Compare commits

..

25 Commits

Author SHA1 Message Date
Khalil Ferjaoui
e412e72e5b Add test script to ensure no leaks in PC queue
All checks were successful
Build on RHEL8 / build (push) Successful in 3m15s
Build on RHEL9 / build (push) Successful in 3m34s
2025-09-15 10:15:42 +02:00
Erik Fröjdh
9008393955 Merge branch 'main' into fix/spsc-move-assign-leak
All checks were successful
Build on RHEL8 / build (push) Successful in 3m13s
Build on RHEL9 / build (push) Successful in 3m21s
2025-09-12 08:47:05 +02:00
74280379ce naive implementation of 3x3 and 5x5 reduction (#210)
All checks were successful
Build on RHEL8 / build (push) Successful in 3m10s
Build on RHEL9 / build (push) Successful in 3m16s
- Still quite far from a state where it can be merged
- Reduce 5x5 to 3x3
- Reduce 3x3 to 2x2

Open issues:

- [ ] Can we generalize it? 
- [ ] Which reductions are needed
- [ ] Naming
2025-09-09 09:08:42 +02:00
474c35cc6b Merge branch 'main' into dev/reduce
All checks were successful
Build on RHEL8 / build (push) Successful in 3m16s
Build on RHEL9 / build (push) Successful in 3m35s
2025-09-08 15:39:27 +02:00
e2a97d3c45 General reduce (#223)
Generalized reduction to 3x3 and 3x3 clusters for general sized
clusters.
2025-09-08 15:22:03 +02:00
Khalil Ferjaoui
a8b87e6b53 Fix: make ProducerConsumerQueue move-safe 2025-09-04 17:55:08 +02:00
12114e7275 added documentation
All checks were successful
Build on RHEL8 / build (push) Successful in 3m10s
Build on RHEL9 / build (push) Successful in 3m12s
2025-09-01 15:29:58 +02:00
7926993bb2 reduction tests for python 2025-09-01 14:15:08 +02:00
ed7fb1f1f9 induce the cluster size of ClusterCollector from ClusterFinderMT - ha… (#225)
All checks were successful
Build on RHEL8 / build (push) Successful in 3m11s
Build on RHEL9 / build (push) Successful in 3m15s
In ClusterCollector induces cluster size from passed ClusterFinderMT.
2025-08-26 09:30:56 +02:00
Erik Fröjdh
8ab98b356b Merge branch 'main' into fix/saverio_cluster_finder
All checks were successful
Build on RHEL9 / build (push) Successful in 3m0s
Build on RHEL8 / build (push) Successful in 3m12s
2025-08-25 09:26:09 +02:00
d908ad3636 removed option to give clustersize
All checks were successful
Build on RHEL8 / build (push) Successful in 3m9s
Build on RHEL9 / build (push) Successful in 3m16s
2025-08-22 15:25:15 +02:00
8733a1d66f added benchmark
All checks were successful
Build on RHEL8 / build (push) Successful in 3m5s
Build on RHEL9 / build (push) Successful in 3m13s
2025-08-22 15:14:05 +02:00
437f7cec89 induce the cluster size of ClusterCollector from ClusterFinderMT - handle backwards compatibility 2025-08-22 10:08:38 +02:00
Erik Fröjdh
6c3524298f bumped version for release
All checks were successful
Build on RHEL8 / build (push) Successful in 3m13s
Build on RHEL9 / build (push) Successful in 3m24s
2025-08-22 09:52:24 +02:00
b59277c4bf 3x3 reduction for general cluszter sizes
All checks were successful
Build on RHEL8 / build (push) Successful in 3m8s
Build on RHEL9 / build (push) Successful in 3m9s
2025-08-19 12:37:55 +02:00
cb163c79b4 reduction to 2x2 clusters for general clusters 2025-08-18 18:23:15 +02:00
Erik Fröjdh
a0fb4900f0 Update RELEASE.md
All checks were successful
Build on RHEL8 / build (push) Successful in 3m7s
Build on RHEL9 / build (push) Successful in 3m10s
2025-08-18 12:16:44 +02:00
Erik Fröjdh
91d74110fa specified glibc in conda build (#222)
Fixed a runtime error on older linux systems, since by mistake we used
glibc from ubutu 24. Same code as in slsDetectorPackage now.
2025-08-18 12:14:54 +02:00
f54e76e6bf view is only allowed on l-value frame (#220)
Vadym accidentally called view() directly on an R-value frame, which
leads to a dangling view pointer.
Adjusted code such that compiler throws an error if called on an R-value
frame.

