes_per_frame() const { return m_bytes_per_frame; }
size_t pixels_per_frame() const { return m_rows * m_cols; }
size_t bytes_per_pixel() const { return m_bitdepth / 8; }
size_t bytes_per_pixel() const { return m_bitdepth / bits_per_byte; }
size_t frames_in_file() const { return m_num_frames; }
private:
template <typename T>

View File

@ -7,7 +7,7 @@
#include "aare/NDArray.hpp"
const int MAX_CLUSTER_SIZE = 200;
const int MAX_CLUSTER_SIZE = 50;
namespace aare {
template <typename T> class VarClusterFinder {
@ -226,7 +226,7 @@ template <typename T> void VarClusterFinder<T>::single_pass(NDView<T, 2> img) {
template <typename T> void VarClusterFinder<T>::first_pass() {
for (size_t i = 0; i < original_.size(); ++i) {
for (ssize_t i = 0; i < original_.size(); ++i) {
if (use_noise_map)
threshold_ = 5 * noiseMap(i);
binary_(i) = (original_(i) > threshold_);
@ -250,7 +250,7 @@ template <typename T> void VarClusterFinder<T>::first_pass() {
template <typename T> void VarClusterFinder<T>::second_pass() {
for (size_t i = 0; i != labeled_.size(); ++i) {
for (ssize_t i = 0; i != labeled_.size(); ++i) {
auto cl = labeled_(i);
if (cl != 0) {
auto it = child.find(cl);

111
include/aare/algorithm.hpp Normal file
View File

@ -0,0 +1,111 @@
#pragma once
#include <algorithm>
#include <array>
#include <vector>
#include <aare/NDArray.hpp>
namespace aare {
/**
* @brief Index of the last element that is smaller than val.
* Requires a sorted array. Uses >= for ordering. If all elements
* are smaller it returns the last element and if all elements are
* larger it returns the first element.
* @param first iterator to the first element
* @param last iterator to the last element
* @param val value to compare
* @return index of the last element that is smaller than val
*
*/
template <typename T>
size_t last_smaller(const T* first, const T* last, T val) {
for (auto iter = first+1; iter != last; ++iter) {
if (*iter >= val) {
return std::distance(first, iter-1);
}
}
return std::distance(first, last-1);
}
template <typename T>
size_t last_smaller(const NDArray<T, 1>& arr, T val) {
return last_smaller(arr.begin(), arr.end(), val);
}
template <typename T>
size_t last_smaller(const std::vector<T>& vec, T val) {
return last_smaller(vec.data(), vec.data()+vec.size(), val);
}
/**
* @brief Index of the first element that is larger than val.
* Requires a sorted array. Uses > for ordering. If all elements
* are larger it returns the first element and if all elements are
* smaller it returns the last element.
* @param first iterator to the first element
* @param last iterator to the last element
* @param val value to compare
* @return index of the first element that is larger than val
*/
template <typename T>
size_t first_larger(const T* first, const T* last, T val) {
for (auto iter = first; iter != last; ++iter) {
if (*iter > val) {
return std::distance(first, iter);
}
}
return std::distance(first, last-1);
}
template <typename T>
size_t first_larger(const NDArray<T, 1>& arr, T val) {
return first_larger(arr.begin(), arr.end(), val);
}
template <typename T>
size_t first_larger(const std::vector<T>& vec, T val) {
return first_larger(vec.data(), vec.data()+vec.size(), val);
}
/**
* @brief Index of the nearest element to val.
* Requires a sorted array. If there is no difference it takes the first element.
* @param first iterator to the first element
* @param last iterator to the last element
* @param val value to compare
* @return index of the nearest element
*/
template <typename T>
size_t nearest_index(const T* first, const T* last, T val) {
auto iter = std::min_element(first, last,
[val](T a, T b) {
return std::abs(a - val) < std::abs(b - val);
});
return std::distance(first, iter);
}
template <typename T>
size_t nearest_index(const NDArray<T, 1>& arr, T val) {
return nearest_index(arr.begin(), arr.end(), val);
}
template <typename T>
size_t nearest_index(const std::vector<T>& vec, T val) {
return nearest_index(vec.data(), vec.data()+vec.size(), val);
}
template <typename T, size_t N>
size_t nearest_index(const std::array<T,N>& arr, T val) {
return nearest_index(arr.data(), arr.data()+arr.size(), val);
}
template <typename T>
std::vector<T> cumsum(const std::vector<T>& vec) {
std::vector<T> result(vec.size());
std::partial_sum(vec.begin(), vec.end(), result.begin());
return result;
}
} // namespace aare

View File

@ -1,6 +1,7 @@
#pragma once
#include <cstdint>
#include <vector>
#include <aare/NDView.hpp>
namespace aare {
@ -10,4 +11,16 @@ uint16_t adc_sar_04_decode64to16(uint64_t input);
void adc_sar_05_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output);
void adc_sar_04_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output);
} // namespace aare
/**
* @brief Apply custom weights to a 16-bit input value. Will sum up weights[i]**i
* for each bit i that is set in the input value.
* @throws std::out_of_range if weights.size() < 16
* @param input 16-bit input value
* @param weights vector of weights, size must be less than or equal to 16
*/
double apply_custom_weights(uint16_t input, const NDView<double, 1> weights);
void apply_custom_weights(NDView<uint16_t, 1> input, NDView<double, 1> output, const NDView<double, 1> weights);
} // namespace aare

View File

@ -1,11 +1,9 @@
#pragma once
#include "aare/Dtype.hpp"
// #include "aare/utils/logger.hpp"
#include <array>
#include <stdexcept>
#include <cassert>
#include <cstdint>
#include <cstring>
@ -38,9 +36,12 @@
namespace aare {
inline constexpr size_t bits_per_byte = 8;
void assert_failed(const std::string &msg);
class DynamicCluster {
public:
int cluster_sizeX;
@ -213,6 +214,9 @@ struct ROI{
int64_t height() const { return ymax - ymin; }
int64_t width() const { return xmax - xmin; }
bool contains(int64_t x, int64_t y) const {
return x >= xmin && x < xmax && y >= ymin && y < ymax;
}
};

View File

@ -0,0 +1,12 @@
#pragma once
#include <fstream>
#include <string>
namespace aare {
/**
* @brief Get the error message from an ifstream object
*/
std::string ifstream_error_msg(std::ifstream &ifs);
} // namespace aare

View File

@ -0,0 +1,18 @@
diff --git a/CMakeLists.txt b/CMakeLists.txt
index dd3d8eb9..c0187747 100644
--- a/CMakeLists.txt
+++ b/CMakeLists.txt
@@ -1,11 +1,8 @@
# CMake build script for ZeroMQ
project(ZeroMQ)
-if(${CMAKE_SYSTEM_NAME} STREQUAL Darwin)
- cmake_minimum_required(VERSION 3.0.2)
-else()
- cmake_minimum_required(VERSION 2.8.12)
-endif()
+cmake_minimum_required(VERSION 3.15)
+message(STATUS "Patched cmake version")
include(CheckIncludeFiles)
include(CheckCCompilerFlag)

View File

@ -4,13 +4,32 @@ build-backend = "scikit_build_core.build"
[project]
name = "aare"
version = "2025.2.18"
version = "2025.4.22"
requires-python = ">=3.11"
dependencies = [
"numpy",
"matplotlib",
]
[tool.cibuildwheel]
build = "cp{311,312,313}-manylinux_x86_64"
[tool.scikit-build]
cmake.verbose = true
build.verbose = true
cmake.build-type = "Release"
install.components = ["python"]
[tool.scikit-build.cmake.define]
AARE_PYTHON_BINDINGS = "ON"
AARE_SYSTEM_LIBRARIES = "ON"
AARE_INSTALL_PYTHONEXT = "ON"
AARE_INSTALL_PYTHONEXT = "ON"
[tool.pytest.ini_options]
markers = [
"files: marks tests that need additional data (deselect with '-m \"not files\"')",
]

View File

@ -1,12 +1,13 @@
find_package (Python 3.10 COMPONENTS Interpreter Development REQUIRED)
find_package (Python 3.10 COMPONENTS Interpreter Development.Module REQUIRED)
set(PYBIND11_FINDPYTHON ON) # Needed for RH8
# Download or find pybind11 depending on configuration
if(AARE_FETCH_PYBIND11)
FetchContent_Declare(
pybind11
GIT_REPOSITORY https://github.com/pybind/pybind11
GIT_TAG v2.13.0
GIT_TAG v2.13.6
)
FetchContent_MakeAvailable(pybind11)
else()
@ -58,10 +59,16 @@ endforeach(FILE ${PYTHON_EXAMPLES})
if(AARE_INSTALL_PYTHONEXT)
install(TARGETS _aare
install(
TARGETS _aare
EXPORT "${TARGETS_EXPORT_NAME}"
LIBRARY DESTINATION aare
COMPONENT python
)
install(FILES ${PYTHON_FILES} DESTINATION aare)
install(
FILES ${PYTHON_FILES}
DESTINATION aare
COMPONENT python
)
endif()

View File

@ -2,21 +2,26 @@
from . import _aare
from ._aare import File, RawMasterFile, RawSubFile
from ._aare import File, RawMasterFile, RawSubFile, JungfrauDataFile
from ._aare import Pedestal_d, Pedestal_f, ClusterFinder, VarClusterFinder
from ._aare import DetectorType
from ._aare import ClusterFile
from ._aare import hitmap
from ._aare import ROI
from ._aare import ClusterFinderMT, ClusterCollector, ClusterFileSink, ClusterVector_i
from ._aare import fit_gaus, fit_pol1
from ._aare import Interpolator
from ._aare import apply_custom_weights
from .CtbRawFile import CtbRawFile
from .RawFile import RawFile
from .ScanParameters import ScanParameters
from .utils import random_pixels, random_pixel, flat_list
from .utils import random_pixels, random_pixel, flat_list, add_colorbar
#make functions available in the top level API

View File

@ -1,4 +1,6 @@
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.axes_grid1 import make_axes_locatable
def random_pixels(n_pixels, xmin=0, xmax=512, ymin=0, ymax=1024):
"""Return a list of random pixels.
@ -24,4 +26,11 @@ def random_pixel(xmin=0, xmax=512, ymin=0, ymax=1024):
def flat_list(xss):
"""Flatten a list of lists."""
return [x for xs in xss for x in xs]
return [x for xs in xss for x in xs]
def add_colorbar(ax, im, size="5%", pad=0.05):
"""Add a colorbar with the same height as the image."""
divider = make_axes_locatable(ax)
cax = divider.append_axes("right", size=size, pad=pad)
plt.colorbar(im, cax=cax)
return ax, im, cax

View File

@ -1,50 +1,79 @@
import sys
sys.path.append('/home/l_msdetect/erik/aare/build')
#Our normal python imports
from pathlib import Path
import matplotlib.pyplot as plt
from aare._aare import ClusterVector_i, Interpolator
import pickle
import numpy as np
import matplotlib.pyplot as plt
import boost_histogram as bh
import torch
import math
import time
import aare
data = np.random.normal(10, 1, 1000)
def gaussian_2d(mx, my, sigma = 1, res=100, grid_size = 2):
"""
Generate a 2D gaussian as position mx, my, with sigma=sigma.
The gaussian is placed on a 2x2 pixel matrix with resolution
res in one dimesion.
"""
x = torch.linspace(0, pixel_size*grid_size, res)
x,y = torch.meshgrid(x,x, indexing="ij")
return 1 / (2*math.pi*sigma**2) * \
torch.exp(-((x - my)**2 / (2*sigma**2) + (y - mx)**2 / (2*sigma**2)))
hist = bh.Histogram(bh.axis.Regular(10, 0, 20))
hist.fill(data)
scale = 1000 #Scale factor when converting to integer
pixel_size = 25 #um
grid = 2
resolution = 100
sigma_um = 10
xa = np.linspace(0,grid*pixel_size,resolution)
ticks = [0, 25, 50]
hit = np.array((20,20))
etahist_fname = "/home/l_msdetect/erik/tmp/test_hist.pkl"
local_resolution = 99
grid_size = 3
xaxis = np.linspace(0,grid_size*pixel_size, local_resolution)
t = gaussian_2d(hit[0],hit[1], grid_size = grid_size, sigma = 10, res = local_resolution)
pixels = t.reshape(grid_size, t.shape[0] // grid_size, grid_size, t.shape[1] // grid_size).sum(axis = 3).sum(axis = 1)
pixels = pixels.numpy()
pixels = (pixels*scale).astype(np.int32)
v = ClusterVector_i(3,3)
v.push_back(1,1, pixels)
with open(etahist_fname, "rb") as f:
hist = pickle.load(f)
eta = hist.view().copy()
etabinsx = np.array(hist.axes.edges.T[0].flat)
etabinsy = np.array(hist.axes.edges.T[1].flat)
ebins = np.array(hist.axes.edges.T[2].flat)
p = Interpolator(eta, etabinsx[0:-1], etabinsy[0:-1], ebins[0:-1])
x = hist.axes[0].centers
y = hist.values()
y_err = np.sqrt(y)+1
res = aare.fit_gaus(x, y, y_err, chi2 = True)
t_elapsed = time.perf_counter()-t0
print(f'Histogram filling took: {t_elapsed:.3f}s {total_clusters/t_elapsed/1e6:.3f}M clusters/s')
#Generate the hit
histogram_data = hist3d.counts()
x = hist3d.axes[2].edges[:-1]
y = histogram_data[100,100,:]
xx = np.linspace(x[0], x[-1])
# fig, ax = plt.subplots()
# ax.step(x, y, where = 'post')
y_err = np.sqrt(y)
y_err = np.zeros(y.size)
y_err += 1
# par = fit_gaus2(y,x, y_err)
# ax.plot(xx, gaus(xx,par))
# print(par)
tmp = p.interpolate(v)
print(f'tmp:{tmp}')
pos = np.array((tmp['x'], tmp['y']))*25
res = fit_gaus(y,x)
res2 = fit_gaus(y,x, y_err)
print(res)
print(res2)
print(pixels)
fig, ax = plt.subplots(figsize = (7,7))
ax.pcolormesh(xaxis, xaxis, t)
ax.plot(*pos, 'o')
ax.set_xticks([0,25,50,75])
ax.set_yticks([0,25,50,75])
ax.set_xlim(0,75)
ax.set_ylim(0,75)
ax.grid()
print(f'{hit=}')
print(f'{pos=}')

View File

@ -20,7 +20,13 @@ template <typename T>
void define_cluster_vector(py::module &m, const std::string &typestr) {
auto class_name = fmt::format("ClusterVector_{}", typestr);
py::class_<ClusterVector<T>>(m, class_name.c_str(), py::buffer_protocol())
.def(py::init<int, int>())
.def(py::init<int, int>(),
py::arg("cluster_size_x") = 3, py::arg("cluster_size_y") = 3)
.def("push_back",
[](ClusterVector<T> &self, int x, int y, py::array_t<T> data) {
// auto view = make_view_2d(data);
self.push_back(x, y, reinterpret_cast<const std::byte*>(data.data()));
})
.def_property_readonly("size", &ClusterVector<T>::size)
.def("item_size", &ClusterVector<T>::item_size)
.def_property_readonly("fmt",
@ -38,6 +44,8 @@ void define_cluster_vector(py::module &m, const std::string &typestr) {
auto *vec = new std::vector<T>(self.sum_2x2());
return return_vector(vec);
})
.def_property_readonly("cluster_size_x", &ClusterVector<T>::cluster_size_x)
.def_property_readonly("cluster_size_y", &ClusterVector<T>::cluster_size_y)
.def_property_readonly("capacity", &ClusterVector<T>::capacity)
.def_property("frame_number", &ClusterVector<T>::frame_number,
&ClusterVector<T>::set_frame_number)

View File

@ -36,16 +36,17 @@ void define_cluster_file_io_bindings(py::module &m) {
auto v = new ClusterVector<int32_t>(self.read_frame());
return v;
})
.def("set_roi", &ClusterFile::set_roi)
.def("set_noise_map", [](ClusterFile &self, py::array_t<int32_t> noise_map) {
auto view = make_view_2d(noise_map);
self.set_noise_map(view);
})
.def("set_gain_map", [](ClusterFile &self, py::array_t<double> gain_map) {
auto view = make_view_2d(gain_map);
self.set_gain_map(view);
})
.def("close", &ClusterFile::close)
.def("write_frame", &ClusterFile::write_frame)
// .def("read_cluster_with_cut",
// [](ClusterFile &self, size_t n_clusters,
// py::array_t<double> noise_map, int nx, int ny) {
// auto view = make_view_2d(noise_map);
// auto *vec =
// new std::vector<Cluster3x3>(self.read_cluster_with_cut(
// n_clusters, view.data(), nx, ny));
// return return_vector(vec);
// })
.def("__enter__", [](ClusterFile &self) { return &self; })
.def("__exit__",
[](ClusterFile &self,

View File

@ -10,6 +10,8 @@
#include "aare/decode.hpp"
// #include "aare/fClusterFileV2.hpp"
#include "np_helper.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/iostream.h>
@ -32,7 +34,7 @@ m.def("adc_sar_05_decode64to16", [](py::array_t<uint8_t> input) {
}
//Create a 2D output array with the same shape as the input
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/8};
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/static_cast<int64_t>(bits_per_byte)};
py::array_t<uint16_t> output(shape);
//Create a view of the input and output arrays
@ -53,7 +55,7 @@ m.def("adc_sar_04_decode64to16", [](py::array_t<uint8_t> input) {
}
//Create a 2D output array with the same shape as the input
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/8};
std::vector<ssize_t> shape{input.shape(0), input.shape(1)/static_cast<int64_t>(bits_per_byte)};
py::array_t<uint16_t> output(shape);
//Create a view of the input and output arrays
@ -65,35 +67,54 @@ m.def("adc_sar_04_decode64to16", [](py::array_t<uint8_t> input) {
return output;
});
py::class_<CtbRawFile>(m, "CtbRawFile")
.def(py::init<const std::filesystem::path &>())
.def("read_frame",
[](CtbRawFile &self) {
size_t image_size = self.image_size_in_bytes();
py::array image;
std::vector<ssize_t> shape;
shape.reserve(2);
shape.push_back(1);
shape.push_back(image_size);
m.def(
"apply_custom_weights",
[](py::array_t<uint16_t, py::array::c_style | py::array::forcecast> &input,
py::array_t<double, py::array::c_style | py::array::forcecast>
&weights) {
py::array_t<DetectorHeader> header(1);
// Create new array with same shape as the input array (uninitialized values)
py::buffer_info buf = input.request();
py::array_t<double> output(buf.shape);
// always read bytes
image = py::array_t<uint8_t>(shape);
// Use NDViews to call into the C++ library
auto weights_view = make_view_1d(weights);
NDView<uint16_t, 1> input_view(input.mutable_data(), {input.size()});
NDView<double, 1> output_view(output.mutable_data(), {output.size()});
self.read_into(
reinterpret_cast<std::byte *>(image.mutable_data()),
header.mutable_data());
apply_custom_weights(input_view, output_view, weights_view);
return output;
});
return py::make_tuple(header, image);
})
.def("seek", &CtbRawFile::seek)
.def("tell", &CtbRawFile::tell)
.def("master", &CtbRawFile::master)
py::class_<CtbRawFile>(m, "CtbRawFile")
.def(py::init<const std::filesystem::path &>())
.def("read_frame",
[](CtbRawFile &self) {
size_t image_size = self.image_size_in_bytes();
py::array image;
std::vector<ssize_t> shape;
shape.reserve(2);
shape.push_back(1);
shape.push_back(image_size);
.def_property_readonly("image_size_in_bytes",
&CtbRawFile::image_size_in_bytes)
py::array_t<DetectorHeader> header(1);
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
// always read bytes
image = py::array_t<uint8_t>(shape);
}
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
header.mutable_data());
return py::make_tuple(header, image);
})
.def("seek", &CtbRawFile::seek)
.def("tell", &CtbRawFile::tell)
.def("master", &CtbRawFile::master)
.def_property_readonly("image_size_in_bytes",
&CtbRawFile::image_size_in_bytes)
.def_property_readonly("frames_in_file", &CtbRawFile::frames_in_file);
}

View File

@ -20,6 +20,9 @@
namespace py = pybind11;
using namespace ::aare;
//Disable warnings for unused parameters, as we ignore some
//in the __exit__ method
#pragma GCC diagnostic push
@ -195,6 +198,8 @@ void define_file_io_bindings(py::module &m) {
py::class_<ROI>(m, "ROI")
.def(py::init<>())
.def(py::init<int64_t, int64_t, int64_t, int64_t>(), py::arg("xmin"),
py::arg("xmax"), py::arg("ymin"), py::arg("ymax"))
.def_readwrite("xmin", &ROI::xmin)
.def_readwrite("xmax", &ROI::xmax)
.def_readwrite("ymin", &ROI::ymin)
@ -212,36 +217,9 @@ void define_file_io_bindings(py::module &m) {
py::class_<RawSubFile>(m, "RawSubFile")
.def(py::init<const std::filesystem::path &, DetectorType, size_t,
size_t, size_t>())
.def_property_readonly("bytes_per_frame", &RawSubFile::bytes_per_frame)
.def_property_readonly("pixels_per_frame",
&RawSubFile::pixels_per_frame)
.def("seek", &RawSubFile::seek)
.def("tell", &RawSubFile::tell)
.def_property_readonly("rows", &RawSubFile::rows)
.def_property_readonly("cols", &RawSubFile::cols)
.def("read_frame",
[](RawSubFile &self) {
const uint8_t item_size = self.bytes_per_pixel();
py::array image;
std::vector<ssize_t> shape;
shape.reserve(2);
shape.push_back(self.rows());
shape.push_back(self.cols());
if (item_size == 1) {
image = py::array_t<uint8_t>(shape);
} else if (item_size == 2) {
image = py::array_t<uint16_t>(shape);
} else if (item_size == 4) {
image = py::array_t<uint32_t>(shape);
}
fmt::print("item_size: {} rows: {} cols: {}\n", item_size, self.rows(), self.cols());
self.read_into(
reinterpret_cast<std::byte *>(image.mutable_data()));
return image;
});
#pragma GCC diagnostic pop
// py::class_<ClusterHeader>(m, "ClusterHeader")

View File

@ -0,0 +1,58 @@
#include "aare/Interpolator.hpp"
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
#include "np_helper.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
void define_interpolation_bindings(py::module &m) {
PYBIND11_NUMPY_DTYPE(aare::Photon, x,y,energy);
py::class_<aare::Interpolator>(m, "Interpolator")
.def(py::init([](py::array_t<double, py::array::c_style | py::array::forcecast> etacube, py::array_t<double> xbins,
py::array_t<double> ybins, py::array_t<double> ebins) {
return Interpolator(make_view_3d(etacube), make_view_1d(xbins),
make_view_1d(ybins), make_view_1d(ebins));
}))
.def("get_ietax", [](Interpolator& self){
auto*ptr = new NDArray<double,3>{};
*ptr = self.get_ietax();
return return_image_data(ptr);
})
.def("get_ietay", [](Interpolator& self){
auto*ptr = new NDArray<double,3>{};
*ptr = self.get_ietay();
return return_image_data(ptr);
})
.def("interpolate", [](Interpolator& self, const ClusterVector<int32_t>& clusters){
auto photons = self.interpolate(clusters);
auto* ptr = new std::vector<Photon>{photons};
return return_vector(ptr);
});
// TODO! Evaluate without converting to double
m.def(
"hej",
[]() {
// auto boost_histogram = py::module_::import("boost_histogram");
// py::object axis =
// boost_histogram.attr("axis").attr("Regular")(10, 0.0, 10.0);
// py::object histogram = boost_histogram.attr("Histogram")(axis);
// return histogram;
// return h;
},
R"(
Evaluate a 1D Gaussian function for all points in x using parameters par.
Parameters
----------
x : array_like
The points at which to evaluate the Gaussian function.
par : array_like
The parameters of the Gaussian function. The first element is the amplitude, the second element is the mean, and the third element is the standard deviation.
)");
}

View File

@ -0,0 +1,116 @@
#include "aare/JungfrauDataFile.hpp"
#include "aare/defs.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/iostream.h>
#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/stl/filesystem.h>
#include <string>
namespace py = pybind11;
using namespace ::aare;
// Disable warnings for unused parameters, as we ignore some
// in the __exit__ method
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
auto read_dat_frame(JungfrauDataFile &self) {
py::array_t<JungfrauDataHeader> header(1);
py::array_t<uint16_t> image({
self.rows(),
self.cols()
});
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
header.mutable_data());
return py::make_tuple(header, image);
}
auto read_n_dat_frames(JungfrauDataFile &self, size_t n_frames) {
// adjust for actual frames left in the file
n_frames = std::min(n_frames, self.total_frames() - self.tell());
if (n_frames == 0) {
throw std::runtime_error("No frames left in file");
}
py::array_t<JungfrauDataHeader> header(n_frames);
py::array_t<uint16_t> image({
n_frames, self.rows(),
self.cols()});
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
n_frames, header.mutable_data());
return py::make_tuple(header, image);
}
void define_jungfrau_data_file_io_bindings(py::module &m) {
// Make the JungfrauDataHeader usable from numpy
PYBIND11_NUMPY_DTYPE(JungfrauDataHeader, framenum, bunchid);
py::class_<JungfrauDataFile>(m, "JungfrauDataFile")
.def(py::init<const std::filesystem::path &>())
.def("seek", &JungfrauDataFile::seek,
R"(
Seek to the given frame index.
)")
.def("tell", &JungfrauDataFile::tell,
R"(
Get the current frame index.
)")
.def_property_readonly("rows", &JungfrauDataFile::rows)
.def_property_readonly("cols", &JungfrauDataFile::cols)
.def_property_readonly("base_name", &JungfrauDataFile::base_name)
.def_property_readonly("bytes_per_frame",
&JungfrauDataFile::bytes_per_frame)
.def_property_readonly("pixels_per_frame",
&JungfrauDataFile::pixels_per_frame)
.def_property_readonly("bytes_per_pixel",
&JungfrauDataFile::bytes_per_pixel)
.def_property_readonly("bitdepth", &JungfrauDataFile::bitdepth)
.def_property_readonly("current_file", &JungfrauDataFile::current_file)
.def_property_readonly("total_frames", &JungfrauDataFile::total_frames)
.def_property_readonly("n_files", &JungfrauDataFile::n_files)
.def("read_frame", &read_dat_frame,
R"(
Read a single frame from the file.
)")
.def("read_n", &read_n_dat_frames,
R"(
Read maximum n_frames frames from the file.
)")
.def(
"read",
[](JungfrauDataFile &self) {
self.seek(0);
auto n_frames = self.total_frames();
return read_n_dat_frames(self, n_frames);
},
R"(
Read all frames from the file. Seeks to the beginning before reading.
)")
.def("__enter__", [](JungfrauDataFile &self) { return &self; })
.def("__exit__",
[](JungfrauDataFile &self,
const std::optional<pybind11::type> &exc_type,
const std::optional<pybind11::object> &exc_value,
const std::optional<pybind11::object> &traceback) {
// self.close();
})
.def("__iter__", [](JungfrauDataFile &self) { return &self; })
.def("__next__", [](JungfrauDataFile &self) {
try {
return read_dat_frame(self);
} catch (std::runtime_error &e) {
throw py::stop_iteration();
}
});
}
#pragma GCC diagnostic pop

View File

@ -9,6 +9,10 @@
#include "cluster.hpp"
#include "cluster_file.hpp"
#include "fit.hpp"
#include "interpolation.hpp"
#include "raw_sub_file.hpp"
#include "jungfrau_data_file.hpp"
//Pybind stuff
#include <pybind11/pybind11.h>
@ -19,6 +23,7 @@ namespace py = pybind11;
PYBIND11_MODULE(_aare, m) {
define_file_io_bindings(m);
define_raw_file_io_bindings(m);
define_raw_sub_file_io_bindings(m);
define_ctb_raw_file_io_bindings(m);
define_raw_master_file_bindings(m);
define_var_cluster_finder_bindings(m);
@ -31,5 +36,7 @@ PYBIND11_MODULE(_aare, m) {
define_cluster_collector_bindings(m);
define_cluster_file_sink_bindings(m);
define_fit_bindings(m);
define_interpolation_bindings(m);
define_jungfrau_data_file_io_bindings(m);
}

View File

@ -40,25 +40,25 @@ template <typename T> py::array return_vector(std::vector<T> *vec) {
}
// todo rewrite generic
template <class T, int Flags> auto get_shape_3d(py::array_t<T, Flags> arr) {
template <class T, int Flags> auto get_shape_3d(const py::array_t<T, Flags>& arr) {
return aare::Shape<3>{arr.shape(0), arr.shape(1), arr.shape(2)};
}
template <class T, int Flags> auto make_view_3d(py::array_t<T, Flags> arr) {
template <class T, int Flags> auto make_view_3d(py::array_t<T, Flags>& arr) {
return aare::NDView<T, 3>(arr.mutable_data(), get_shape_3d<T, Flags>(arr));
}
template <class T, int Flags> auto get_shape_2d(py::array_t<T, Flags> arr) {
template <class T, int Flags> auto get_shape_2d(const py::array_t<T, Flags>& arr) {
return aare::Shape<2>{arr.shape(0), arr.shape(1)};
}
template <class T, int Flags> auto get_shape_1d(py::array_t<T, Flags> arr) {
template <class T, int Flags> auto get_shape_1d(const py::array_t<T, Flags>& arr) {
return aare::Shape<1>{arr.shape(0)};
}
template <class T, int Flags> auto make_view_2d(py::array_t<T, Flags> arr) {
template <class T, int Flags> auto make_view_2d(py::array_t<T, Flags>& arr) {
return aare::NDView<T, 2>(arr.mutable_data(), get_shape_2d<T, Flags>(arr));
}
template <class T, int Flags> auto make_view_1d(py::array_t<T, Flags> arr) {
template <class T, int Flags> auto make_view_1d(py::array_t<T, Flags>& arr) {
return aare::NDView<T, 1>(arr.mutable_data(), get_shape_1d<T, Flags>(arr));
}

110
python/src/raw_sub_file.hpp Normal file
View File

@ -0,0 +1,110 @@
#include "aare/CtbRawFile.hpp"
#include "aare/File.hpp"
#include "aare/Frame.hpp"
#include "aare/RawFile.hpp"
#include "aare/RawMasterFile.hpp"
#include "aare/RawSubFile.hpp"
#include "aare/defs.hpp"
// #include "aare/fClusterFileV2.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/iostream.h>
#include <pybind11/numpy.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <pybind11/stl/filesystem.h>
#include <string>
namespace py = pybind11;
using namespace ::aare;
auto read_frame_from_RawSubFile(RawSubFile &self) {
py::array_t<DetectorHeader> header(1);
const uint8_t item_size = self.bytes_per_pixel();
std::vector<ssize_t> shape{static_cast<ssize_t>(self.rows()),
static_cast<ssize_t>(self.cols())};
py::array image;
if (item_size == 1) {
image = py::array_t<uint8_t>(shape);
} else if (item_size == 2) {
image = py::array_t<uint16_t>(shape);
} else if (item_size == 4) {
image = py::array_t<uint32_t>(shape);
}
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()),
header.mutable_data());
return py::make_tuple(header, image);
}
auto read_n_frames_from_RawSubFile(RawSubFile &self, size_t n_frames) {
py::array_t<DetectorHeader> header(n_frames);
const uint8_t item_size = self.bytes_per_pixel();
std::vector<ssize_t> shape{
static_cast<ssize_t>(n_frames),
static_cast<ssize_t>(self.rows()),
static_cast<ssize_t>(self.cols())
};
py::array image;
if (item_size == 1) {
image = py::array_t<uint8_t>(shape);
} else if (item_size == 2) {
image = py::array_t<uint16_t>(shape);
} else if (item_size == 4) {
image = py::array_t<uint32_t>(shape);
}
self.read_into(reinterpret_cast<std::byte *>(image.mutable_data()), n_frames,
header.mutable_data());
return py::make_tuple(header, image);
}
//Disable warnings for unused parameters, as we ignore some
//in the __exit__ method
#pragma GCC diagnostic push
#pragma GCC diagnostic ignored "-Wunused-parameter"
void define_raw_sub_file_io_bindings(py::module &m) {
py::class_<RawSubFile>(m, "RawSubFile")
.def(py::init<const std::filesystem::path &, DetectorType, size_t,
size_t, size_t>())
.def_property_readonly("bytes_per_frame", &RawSubFile::bytes_per_frame)
.def_property_readonly("pixels_per_frame",
&RawSubFile::pixels_per_frame)
.def_property_readonly("bytes_per_pixel", &RawSubFile::bytes_per_pixel)
.def("seek", &RawSubFile::seek)
.def("tell", &RawSubFile::tell)
.def_property_readonly("rows", &RawSubFile::rows)
.def_property_readonly("cols", &RawSubFile::cols)
.def_property_readonly("frames_in_file", &RawSubFile::frames_in_file)
.def("read_frame", &read_frame_from_RawSubFile)
.def("read_n", &read_n_frames_from_RawSubFile)
.def("read", [](RawSubFile &self){
self.seek(0);
auto n_frames = self.frames_in_file();
return read_n_frames_from_RawSubFile(self, n_frames);
})
.def("__enter__", [](RawSubFile &self) { return &self; })
.def("__exit__",
[](RawSubFile &self,
const std::optional<pybind11::type> &exc_type,
const std::optional<pybind11::object> &exc_value,
const std::optional<pybind11::object> &traceback) {
})
.def("__iter__", [](RawSubFile &self) { return &self; })
.def("__next__", [](RawSubFile &self) {
try {
return read_frame_from_RawSubFile(self);
} catch (std::runtime_error &e) {
throw py::stop_iteration();
}
});
}
#pragma GCC diagnostic pop

View File

@ -19,15 +19,24 @@ using namespace::aare;
void define_var_cluster_finder_bindings(py::module &m) {
PYBIND11_NUMPY_DTYPE(VarClusterFinder<double>::Hit, size, row, col,
reserved, energy, max);
reserved, energy, max, rows, cols, enes);
py::class_<VarClusterFinder<double>>(m, "VarClusterFinder")
.def(py::init<Shape<2>, double>())
.def("labeled",
[](VarClusterFinder<double> &self) {
auto ptr = new NDArray<int, 2>(self.labeled());
auto *ptr = new NDArray<int, 2>(self.labeled());
return return_image_data(ptr);
})
.def("set_noiseMap",
[](VarClusterFinder<double> &self,
py::array_t<double, py::array::c_style | py::array::forcecast>
noise_map) {
auto noise_map_span = make_view_2d(noise_map);
self.set_noiseMap(noise_map_span);
})
.def("set_peripheralThresholdFactor",
&VarClusterFinder<double>::set_peripheralThresholdFactor)
.def("find_clusters",
[](VarClusterFinder<double> &self,
py::array_t<double, py::array::c_style | py::array::forcecast>
@ -35,6 +44,30 @@ void define_var_cluster_finder_bindings(py::module &m) {
auto view = make_view_2d(img);
self.find_clusters(view);
})
.def("find_clusters_X",
[](VarClusterFinder<double> &self,
py::array_t<double, py::array::c_style | py::array::forcecast>
img) {
auto img_span = make_view_2d(img);
self.find_clusters_X(img_span);
})
.def("single_pass",
[](VarClusterFinder<double> &self,
py::array_t<double, py::array::c_style | py::array::forcecast>
img) {
auto img_span = make_view_2d(img);
self.single_pass(img_span);
})
.def("hits",
[](VarClusterFinder<double> &self) {
auto ptr = new std::vector<VarClusterFinder<double>::Hit>(
self.steal_hits());
return return_vector(ptr);
})
.def("clear_hits",
[](VarClusterFinder<double> &self) {
self.clear_hits();
})
.def("steal_hits",
[](VarClusterFinder<double> &self) {
auto ptr = new std::vector<VarClusterFinder<double>::Hit>(

29
python/tests/conftest.py Normal file
View File

@ -0,0 +1,29 @@
import os
from pathlib import Path
import pytest
def pytest_addoption(parser):
parser.addoption(
"--files", action="store_true", default=False, help="run slow tests"
)
def pytest_configure(config):
config.addinivalue_line("markers", "files: mark test as needing image files to run")
def pytest_collection_modifyitems(config, items):
if config.getoption("--files"):
return
skip = pytest.mark.skip(reason="need --files option to run")
for item in items:
if "files" in item.keywords:
item.add_marker(skip)
@pytest.fixture
def test_data_path():
return Path(os.environ["AARE_TEST_DATA"])

View File

@ -0,0 +1,36 @@
import pytest
import numpy as np
from aare import RawSubFile, DetectorType
@pytest.mark.files
def test_read_a_jungfrau_RawSubFile(test_data_path):
with RawSubFile(test_data_path / "raw/jungfrau/jungfrau_single_d0_f1_0.raw", DetectorType.Jungfrau, 512, 1024, 16) as f:
assert f.frames_in_file == 3
headers, frames = f.read()
assert headers.size == 3
assert frames.shape == (3, 512, 1024)
# Frame numbers in this file should be 4, 5, 6
for i,h in zip(range(4,7,1), headers):
assert h["frameNumber"] == i
# Compare to canned data using numpy
data = np.load(test_data_path / "raw/jungfrau/jungfrau_single_0.npy")
assert np.all(data[3:6] == frames)
@pytest.mark.files
def test_iterate_over_a_jungfrau_RawSubFile(test_data_path):
data = np.load(test_data_path / "raw/jungfrau/jungfrau_single_0.npy")
with RawSubFile(test_data_path / "raw/jungfrau/jungfrau_single_d0_f0_0.raw", DetectorType.Jungfrau, 512, 1024, 16) as f:
i = 0
for header, frame in f:
assert header["frameNumber"] == i+1
assert np.all(frame == data[i])
i += 1
assert i == 3
assert header["frameNumber"] == 3

View File

@ -0,0 +1,92 @@
import pytest
import numpy as np
from aare import JungfrauDataFile
@pytest.mark.files
def test_jfungfrau_dat_read_number_of_frames(test_data_path):
with JungfrauDataFile(test_data_path / "dat/AldoJF500k_000000.dat") as dat_file:
assert dat_file.total_frames == 24
with JungfrauDataFile(test_data_path / "dat/AldoJF250k_000000.dat") as dat_file:
assert dat_file.total_frames == 53
with JungfrauDataFile(test_data_path / "dat/AldoJF65k_000000.dat") as dat_file:
assert dat_file.total_frames == 113
@pytest.mark.files
def test_jfungfrau_dat_read_number_of_file(test_data_path):
with JungfrauDataFile(test_data_path / "dat/AldoJF500k_000000.dat") as dat_file:
assert dat_file.n_files == 4
with JungfrauDataFile(test_data_path / "dat/AldoJF250k_000000.dat") as dat_file:
assert dat_file.n_files == 7
with JungfrauDataFile(test_data_path / "dat/AldoJF65k_000000.dat") as dat_file:
assert dat_file.n_files == 7
@pytest.mark.files
def test_read_module(test_data_path):
"""
Read all frames from the series of .dat files. Compare to canned data in npz format.
"""
# Read all frames from the .dat file
with JungfrauDataFile(test_data_path / "dat/AldoJF500k_000000.dat") as f:
header, data = f.read()
#Sanity check
n_frames = 24
assert header.size == n_frames
assert data.shape == (n_frames, 512, 1024)
# Read reference data using numpy
with np.load(test_data_path / "dat/AldoJF500k.npz") as f:
ref_header = f["headers"]
ref_data = f["frames"]
# Check that the data is the same
assert np.all(ref_header == header)
assert np.all(ref_data == data)
@pytest.mark.files
def test_read_half_module(test_data_path):
# Read all frames from the .dat file
with JungfrauDataFile(test_data_path / "dat/AldoJF250k_000000.dat") as f:
header, data = f.read()
n_frames = 53
assert header.size == n_frames
assert data.shape == (n_frames, 256, 1024)
# Read reference data using numpy
with np.load(test_data_path / "dat/AldoJF250k.npz") as f:
ref_header = f["headers"]
ref_data = f["frames"]
# Check that the data is the same
assert np.all(ref_header == header)
assert np.all(ref_data == data)
@pytest.mark.files
def test_read_single_chip(test_data_path):
# Read all frames from the .dat file
with JungfrauDataFile(test_data_path / "dat/AldoJF65k_000000.dat") as f:
header, data = f.read()
n_frames = 113
assert header.size == n_frames
assert data.shape == (n_frames, 256, 256)
# Read reference data using numpy
with np.load(test_data_path / "dat/AldoJF65k.npz") as f:
ref_header = f["headers"]
ref_data = f["frames"]
# Check that the data is the same
assert np.all(ref_header == header)
assert np.all(ref_data == data)

View File

@ -31,6 +31,24 @@ ClusterFile::ClusterFile(const std::filesystem::path &fname, size_t chunk_size,
}
}
void ClusterFile::set_roi(ROI roi){
m_roi = roi;
}
void ClusterFile::set_noise_map(const NDView<int32_t, 2> noise_map){
m_noise_map = NDArray<int32_t, 2>(noise_map);
}
void ClusterFile::set_gain_map(const NDView<double, 2> gain_map){
m_gain_map = NDArray<double, 2>(gain_map);
// Gain map is passed as ADU/keV to avoid dividing in when applying the gain
// map we invert it here
for (auto &item : m_gain_map->view()) {
item = 1.0 / item;
}
}
ClusterFile::~ClusterFile() { close(); }
void ClusterFile::close() {
@ -48,14 +66,37 @@ void ClusterFile::write_frame(const ClusterVector<int32_t> &clusters) {
!(clusters.cluster_size_y() == 3)) {
throw std::runtime_error("Only 3x3 clusters are supported");
}
//First write the frame number - 4 bytes
int32_t frame_number = clusters.frame_number();
fwrite(&frame_number, sizeof(frame_number), 1, fp);
if(fwrite(&frame_number, sizeof(frame_number), 1, fp)!=1){
throw std::runtime_error(LOCATION + "Could not write frame number");
}
//Then write the number of clusters - 4 bytes
uint32_t n_clusters = clusters.size();
fwrite(&n_clusters, sizeof(n_clusters), 1, fp);
fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp);
if(fwrite(&n_clusters, sizeof(n_clusters), 1, fp)!=1){
throw std::runtime_error(LOCATION + "Could not write number of clusters");
}
//Now write the clusters in the frame
if(fwrite(clusters.data(), clusters.item_size(), clusters.size(), fp)!=clusters.size()){
throw std::runtime_error(LOCATION + "Could not write clusters");
}
}
ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters) {
ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters){
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_noise_map || m_roi){
return read_clusters_with_cut(n_clusters);
}else{
return read_clusters_without_cut(n_clusters);
}
}
ClusterVector<int32_t> ClusterFile::read_clusters_without_cut(size_t n_clusters) {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
@ -86,6 +127,7 @@ ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters) {
if (nph_read < n_clusters) {
// keep on reading frames and photons until reaching n_clusters
while (fread(&iframe, sizeof(iframe), 1, fp)) {
clusters.set_frame_number(iframe);
// read number of clusters in frame
if (fread(&nph, sizeof(nph), 1, fp)) {
if (nph > (n_clusters - nph_read))
@ -105,10 +147,111 @@ ClusterVector<int32_t> ClusterFile::read_clusters(size_t n_clusters) {
// Resize the vector to the number of clusters.
// No new allocation, only change bounds.
clusters.resize(nph_read);
if(m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
ClusterVector<int32_t> ClusterFile::read_frame() {
ClusterVector<int32_t> ClusterFile::read_clusters_with_cut(size_t n_clusters) {
ClusterVector<int32_t> clusters(3,3);
clusters.reserve(n_clusters);
// if there are photons left from previous frame read them first
if (m_num_left) {
while(m_num_left && clusters.size() < n_clusters){
Cluster3x3 c = read_one_cluster();
if(is_selected(c)){
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
}
}
}
// we did not have enough clusters left in the previous frame
// keep on reading frames until reaching n_clusters
if (clusters.size() < n_clusters) {
// sanity check
if (m_num_left) {
throw std::runtime_error(LOCATION + "Entered second loop with clusters left\n");
}
int32_t frame_number = 0; // frame number needs to be 4 bytes!
while (fread(&frame_number, sizeof(frame_number), 1, fp)) {
if (fread(&m_num_left, sizeof(m_num_left), 1, fp)) {
clusters.set_frame_number(frame_number); //cluster vector will hold the last frame number
while(m_num_left && clusters.size() < n_clusters){
Cluster3x3 c = read_one_cluster();
if(is_selected(c)){
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
}
}
}
// we have enough clusters, break out of the outer while loop
if (clusters.size() >= n_clusters)
break;
}
}
if(m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
Cluster3x3 ClusterFile::read_one_cluster(){
Cluster3x3 c;
auto rc = fread(&c, sizeof(c), 1, fp);
if (rc != 1) {
throw std::runtime_error(LOCATION + "Could not read cluster");
}
--m_num_left;
return c;
}
ClusterVector<int32_t> ClusterFile::read_frame(){
if (m_mode != "r") {
throw std::runtime_error(LOCATION + "File not opened for reading");
}
if (m_noise_map || m_roi){
return read_frame_with_cut();
}else{
return read_frame_without_cut();
}
}
ClusterVector<int32_t> ClusterFile::read_frame_without_cut() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
if (m_num_left) {
throw std::runtime_error(
"There are still photons left in the last frame");
}
int32_t frame_number;
if (fread(&frame_number, sizeof(frame_number), 1, fp) != 1) {
throw std::runtime_error(LOCATION + "Could not read frame number");
}
int32_t n_clusters; // Saved as 32bit integer in the cluster file
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
throw std::runtime_error(LOCATION + "Could not read number of clusters");
}
ClusterVector<int32_t> clusters(3, 3, n_clusters);
clusters.set_frame_number(frame_number);
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
static_cast<size_t>(n_clusters)) {
throw std::runtime_error(LOCATION + "Could not read clusters");
}
clusters.resize(n_clusters);
if (m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
ClusterVector<int32_t> ClusterFile::read_frame_with_cut() {
if (m_mode != "r") {
throw std::runtime_error("File not opened for reading");
}
@ -121,158 +264,68 @@ ClusterVector<int32_t> ClusterFile::read_frame() {
throw std::runtime_error("Could not read frame number");
}
int32_t n_clusters; // Saved as 32bit integer in the cluster file
if (fread(&n_clusters, sizeof(n_clusters), 1, fp) != 1) {
if (fread(&m_num_left, sizeof(m_num_left), 1, fp) != 1) {
throw std::runtime_error("Could not read number of clusters");
}
// std::vector<Cluster3x3> clusters(n_clusters);
ClusterVector<int32_t> clusters(3, 3, n_clusters);
ClusterVector<int32_t> clusters(3, 3);
clusters.reserve(m_num_left);
clusters.set_frame_number(frame_number);
if (fread(clusters.data(), clusters.item_size(), n_clusters, fp) !=
static_cast<size_t>(n_clusters)) {
throw std::runtime_error("Could not read clusters");
while(m_num_left){
Cluster3x3 c = read_one_cluster();
if(is_selected(c)){
clusters.push_back(c.x, c.y, reinterpret_cast<std::byte*>(c.data));
}
}
clusters.resize(n_clusters);
if (m_gain_map)
clusters.apply_gain_map(m_gain_map->view());
return clusters;
}
// std::vector<Cluster3x3> ClusterFile::read_cluster_with_cut(size_t n_clusters,
// double *noise_map,
// int nx, int ny) {
// if (m_mode != "r") {
// throw std::runtime_error("File not opened for reading");
// }
// std::vector<Cluster3x3> clusters(n_clusters);
// // size_t read_clusters_with_cut(FILE *fp, size_t n_clusters, Cluster *buf,
// // uint32_t *n_left, double *noise_map, int
// // nx, int ny) {
// int iframe = 0;
// // uint32_t nph = *n_left;
// uint32_t nph = m_num_left;
// // uint32_t nn = *n_left;
// uint32_t nn = m_num_left;
// size_t nph_read = 0;
// int32_t t2max, tot1;
// int32_t tot3;
// // Cluster *ptr = buf;
// Cluster3x3 *ptr = clusters.data();
// int good = 1;
// double noise;
// // read photons left from previous frame
// if (noise_map)
// printf("Using noise map\n");
bool ClusterFile::is_selected(Cluster3x3 &cl) {
//Should fail fast
if (m_roi) {
if (!(m_roi->contains(cl.x, cl.y))) {
return false;
}
}
if (m_noise_map){
int32_t sum_1x1 = cl.data[4]; // central pixel
int32_t sum_2x2 = cl.sum_2x2(); // highest sum of 2x2 subclusters
int32_t sum_3x3 = cl.sum(); // sum of all pixels
// if (nph) {
// if (nph > n_clusters) {
// // if we have more photons left in the frame then photons to
// // read we read directly the requested number
// nn = n_clusters;
// } else {
// nn = nph;
// }
// for (size_t iph = 0; iph < nn; iph++) {
// // read photons 1 by 1
// size_t n_read =
// fread(reinterpret_cast<void *>(ptr), sizeof(Cluster3x3), 1, fp);
// if (n_read != 1) {
// clusters.resize(nph_read);
// return clusters;
// }
// // TODO! error handling on read
// good = 1;
// if (noise_map) {
// if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 && ptr->y < ny) {
// tot1 = ptr->data[4];
// analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL, NULL, NULL,
// NULL);
// noise = noise_map[ptr->y * nx + ptr->x];
// if (tot1 > noise || t2max > 2 * noise || tot3 > 3 * noise) {
// ;
// } else {
// good = 0;
// printf("%d %d %f %d %d %d\n", ptr->x, ptr->y, noise,
// tot1, t2max, tot3);
// }
// } else {
// printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
// good = 0;
// }
// }
// if (good) {
// ptr++;
// nph_read++;
// }
// (m_num_left)--;
// if (nph_read >= n_clusters)
// break;
// }
// }
// if (nph_read < n_clusters) {
// // // keep on reading frames and photons until reaching
// // n_clusters
// while (fread(&iframe, sizeof(iframe), 1, fp)) {
// // // printf("%d\n",nph_read);
// if (fread(&nph, sizeof(nph), 1, fp)) {
// // // printf("** %d\n",nph);
// m_num_left = nph;
// for (size_t iph = 0; iph < nph; iph++) {
// // // read photons 1 by 1
// size_t n_read = fread(reinterpret_cast<void *>(ptr),
// sizeof(Cluster3x3), 1, fp);
// if (n_read != 1) {
// clusters.resize(nph_read);
// return clusters;
// // return nph_read;
// }
// good = 1;
// if (noise_map) {
// if (ptr->x >= 0 && ptr->x < nx && ptr->y >= 0 &&
// ptr->y < ny) {
// tot1 = ptr->data[4];
// analyze_cluster(*ptr, &t2max, &tot3, NULL, NULL,
// NULL, NULL, NULL);
// // noise = noise_map[ptr->y * nx + ptr->x];
// noise = noise_map[ptr->y + ny * ptr->x];
// if (tot1 > noise || t2max > 2 * noise ||
// tot3 > 3 * noise) {
// ;
// } else
// good = 0;
// } else {
// printf("Bad pixel number %d %d\n", ptr->x, ptr->y);
// good = 0;
// }
// }
// if (good) {
// ptr++;
// nph_read++;
// }
// (m_num_left)--;
// if (nph_read >= n_clusters)
// break;
// }
// }
// if (nph_read >= n_clusters)
// break;
// }
// }
// // printf("%d\n",nph_read);
// clusters.resize(nph_read);
// return clusters;
// }
auto noise = (*m_noise_map)(cl.y, cl.x); //TODO! check if this is correct
if (sum_1x1 <= noise || sum_2x2 <= 2 * noise || sum_3x3 <= 3 * noise) {
return false;
}
}
//we passed all checks
return true;
}
NDArray<double, 2> calculate_eta2(ClusterVector<int> &clusters) {
//TOTO! make work with 2x2 clusters
NDArray<double, 2> eta2({static_cast<int64_t>(clusters.size()), 2});
for (size_t i = 0; i < clusters.size(); i++) {
auto e = calculate_eta2(clusters.at<Cluster3x3>(i));
eta2(i, 0) = e.x;
eta2(i, 1) = e.y;
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
for (size_t i = 0; i < clusters.size(); i++) {
auto e = calculate_eta2(clusters.at<Cluster3x3>(i));
eta2(i, 0) = e.x;
eta2(i, 1) = e.y;
}
}else if(clusters.cluster_size_x() == 2 || clusters.cluster_size_y() == 2){
for (size_t i = 0; i < clusters.size(); i++) {
auto e = calculate_eta2(clusters.at<Cluster2x2>(i));
eta2(i, 0) = e.x;
eta2(i, 1) = e.y;
}
}else{
throw std::runtime_error("Only 3x3 and 2x2 clusters are supported");
}
return eta2;
}
@ -290,7 +343,7 @@ Eta2 calculate_eta2(Cluster3x3 &cl) {
tot2[3] = cl.data[4] + cl.data[5] + cl.data[7] + cl.data[8];
auto c = std::max_element(tot2.begin(), tot2.end()) - tot2.begin();
eta.sum = tot2[c];
switch (c) {
case cBottomLeft:
if ((cl.data[3] + cl.data[4]) != 0)
@ -333,110 +386,17 @@ Eta2 calculate_eta2(Cluster3x3 &cl) {
return eta;
}
int analyze_cluster(Cluster3x3 &cl, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x,
double *eta3y) {
return analyze_data(cl.data, t2, t3, quad, eta2x, eta2y, eta3x, eta3y);
Eta2 calculate_eta2(Cluster2x2 &cl) {
Eta2 eta{};
if ((cl.data[0] + cl.data[1]) != 0)
eta.x = static_cast<double>(cl.data[1]) / (cl.data[0] + cl.data[1]);
if ((cl.data[0] + cl.data[2]) != 0)
eta.y = static_cast<double>(cl.data[2]) / (cl.data[0] + cl.data[2]);
eta.sum = cl.data[0] + cl.data[1] + cl.data[2]+ cl.data[3];
eta.c = cBottomLeft; //TODO! This is not correct, but need to put something
return eta;
}
int analyze_data(int32_t *data, int32_t *t2, int32_t *t3, char *quad,
double *eta2x, double *eta2y, double *eta3x, double *eta3y) {
int ok = 1;
int32_t tot2[4];
int32_t t2max = 0;
char c = 0;
int32_t val, tot3;
tot3 = 0;
for (int i = 0; i < 4; i++)
tot2[i] = 0;
for (int ix = 0; ix < 3; ix++) {
for (int iy = 0; iy < 3; iy++) {
val = data[iy * 3 + ix];
// printf ("%d ",data[iy * 3 + ix]);
tot3 += val;
if (ix <= 1 && iy <= 1)
tot2[cBottomLeft] += val;
if (ix >= 1 && iy <= 1)
tot2[cBottomRight] += val;
if (ix <= 1 && iy >= 1)
tot2[cTopLeft] += val;
if (ix >= 1 && iy >= 1)
tot2[cTopRight] += val;
}
// printf ("\n");
}
// printf ("\n");
if (t2 || quad) {
t2max = tot2[0];
c = cBottomLeft;
for (int i = 1; i < 4; i++) {
if (tot2[i] > t2max) {
t2max = tot2[i];
c = i;
}
}
// printf("*** %d %d %d %d --
// %d\n",tot2[0],tot2[1],tot2[2],tot2[3],t2max);
if (quad)
*quad = c;
if (t2)
*t2 = t2max;
}
if (t3)
*t3 = tot3;
if (eta2x || eta2y) {
if (eta2x)
*eta2x = 0;
if (eta2y)
*eta2y = 0;
switch (c) {
case cBottomLeft:
if (eta2x && (data[3] + data[4]) != 0)
*eta2x = static_cast<double>(data[4]) / (data[3] + data[4]);
if (eta2y && (data[1] + data[4]) != 0)
*eta2y = static_cast<double>(data[4]) / (data[1] + data[4]);
break;
case cBottomRight:
if (eta2x && (data[2] + data[5]) != 0)
*eta2x = static_cast<double>(data[5]) / (data[4] + data[5]);
if (eta2y && (data[1] + data[4]) != 0)
*eta2y = static_cast<double>(data[4]) / (data[1] + data[4]);
break;
case cTopLeft:
if (eta2x && (data[7] + data[4]) != 0)
*eta2x = static_cast<double>(data[4]) / (data[3] + data[4]);
if (eta2y && (data[7] + data[4]) != 0)
*eta2y = static_cast<double>(data[7]) / (data[7] + data[4]);
break;
case cTopRight:
if (eta2x && t2max != 0)
*eta2x = static_cast<double>(data[5]) / (data[5] + data[4]);
if (eta2y && t2max != 0)
*eta2y = static_cast<double>(data[7]) / (data[7] + data[4]);
break;
default:;
}
}
if (eta3x || eta3y) {
if (eta3x && (data[3] + data[4] + data[5]) != 0)
*eta3x = static_cast<double>(-data[3] + data[3 + 2]) /
(data[3] + data[4] + data[5]);
if (eta3y && (data[1] + data[4] + data[7]) != 0)
*eta3y = static_cast<double>(-data[1] + data[2 * 3 + 1]) /
(data[1] + data[4] + data[7]);
}
return ok;
}
} // namespace aare

84
src/ClusterFile.test.cpp Normal file
View File

@ -0,0 +1,84 @@
#include "aare/ClusterFile.hpp"
#include "test_config.hpp"
#include "aare/defs.hpp"
#include <catch2/catch_test_macros.hpp>
#include <filesystem>
using aare::ClusterFile;
TEST_CASE("Read one frame from a a cluster file", "[.files]") {
//We know that the frame has 97 clusters
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile f(fpath);
auto clusters = f.read_frame();
REQUIRE(clusters.size() == 97);
REQUIRE(clusters.frame_number() == 135);
}
TEST_CASE("Read one frame using ROI", "[.files]") {
//We know that the frame has 97 clusters
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
ClusterFile f(fpath);
aare::ROI roi;
roi.xmin = 0;
roi.xmax = 50;
roi.ymin = 200;
roi.ymax = 249;
f.set_roi(roi);
auto clusters = f.read_frame();
REQUIRE(clusters.size() == 49);
REQUIRE(clusters.frame_number() == 135);
//Check that all clusters are within the ROI
for (size_t i = 0; i < clusters.size(); i++) {
auto c = clusters.at<aare::Cluster3x3>(i);
REQUIRE(c.x >= roi.xmin);
REQUIRE(c.x <= roi.xmax);
REQUIRE(c.y >= roi.ymin);
REQUIRE(c.y <= roi.ymax);
}
}
TEST_CASE("Read clusters from single frame file", "[.files]") {
auto fpath = test_data_path() / "clust" / "single_frame_97_clustrers.clust";
REQUIRE(std::filesystem::exists(fpath));
SECTION("Read fewer clusters than available") {
ClusterFile f(fpath);
auto clusters = f.read_clusters(50);
REQUIRE(clusters.size() == 50);
REQUIRE(clusters.frame_number() == 135);
}
SECTION("Read more clusters than available") {
ClusterFile f(fpath);
// 100 is the maximum number of clusters read
auto clusters = f.read_clusters(100);
REQUIRE(clusters.size() == 97);
REQUIRE(clusters.frame_number() == 135);
}
SECTION("Read all clusters") {
ClusterFile f(fpath);
auto clusters = f.read_clusters(97);
REQUIRE(clusters.size() == 97);
REQUIRE(clusters.frame_number() == 135);
}
}

View File

@ -70,7 +70,7 @@ uint8_t Dtype::bitdepth() const {
/**
* @brief Get the number of bytes of the data type
*/
size_t Dtype::bytes() const { return bitdepth() / 8; }
size_t Dtype::bytes() const { return bitdepth() / bits_per_byte; }
/**
* @brief Construct a DType object from a TypeIndex

View File

@ -1,4 +1,5 @@
#include "aare/File.hpp"
#include "aare/JungfrauDataFile.hpp"
#include "aare/NumpyFile.hpp"
#include "aare/RawFile.hpp"
@ -27,6 +28,8 @@ File::File(const std::filesystem::path &fname, const std::string &mode,
else if (fname.extension() == ".npy") {
// file_impl = new NumpyFile(fname, mode, cfg);
file_impl = std::make_unique<NumpyFile>(fname, mode, cfg);
}else if(fname.extension() == ".dat"){
file_impl = std::make_unique<JungfrauDataFile>(fname);
} else {
throw std::runtime_error("Unsupported file type");
}
@ -73,7 +76,7 @@ size_t File::tell() const { return file_impl->tell(); }
size_t File::rows() const { return file_impl->rows(); }
size_t File::cols() const { return file_impl->cols(); }
size_t File::bitdepth() const { return file_impl->bitdepth(); }
size_t File::bytes_per_pixel() const { return file_impl->bitdepth() / 8; }
size_t File::bytes_per_pixel() const { return file_impl->bitdepth() / bits_per_byte; }
DetectorType File::detector_type() const { return file_impl->detector_type(); }

44
src/FilePtr.cpp Normal file
View File

@ -0,0 +1,44 @@
#include "aare/FilePtr.hpp"
#include <fmt/format.h>
#include <stdexcept>
#include <utility>
namespace aare {
FilePtr::FilePtr(const std::filesystem::path& fname, const std::string& mode = "rb") {
fp_ = fopen(fname.c_str(), mode.c_str());
if (!fp_)
throw std::runtime_error(fmt::format("Could not open: {}", fname.c_str()));
}
FilePtr::FilePtr(FilePtr &&other) { std::swap(fp_, other.fp_); }
FilePtr &FilePtr::operator=(FilePtr &&other) {
std::swap(fp_, other.fp_);
return *this;
}
FILE *FilePtr::get() { return fp_; }
int64_t FilePtr::tell() {
auto pos = ftell(fp_);
if (pos == -1)
throw std::runtime_error(fmt::format("Error getting file position: {}", error_msg()));
return pos;
}
FilePtr::~FilePtr() {
if (fp_)
fclose(fp_); // check?
}
std::string FilePtr::error_msg(){
if (feof(fp_)) {
return "End of file reached";
}
if (ferror(fp_)) {
return fmt::format("Error reading file: {}", std::strerror(errno));
}
return "";
}
} // namespace aare

View File

@ -18,7 +18,7 @@ double gaus(const double x, const double *par) {
NDArray<double, 1> gaus(NDView<double, 1> x, NDView<double, 1> par) {
NDArray<double, 1> y({x.shape(0)}, 0);
for (size_t i = 0; i < x.size(); i++) {
for (ssize_t i = 0; i < x.size(); i++) {
y(i) = gaus(x(i), par.data());
}
return y;
@ -28,7 +28,7 @@ double pol1(const double x, const double *par) { return par[0] * x + par[1]; }
NDArray<double, 1> pol1(NDView<double, 1> x, NDView<double, 1> par) {
NDArray<double, 1> y({x.shape()}, 0);
for (size_t i = 0; i < x.size(); i++) {
for (ssize_t i = 0; i < x.size(); i++) {
y(i) = pol1(x(i), par.data());
}
return y;
@ -153,7 +153,7 @@ void fit_gaus(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
// Calculate chi2
chi2 = 0;
for (size_t i = 0; i < y.size(); i++) {
for (ssize_t i = 0; i < y.size(); i++) {
chi2 += std::pow((y(i) - func::gaus(x(i), par_out.data())) / y_err(i), 2);
}
}
@ -205,7 +205,7 @@ void fit_pol1(NDView<double, 1> x, NDView<double, 1> y, NDView<double, 1> y_err,
// Calculate chi2
chi2 = 0;
for (size_t i = 0; i < y.size(); i++) {
for (ssize_t i = 0; i < y.size(); i++) {
chi2 += std::pow((y(i) - func::pol1(x(i), par_out.data())) / y_err(i), 2);
}
}

139
src/Interpolator.cpp Normal file
View File

@ -0,0 +1,139 @@
#include "aare/Interpolator.hpp"
#include "aare/algorithm.hpp"
namespace aare {
Interpolator::Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
NDView<double, 1> ybins, NDView<double, 1> ebins)
: m_ietax(etacube), m_ietay(etacube), m_etabinsx(xbins), m_etabinsy(ybins), m_energy_bins(ebins) {
if (etacube.shape(0) != xbins.size() || etacube.shape(1) != ybins.size() ||
etacube.shape(2) != ebins.size()) {
throw std::invalid_argument(
"The shape of the etacube does not match the shape of the bins");
}
// Cumulative sum in the x direction
for (ssize_t i = 1; i < m_ietax.shape(0); i++) {
for (ssize_t j = 0; j < m_ietax.shape(1); j++) {
for (ssize_t k = 0; k < m_ietax.shape(2); k++) {
m_ietax(i, j, k) += m_ietax(i - 1, j, k);
}
}
}
// Normalize by the highest row, if norm less than 1 don't do anything
for (ssize_t i = 0; i < m_ietax.shape(0); i++) {
for (ssize_t j = 0; j < m_ietax.shape(1); j++) {
for (ssize_t k = 0; k < m_ietax.shape(2); k++) {
auto val = m_ietax(m_ietax.shape(0) - 1, j, k);
double norm = val < 1 ? 1 : val;
m_ietax(i, j, k) /= norm;
}
}
}
// Cumulative sum in the y direction
for (ssize_t i = 0; i < m_ietay.shape(0); i++) {
for (ssize_t j = 1; j < m_ietay.shape(1); j++) {
for (ssize_t k = 0; k < m_ietay.shape(2); k++) {
m_ietay(i, j, k) += m_ietay(i, j - 1, k);
}
}
}
// Normalize by the highest column, if norm less than 1 don't do anything
for (ssize_t i = 0; i < m_ietay.shape(0); i++) {
for (ssize_t j = 0; j < m_ietay.shape(1); j++) {
for (ssize_t k = 0; k < m_ietay.shape(2); k++) {
auto val = m_ietay(i, m_ietay.shape(1) - 1, k);
double norm = val < 1 ? 1 : val;
m_ietay(i, j, k) /= norm;
}
}
}
}
std::vector<Photon> Interpolator::interpolate(const ClusterVector<int32_t>& clusters) {
std::vector<Photon> photons;
photons.reserve(clusters.size());
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
for (size_t i = 0; i<clusters.size(); i++){
auto cluster = clusters.at<Cluster3x3>(i);
Eta2 eta= calculate_eta2(cluster);
Photon photon;
photon.x = cluster.x;
photon.y = cluster.y;
photon.energy = eta.sum;
//Finding the index of the last element that is smaller
//should work fine as long as we have many bins
auto ie = last_smaller(m_energy_bins, photon.energy);
auto ix = last_smaller(m_etabinsx, eta.x);
auto iy = last_smaller(m_etabinsy, eta.y);
double dX{}, dY{};
// cBottomLeft = 0,
// cBottomRight = 1,
// cTopLeft = 2,
// cTopRight = 3
switch (eta.c) {
case cTopLeft:
dX = -1.;
dY = 0.;
break;
case cTopRight:;
dX = 0.;
dY = 0.;
break;
case cBottomLeft:
dX = -1.;
dY = -1.;
break;
case cBottomRight:
dX = 0.;
dY = -1.;
break;
}
photon.x += m_ietax(ix, iy, ie)*2 + dX;
photon.y += m_ietay(ix, iy, ie)*2 + dY;
photons.push_back(photon);
}
}else if(clusters.cluster_size_x() == 2 || clusters.cluster_size_y() == 2){
for (size_t i = 0; i<clusters.size(); i++){
auto cluster = clusters.at<Cluster2x2>(i);
Eta2 eta= calculate_eta2(cluster);
Photon photon;
photon.x = cluster.x;
photon.y = cluster.y;
photon.energy = eta.sum;
//Now do some actual interpolation.
//Find which energy bin the cluster is in
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
//Finding the index of the last element that is smaller
//should work fine as long as we have many bins
auto ie = last_smaller(m_energy_bins, photon.energy);
auto ix = last_smaller(m_etabinsx, eta.x);
auto iy = last_smaller(m_etabinsy, eta.y);
photon.x += m_ietax(ix, iy, ie)*2; //eta goes between 0 and 1 but we could move the hit anywhere in the 2x2
photon.y += m_ietay(ix, iy, ie)*2;
photons.push_back(photon);
}
}else{
throw std::runtime_error("Only 3x3 and 2x2 clusters are supported for interpolation");
}
return photons;
}
} // namespace aare

238
src/JungfrauDataFile.cpp Normal file
View File

@ -0,0 +1,238 @@
#include "aare/JungfrauDataFile.hpp"
#include "aare/algorithm.hpp"
#include "aare/defs.hpp"
#include <cerrno>
#include <fmt/format.h>
namespace aare {
JungfrauDataFile::JungfrauDataFile(const std::filesystem::path &fname) {
if (!std::filesystem::exists(fname)) {
throw std::runtime_error(LOCATION +
"File does not exist: " + fname.string());
}
find_frame_size(fname);
parse_fname(fname);
scan_files();
open_file(m_current_file_index);
}
// FileInterface
Frame JungfrauDataFile::read_frame(){
Frame f(rows(), cols(), Dtype::UINT16);
read_into(reinterpret_cast<std::byte *>(f.data()), nullptr);
return f;
}
Frame JungfrauDataFile::read_frame(size_t frame_number){
seek(frame_number);
Frame f(rows(), cols(), Dtype::UINT16);
read_into(reinterpret_cast<std::byte *>(f.data()), nullptr);
return f;
}
std::vector<Frame> JungfrauDataFile::read_n(size_t n_frames) {
std::vector<Frame> frames;
for(size_t i = 0; i < n_frames; ++i){
frames.push_back(read_frame());
}
return frames;
}
void JungfrauDataFile::read_into(std::byte *image_buf) {
read_into(image_buf, nullptr);
}
void JungfrauDataFile::read_into(std::byte *image_buf, size_t n_frames) {
read_into(image_buf, n_frames, nullptr);
}
size_t JungfrauDataFile::frame_number(size_t frame_index) {
seek(frame_index);
return read_header().framenum;
}
std::array<ssize_t, 2> JungfrauDataFile::shape() const {
return {static_cast<ssize_t>(rows()), static_cast<ssize_t>(cols())};
}
DetectorType JungfrauDataFile::detector_type() const { return DetectorType::Jungfrau; }
std::string JungfrauDataFile::base_name() const { return m_base_name; }
size_t JungfrauDataFile::bytes_per_frame() { return m_bytes_per_frame; }
size_t JungfrauDataFile::pixels_per_frame() { return m_rows * m_cols; }
size_t JungfrauDataFile::bytes_per_pixel() const { return sizeof(pixel_type); }
size_t JungfrauDataFile::bitdepth() const {
return bytes_per_pixel() * bits_per_byte;
}
void JungfrauDataFile::seek(size_t frame_index) {
if (frame_index >= m_total_frames) {
throw std::runtime_error(LOCATION + "Frame index out of range: " +
std::to_string(frame_index));
}
m_current_frame_index = frame_index;
auto file_index = first_larger(m_last_frame_in_file, frame_index);
if (file_index != m_current_file_index)
open_file(file_index);
auto frame_offset = (file_index)
? frame_index - m_last_frame_in_file[file_index - 1]
: frame_index;
auto byte_offset = frame_offset * (m_bytes_per_frame + header_size);
m_fp.seek(byte_offset);
};
size_t JungfrauDataFile::tell() { return m_current_frame_index; }
size_t JungfrauDataFile::total_frames() const { return m_total_frames; }
size_t JungfrauDataFile::rows() const { return m_rows; }
size_t JungfrauDataFile::cols() const { return m_cols; }
size_t JungfrauDataFile::n_files() const { return m_last_frame_in_file.size(); }
void JungfrauDataFile::find_frame_size(const std::filesystem::path &fname) {
static constexpr size_t module_data_size =
header_size + sizeof(pixel_type) * 512 * 1024;
static constexpr size_t half_data_size =
header_size + sizeof(pixel_type) * 256 * 1024;
static constexpr size_t chip_data_size =
header_size + sizeof(pixel_type) * 256 * 256;
auto file_size = std::filesystem::file_size(fname);
if (file_size == 0) {
throw std::runtime_error(LOCATION +
"Cannot guess frame size: file is empty");
}
if (file_size % module_data_size == 0) {
m_rows = 512;
m_cols = 1024;
m_bytes_per_frame = module_data_size - header_size;
} else if (file_size % half_data_size == 0) {
m_rows = 256;
m_cols = 1024;
m_bytes_per_frame = half_data_size - header_size;
} else if (file_size % chip_data_size == 0) {
m_rows = 256;
m_cols = 256;
m_bytes_per_frame = chip_data_size - header_size;
} else {
throw std::runtime_error(LOCATION +
"Cannot find frame size: file size is not a "
"multiple of any known frame size");
}
}
void JungfrauDataFile::parse_fname(const std::filesystem::path &fname) {
m_path = fname.parent_path();
m_base_name = fname.stem();
// find file index, then remove if from the base name
if (auto pos = m_base_name.find_last_of('_'); pos != std::string::npos) {
m_offset = std::stoul(m_base_name.substr(pos + 1));
m_base_name.erase(pos);
}
}
void JungfrauDataFile::scan_files() {
// find how many files we have and the number of frames in each file
m_last_frame_in_file.clear();
size_t file_index = m_offset;
while (std::filesystem::exists(fpath(file_index))) {
auto n_frames = std::filesystem::file_size(fpath(file_index)) /
(m_bytes_per_frame + header_size);
m_last_frame_in_file.push_back(n_frames);
++file_index;
}
// find where we need to open the next file and total number of frames
m_last_frame_in_file = cumsum(m_last_frame_in_file);
m_total_frames = m_last_frame_in_file.back();
}
void JungfrauDataFile::read_into(std::byte *image_buf,
JungfrauDataHeader *header) {
// read header if not passed nullptr
if (header) {
if (auto rc = fread(header, sizeof(JungfrauDataHeader), 1, m_fp.get());
rc != 1) {
throw std::runtime_error(
LOCATION +
"Could not read header from file:" + m_fp.error_msg());
}
} else {
m_fp.seek(header_size, SEEK_CUR);
}
// read data
if (auto rc = fread(image_buf, 1, m_bytes_per_frame, m_fp.get());
rc != m_bytes_per_frame) {
throw std::runtime_error(LOCATION + "Could not read image from file" +
m_fp.error_msg());
}
// prepare for next read
// if we are at the end of the file, open the next file
++m_current_frame_index;
if (m_current_frame_index >= m_last_frame_in_file[m_current_file_index] &&
(m_current_frame_index < m_total_frames)) {
++m_current_file_index;
open_file(m_current_file_index);
}
}
void JungfrauDataFile::read_into(std::byte *image_buf, size_t n_frames,
JungfrauDataHeader *header) {
if (header) {
for (size_t i = 0; i < n_frames; ++i)
read_into(image_buf + i * m_bytes_per_frame, header + i);
}else{
for (size_t i = 0; i < n_frames; ++i)
read_into(image_buf + i * m_bytes_per_frame, nullptr);
}
}
void JungfrauDataFile::read_into(NDArray<uint16_t>* image, JungfrauDataHeader* header) {
if(image->shape()!=shape()){
throw std::runtime_error(LOCATION +
"Image shape does not match file size: " + std::to_string(rows()) + "x" + std::to_string(cols()));
}
read_into(reinterpret_cast<std::byte *>(image->data()), header);
}
JungfrauDataHeader JungfrauDataFile::read_header() {
JungfrauDataHeader header;
if (auto rc = fread(&header, 1, sizeof(header), m_fp.get());
rc != sizeof(header)) {
throw std::runtime_error(LOCATION + "Could not read header from file" +
m_fp.error_msg());
}
m_fp.seek(-header_size, SEEK_CUR);
return header;
}
void JungfrauDataFile::open_file(size_t file_index) {
// fmt::print(stderr, "Opening file: {}\n",
// fpath(file_index+m_offset).string());
m_fp = FilePtr(fpath(file_index + m_offset), "rb");
m_current_file_index = file_index;
}
std::filesystem::path JungfrauDataFile::fpath(size_t file_index) const {
auto fname = fmt::format("{}_{:0{}}.dat", m_base_name, file_index,
n_digits_in_file_index);
return m_path / fname;
}
} // namespace aare

View File

@ -0,0 +1,114 @@
#include "aare/JungfrauDataFile.hpp"
#include <catch2/catch_test_macros.hpp>
#include "test_config.hpp"
using aare::JungfrauDataFile;
using aare::JungfrauDataHeader;
TEST_CASE("Open a Jungfrau data file", "[.files]") {
//we know we have 4 files with 7, 7, 7, and 3 frames
//firs frame number if 1 and the bunch id is frame_number**2
//so we can check the header
auto fpath = test_data_path() / "dat" / "AldoJF500k_000000.dat";
REQUIRE(std::filesystem::exists(fpath));
JungfrauDataFile f(fpath);
REQUIRE(f.rows() == 512);
REQUIRE(f.cols() == 1024);
REQUIRE(f.bytes_per_frame() == 1048576);
REQUIRE(f.pixels_per_frame() == 524288);
REQUIRE(f.bytes_per_pixel() == 2);
REQUIRE(f.bitdepth() == 16);
REQUIRE(f.base_name() == "AldoJF500k");
REQUIRE(f.n_files() == 4);
REQUIRE(f.tell() == 0);
REQUIRE(f.total_frames() == 24);
REQUIRE(f.current_file() == fpath);
//Check that the frame number and buch id is read correctly
for (size_t i = 0; i < 24; ++i) {
JungfrauDataHeader header;
aare::NDArray<uint16_t> image(f.shape());
f.read_into(&image, &header);
REQUIRE(header.framenum == i + 1);
REQUIRE(header.bunchid == (i + 1) * (i + 1));
REQUIRE(image.shape(0) == 512);
REQUIRE(image.shape(1) == 1024);
}
}
TEST_CASE("Seek in a JungfrauDataFile", "[.files]"){
auto fpath = test_data_path() / "dat" / "AldoJF65k_000000.dat";
REQUIRE(std::filesystem::exists(fpath));
JungfrauDataFile f(fpath);
//The file should have 113 frames
f.seek(19);
REQUIRE(f.tell() == 19);
auto h = f.read_header();
REQUIRE(h.framenum == 19+1);
//Reading again does not change the file pointer
auto h2 = f.read_header();
REQUIRE(h2.framenum == 19+1);
f.seek(59);
REQUIRE(f.tell() == 59);
auto h3 = f.read_header();
REQUIRE(h3.framenum == 59+1);
JungfrauDataHeader h4;
aare::NDArray<uint16_t> image(f.shape());
f.read_into(&image, &h4);
REQUIRE(h4.framenum == 59+1);
//now we should be on the next frame
REQUIRE(f.tell() == 60);
REQUIRE(f.read_header().framenum == 60+1);
REQUIRE_THROWS(f.seek(86356)); //out of range
}
TEST_CASE("Open a Jungfrau data file with non zero file index", "[.files]"){
auto fpath = test_data_path() / "dat" / "AldoJF65k_000003.dat";
REQUIRE(std::filesystem::exists(fpath));
JungfrauDataFile f(fpath);
//18 files per data file, opening the 3rd file we ignore the first 3
REQUIRE(f.total_frames() == 113-18*3);
REQUIRE(f.tell() == 0);
//Frame numbers start at 1 in the first file
REQUIRE(f.read_header().framenum == 18*3+1);
// moving relative to the third file
f.seek(5);
REQUIRE(f.read_header().framenum == 18*3+1+5);
// ignoring the first 3 files
REQUIRE(f.n_files() == 4);
REQUIRE(f.current_file().stem() == "AldoJF65k_000003");
}
TEST_CASE("Read into throws if size doesn't match", "[.files]"){
auto fpath = test_data_path() / "dat" / "AldoJF65k_000000.dat";
REQUIRE(std::filesystem::exists(fpath));
JungfrauDataFile f(fpath);
aare::NDArray<uint16_t> image({39, 85});
JungfrauDataHeader header;
REQUIRE_THROWS(f.read_into(&image, &header));
REQUIRE_THROWS(f.read_into(&image, nullptr));
REQUIRE_THROWS(f.read_into(&image));
REQUIRE(f.tell() == 0);
}

View File

@ -2,6 +2,7 @@
#include <array>
#include <catch2/benchmark/catch_benchmark.hpp>
#include <catch2/catch_test_macros.hpp>
#include <numeric>
using aare::NDArray;
using aare::NDView;
@ -34,6 +35,24 @@ TEST_CASE("Construct from an NDView") {
}
}
TEST_CASE("3D NDArray from NDView"){
std::vector<int> data(27);
std::iota(data.begin(), data.end(), 0);
NDView<int, 3> view(data.data(), Shape<3>{3, 3, 3});
NDArray<int, 3> image(view);
REQUIRE(image.shape() == view.shape());
REQUIRE(image.size() == view.size());
REQUIRE(image.data() != view.data());
for(int64_t i=0; i<image.shape(0); i++){
for(int64_t j=0; j<image.shape(1); j++){
for(int64_t k=0; k<image.shape(2); k++){
REQUIRE(image(i, j, k) == view(i, j, k));
}
}
}
}
TEST_CASE("1D image") {
std::array<int64_t, 1> shape{{20}};
NDArray<short, 1> img(shape, 3);
@ -164,14 +183,14 @@ TEST_CASE("Size and shape matches") {
int64_t h = 75;
std::array<int64_t, 2> shape{w, h};
NDArray<double> a{shape};
REQUIRE(a.size() == static_cast<uint64_t>(w * h));
REQUIRE(a.size() == w * h);
REQUIRE(a.shape() == shape);
}
TEST_CASE("Initial value matches for all elements") {
double v = 4.35;
NDArray<double> a{{5, 5}, v};
for (uint32_t i = 0; i < a.size(); ++i) {
for (int i = 0; i < a.size(); ++i) {
REQUIRE(a(i) == v);
}
}

View File

@ -3,6 +3,7 @@
#include <iostream>
#include <vector>
#include <numeric>
using aare::NDView;
using aare::Shape;
@ -21,10 +22,8 @@ TEST_CASE("Element reference 1D") {
}
TEST_CASE("Element reference 2D") {
std::vector<int> vec;
for (int i = 0; i != 12; ++i) {
vec.push_back(i);
}
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
NDView<int, 2> data(vec.data(), Shape<2>{3, 4});
REQUIRE(vec.size() == static_cast<size_t>(data.size()));
@ -58,10 +57,8 @@ TEST_CASE("Element reference 3D") {
}
TEST_CASE("Plus and miuns with single value") {
std::vector<int> vec;
for (int i = 0; i != 12; ++i) {
vec.push_back(i);
}
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
NDView<int, 2> data(vec.data(), Shape<2>{3, 4});
data += 5;
int i = 0;
@ -116,10 +113,8 @@ TEST_CASE("elementwise assign") {
}
TEST_CASE("iterators") {
std::vector<int> vec;
for (int i = 0; i != 12; ++i) {
vec.push_back(i);
}
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
NDView<int, 1> data(vec.data(), Shape<1>{12});
int i = 0;
for (const auto item : data) {
@ -167,27 +162,31 @@ TEST_CASE("divide with another span") {
}
TEST_CASE("Retrieve shape") {
std::vector<int> vec;
for (int i = 0; i != 12; ++i) {
vec.push_back(i);
}
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
NDView<int, 2> data(vec.data(), Shape<2>{3, 4});
REQUIRE(data.shape()[0] == 3);
REQUIRE(data.shape()[1] == 4);
}
TEST_CASE("compare two views") {
std::vector<int> vec1;
for (int i = 0; i != 12; ++i) {
vec1.push_back(i);
}
std::vector<int> vec1(12);
std::iota(vec1.begin(), vec1.end(), 0);
NDView<int, 2> view1(vec1.data(), Shape<2>{3, 4});
std::vector<int> vec2;
for (int i = 0; i != 12; ++i) {
vec2.push_back(i);
}
std::vector<int> vec2(12);
std::iota(vec2.begin(), vec2.end(), 0);
NDView<int, 2> view2(vec2.data(), Shape<2>{3, 4});
REQUIRE((view1 == view2));
}
TEST_CASE("Create a view over a vector"){
std::vector<int> vec(12);
std::iota(vec.begin(), vec.end(), 0);
auto v = aare::make_view(vec);
REQUIRE(v.shape()[0] == 12);
REQUIRE(v[0] == 0);
REQUIRE(v[11] == 11);
}

View File

@ -76,8 +76,7 @@ size_t RawFile::n_mod() const { return n_subfile_parts; }
size_t RawFile::bytes_per_frame() {
// return m_rows * m_cols * m_master.bitdepth() / 8;
return m_geometry.pixels_x * m_geometry.pixels_y * m_master.bitdepth() / 8;
return m_geometry.pixels_x * m_geometry.pixels_y * m_master.bitdepth() / bits_per_byte;
}
size_t RawFile::pixels_per_frame() {
// return m_rows * m_cols;

View File

@ -1,9 +1,12 @@
#include "aare/RawSubFile.hpp"
#include "aare/PixelMap.hpp"
#include "aare/utils/ifstream_helpers.hpp"
#include <cstring> // memcpy
#include <fmt/core.h>
#include <iostream>
namespace aare {
RawSubFile::RawSubFile(const std::filesystem::path &fname,
@ -20,7 +23,7 @@ RawSubFile::RawSubFile(const std::filesystem::path &fname,
}
if (std::filesystem::exists(fname)) {
n_frames = std::filesystem::file_size(fname) /
m_num_frames = std::filesystem::file_size(fname) /
(sizeof(DetectorHeader) + rows * cols * bitdepth / 8);
} else {
throw std::runtime_error(
@ -35,7 +38,7 @@ RawSubFile::RawSubFile(const std::filesystem::path &fname,
}
#ifdef AARE_VERBOSE
fmt::print("Opened file: {} with {} frames\n", m_fname.string(), n_frames);
fmt::print("Opened file: {} with {} frames\n", m_fname.string(), m_num_frames);
fmt::print("m_rows: {}, m_cols: {}, m_bitdepth: {}\n", m_rows, m_cols,
m_bitdepth);
fmt::print("file size: {}\n", std::filesystem::file_size(fname));
@ -43,8 +46,8 @@ RawSubFile::RawSubFile(const std::filesystem::path &fname,
}
void RawSubFile::seek(size_t frame_index) {
if (frame_index >= n_frames) {
throw std::runtime_error(LOCATION + fmt::format("Frame index {} out of range in a file with {} frames", frame_index, n_frames));
if (frame_index >= m_num_frames) {
throw std::runtime_error(LOCATION + fmt::format("Frame index {} out of range in a file with {} frames", frame_index, m_num_frames));
}
m_file.seekg((sizeof(DetectorHeader) + bytes_per_frame()) * frame_index);
}
@ -60,6 +63,10 @@ void RawSubFile::read_into(std::byte *image_buf, DetectorHeader *header) {
m_file.seekg(sizeof(DetectorHeader), std::ios::cur);
}
if (m_file.fail()){
throw std::runtime_error(LOCATION + ifstream_error_msg(m_file));
}
// TODO! expand support for different bitdepths
if (m_pixel_map) {
// read into a temporary buffer and then copy the data to the buffer
@ -79,8 +86,24 @@ void RawSubFile::read_into(std::byte *image_buf, DetectorHeader *header) {
// read directly into the buffer
m_file.read(reinterpret_cast<char *>(image_buf), bytes_per_frame());
}
if (m_file.fail()){
throw std::runtime_error(LOCATION + ifstream_error_msg(m_file));
}
}
void RawSubFile::read_into(std::byte *image_buf, size_t n_frames, DetectorHeader *header) {
for (size_t i = 0; i < n_frames; i++) {
read_into(image_buf, header);
image_buf += bytes_per_frame();
if (header) {
++header;
}
}
}
template <typename T>
void RawSubFile::read_with_map(std::byte *image_buf) {
auto part_buffer = new std::byte[bytes_per_frame()];

159
src/algorithm.test.cpp Normal file
View File

@ -0,0 +1,159 @@
#include <catch2/catch_test_macros.hpp>
#include <aare/algorithm.hpp>
TEST_CASE("Find the closed index in a 1D array", "[algorithm]") {
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::nearest_index(arr, 2.3) == 2);
REQUIRE(aare::nearest_index(arr, 2.6) == 3);
REQUIRE(aare::nearest_index(arr, 45.0) == 4);
REQUIRE(aare::nearest_index(arr, 0.0) == 0);
REQUIRE(aare::nearest_index(arr, -1.0) == 0);
}
TEST_CASE("Passing integers to nearest_index works", "[algorithm]"){
aare::NDArray<int, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::nearest_index(arr, 2) == 2);
REQUIRE(aare::nearest_index(arr, 3) == 3);
REQUIRE(aare::nearest_index(arr, 45) == 4);
REQUIRE(aare::nearest_index(arr, 0) == 0);
REQUIRE(aare::nearest_index(arr, -1) == 0);
}
TEST_CASE("nearest_index works with std::vector", "[algorithm]"){
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::nearest_index(vec, 2.123) == 2);
REQUIRE(aare::nearest_index(vec, 2.66) == 3);
REQUIRE(aare::nearest_index(vec, 4555555.0) == 4);
REQUIRE(aare::nearest_index(vec, 0.0) == 0);
REQUIRE(aare::nearest_index(vec, -10.0) == 0);
}
TEST_CASE("nearest index works with std::array", "[algorithm]"){
std::array<double, 5> arr = {0, 1, 2, 3, 4};
REQUIRE(aare::nearest_index(arr, 2.123) == 2);
REQUIRE(aare::nearest_index(arr, 2.501) == 3);
REQUIRE(aare::nearest_index(arr, 4555555.0) == 4);
REQUIRE(aare::nearest_index(arr, 0.0) == 0);
REQUIRE(aare::nearest_index(arr, -10.0) == 0);
}
TEST_CASE("nearest index when there is no different uses the first element", "[algorithm]"){
std::vector<int> vec = {5, 5, 5, 5, 5};
REQUIRE(aare::nearest_index(vec, 5) == 0);
}
TEST_CASE("nearest index when there is no different uses the first element also when all smaller", "[algorithm]"){
std::vector<int> vec = {5, 5, 5, 5, 5};
REQUIRE(aare::nearest_index(vec, 10) == 0);
}
TEST_CASE("last smaller", "[algorithm]"){
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, -10.0) == 0);
REQUIRE(aare::last_smaller(arr, 0.0) == 0);
REQUIRE(aare::last_smaller(arr, 2.3) == 2);
REQUIRE(aare::last_smaller(arr, 253.) == 4);
}
TEST_CASE("returns last bin strictly smaller", "[algorithm]"){
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, 2.0) == 1);
}
TEST_CASE("last_smaller with all elements smaller returns last element", "[algorithm]"){
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, 50.) == 4);
}
TEST_CASE("last_smaller with all elements bigger returns first element", "[algorithm]"){
aare::NDArray<double, 1> arr({5});
for (ssize_t i = 0; i < arr.size(); i++) {
arr[i] = i;
}
// arr 0, 1, 2, 3, 4
REQUIRE(aare::last_smaller(arr, -50.) == 0);
}
TEST_CASE("last smaller with all elements equal returns the first element", "[algorithm]"){
std::vector<int> vec = {5,5,5,5,5,5,5};
REQUIRE(aare::last_smaller(vec, 5) == 0);
}
TEST_CASE("first_lager with vector", "[algorithm]"){
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::first_larger(vec, 2.5) == 3);
}
TEST_CASE("first_lager with all elements smaller returns last element", "[algorithm]"){
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::first_larger(vec, 50.) == 4);
}
TEST_CASE("first_lager with all elements bigger returns first element", "[algorithm]"){
std::vector<double> vec = {0, 1, 2, 3, 4};
REQUIRE(aare::first_larger(vec, -50.) == 0);
}
TEST_CASE("first_lager with all elements the same as the check returns last", "[algorithm]"){
std::vector<int> vec = {14, 14, 14, 14, 14};
REQUIRE(aare::first_larger(vec, 14) == 4);
}
TEST_CASE("first larger with the same element", "[algorithm]"){
std::vector<int> vec = {7,8,9,10,11};
REQUIRE(aare::first_larger(vec, 9) == 3);
}
TEST_CASE("cumsum works", "[algorithm]"){
std::vector<double> vec = {0, 1, 2, 3, 4};
auto result = aare::cumsum(vec);
REQUIRE(result.size() == vec.size());
REQUIRE(result[0] == 0);
REQUIRE(result[1] == 1);
REQUIRE(result[2] == 3);
REQUIRE(result[3] == 6);
REQUIRE(result[4] == 10);
}
TEST_CASE("cumsum works with empty vector", "[algorithm]"){
std::vector<double> vec = {};
auto result = aare::cumsum(vec);
REQUIRE(result.size() == 0);
}
TEST_CASE("cumsum works with negative numbers", "[algorithm]"){
std::vector<double> vec = {0, -1, -2, -3, -4};
auto result = aare::cumsum(vec);
REQUIRE(result.size() == vec.size());
REQUIRE(result[0] == 0);
REQUIRE(result[1] == -1);
REQUIRE(result[2] == -3);
REQUIRE(result[3] == -6);
REQUIRE(result[4] == -10);
}

View File

@ -1,5 +1,5 @@
#include "aare/decode.hpp"
#include <cmath>
namespace aare {
uint16_t adc_sar_05_decode64to16(uint64_t input){
@ -22,6 +22,10 @@ uint16_t adc_sar_05_decode64to16(uint64_t input){
}
void adc_sar_05_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output){
if(input.shape() != output.shape()){
throw std::invalid_argument(LOCATION + " input and output shapes must match");
}
for(int64_t i = 0; i < input.shape(0); i++){
for(int64_t j = 0; j < input.shape(1); j++){
output(i,j) = adc_sar_05_decode64to16(input(i,j));
@ -49,6 +53,9 @@ uint16_t adc_sar_04_decode64to16(uint64_t input){
}
void adc_sar_04_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> output){
if(input.shape() != output.shape()){
throw std::invalid_argument(LOCATION + " input and output shapes must match");
}
for(int64_t i = 0; i < input.shape(0); i++){
for(int64_t j = 0; j < input.shape(1); j++){
output(i,j) = adc_sar_04_decode64to16(input(i,j));
@ -56,6 +63,40 @@ void adc_sar_04_decode64to16(NDView<uint64_t, 2> input, NDView<uint16_t,2> outpu
}
}
double apply_custom_weights(uint16_t input, const NDView<double, 1> weights) {
if(weights.size() > 16){
throw std::invalid_argument("weights size must be less than or equal to 16");
}
double result = 0.0;
for (ssize_t i = 0; i < weights.size(); ++i) {
result += ((input >> i) & 1) * std::pow(weights[i], i);
}
return result;
}
void apply_custom_weights(NDView<uint16_t, 1> input, NDView<double, 1> output, const NDView<double,1> weights) {
if(input.shape() != output.shape()){
throw std::invalid_argument(LOCATION + " input and output shapes must match");
}
//Calculate weights to avoid repeatedly calling std::pow
std::vector<double> weights_powers(weights.size());
for (ssize_t i = 0; i < weights.size(); ++i) {
weights_powers[i] = std::pow(weights[i], i);
}
// Apply custom weights to each element in the input array
for (ssize_t i = 0; i < input.shape(0); i++) {
double result = 0.0;
for (size_t bit_index = 0; bit_index < weights_powers.size(); ++bit_index) {
result += ((input(i) >> bit_index) & 1) * weights_powers[bit_index];
}
output(i) = result;
}
}
} // namespace aare

80
src/decode.test.cpp Normal file
View File

@ -0,0 +1,80 @@
#include "aare/decode.hpp"
#include <catch2/matchers/catch_matchers_floating_point.hpp>
#include <catch2/catch_test_macros.hpp>
#include "aare/NDArray.hpp"
using Catch::Matchers::WithinAbs;
#include <vector>
TEST_CASE("test_adc_sar_05_decode64to16"){
uint64_t input = 0;
uint16_t output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 0);
// bit 29 on th input is bit 0 on the output
input = 1UL << 29;
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 1);
// test all bits by iteratting through the bitlist
std::vector<int> bitlist = {29, 19, 28, 18, 31, 21, 27, 20, 24, 23, 25, 22};
for (size_t i = 0; i < bitlist.size(); i++) {
input = 1UL << bitlist[i];
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == (1 << i));
}
// test a few "random" values
input = 0;
input |= (1UL << 29);
input |= (1UL << 19);
input |= (1UL << 28);
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 7UL);
input = 0;
input |= (1UL << 18);
input |= (1UL << 27);
input |= (1UL << 25);
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 1096UL);
input = 0;
input |= (1UL << 25);
input |= (1UL << 22);
output = aare::adc_sar_05_decode64to16(input);
CHECK(output == 3072UL);
}
TEST_CASE("test_apply_custom_weights") {
uint16_t input = 1;
aare::NDArray<double, 1> weights_data({3}, 0.0);
weights_data(0) = 1.7;
weights_data(1) = 2.1;
weights_data(2) = 1.8;
auto weights = weights_data.view();
double output = aare::apply_custom_weights(input, weights);
CHECK_THAT(output, WithinAbs(1.0, 0.001));
input = 1 << 1;
output = aare::apply_custom_weights(input, weights);
CHECK_THAT(output, WithinAbs(2.1, 0.001));
input = 1 << 2;
output = aare::apply_custom_weights(input, weights);
CHECK_THAT(output, WithinAbs(3.24, 0.001));
input = 0b111;
output = aare::apply_custom_weights(input, weights);
CHECK_THAT(output, WithinAbs(6.34, 0.001));
}

View File

@ -0,0 +1,18 @@
#include "aare/utils/ifstream_helpers.hpp"
namespace aare {
std::string ifstream_error_msg(std::ifstream &ifs) {
std::ios_base::iostate state = ifs.rdstate();
if (state & std::ios_base::eofbit) {
return " End of file reached";
} else if (state & std::ios_base::badbit) {
return " Bad file stream";
} else if (state & std::ios_base::failbit) {
return " File read failed";
}else{
return " Unknown/no error";
}
}
} // namespace aare

View File

@ -7,6 +7,6 @@ inline auto test_data_path(){
if(const char* env_p = std::getenv("AARE_TEST_DATA")){
return std::filesystem::path(env_p);
}else{
throw std::runtime_error("AARE_TEST_DATA_PATH not set");
throw std::runtime_error("Path to test data: $AARE_TEST_DATA not set");
}
}