Co-authored-by: Erik Fröjdh <erik.frojdh@psi.ch>
2025-08-18 11:02:05 +02:00
JFMulvey
c6da36d10b Fixed the order of cluster.data being incorrect (#221)
All checks were successful
Build on RHEL8 / build (push) Successful in 3m4s
Build on RHEL9 / build (push) Successful in 3m11s
While using the cluster finder and saving a cluster, pixels which are
out of bounds are skipped. cluster.data should contain the pedestal
corrected ADU information of each pixel.

However, the counter "i" which keeps track of the position of
cluster.data is only incremented if the pixel was inside the bounds of
the frame.

This means that any clusters close to the frame's edges are not
construed properly. This means that if you want to extract a 3x3 from a
9x9 cluster, it can fail if the cluster data is not properly centered in
the pixel.

Fixed by moving i++ outside the bounds check.

Co-authored-by: Jonathan Mulvey <jonathan.mulvey@psi.ch>
2025-08-14 09:27:02 +02:00
Erik Fröjdh
9a3694b980 Merge branch 'main' into dev/reduce
All checks were successful
Build on RHEL9 / build (push) Successful in 3m10s
Build on RHEL8 / build (push) Successful in 3m11s
2025-07-18 10:19:42 +02:00
Erik Fröjdh
85c3bf7bed Merge branch 'main' into dev/reduce
Some checks failed
Build on RHEL8 / build (push) Failing after 1m51s
Build on RHEL9 / build (push) Successful in 3m16s
2025-07-16 17:04:23 +02:00
Erik Fröjdh
8eb7fec435 Merge branch 'main' into dev/reduce
All checks were successful
Build on RHEL9 / build (push) Successful in 3m4s
Build on RHEL8 / build (push) Successful in 3m7s
2025-07-16 11:13:11 +02:00
Erik Fröjdh
83717571c8 Merge branch 'main' into dev/reduce 2025-06-27 17:10:24 +02:00
froejdh_e
5a9c3b717e naive implementation of 3x3 and 5x5 reduction 2025-06-27 16:36:21 +02:00
29 changed files with 869 additions and 96 deletions

View File

@@ -1,16 +1,22 @@
# Release notes
### head
### 2025.8.22
Features:
- Apply calibration works in G0 if passes a 2D calibration and pedestal
- count pixels that switch
- calculate pedestal (also g0 version)
- NDArray::view() needs an lvalue to reduce issues with the view outliving the array
### 2025.07.18
Bugfixes:
- Now using glibc 2.17 in conda builds (was using the host)
- Fixed shifted pixels in clusters close to the edge of a frame
### 2025.7.18
Features:
@@ -24,7 +30,7 @@ Bugfixes:
- Removed unused file: ClusterFile.cpp
### 2025.05.22
### 2025.5.22
Features:

View File

@@ -1 +1 @@
2025.7.18
2025.8.22

View File

@@ -15,7 +15,7 @@ FetchContent_MakeAvailable(benchmark)
add_executable(benchmarks)
target_sources(benchmarks PRIVATE ndarray_benchmark.cpp calculateeta_benchmark.cpp)
target_sources(benchmarks PRIVATE ndarray_benchmark.cpp calculateeta_benchmark.cpp reduce_benchmark.cpp)
# Link Google Benchmark and other necessary libraries
target_link_libraries(benchmarks PRIVATE benchmark::benchmark aare_core aare_compiler_flags)

View File

@@ -0,0 +1,168 @@
#include "aare/Cluster.hpp"
#include <benchmark/benchmark.h>
using namespace aare;
class ClustersForReduceFixture : public benchmark::Fixture {
public:
Cluster<int, 5, 5> cluster_5x5{};
Cluster<int, 3, 3> cluster_3x3{};
private:
using benchmark::Fixture::SetUp;
void SetUp([[maybe_unused]] const benchmark::State &state) override {
int temp_data[25] = {1, 1, 1, 1, 1, 1, 1, 2, 1, 1,
1, 2, 3, 1, 2, 1, 1, 1, 1, 2};
std::copy(std::begin(temp_data), std::end(temp_data),
std::begin(cluster_5x5.data));
cluster_5x5.x = 5;
cluster_5x5.y = 5;
int temp_data2[9] = {1, 1, 1, 2, 3, 1, 2, 2, 1};
std::copy(std::begin(temp_data2), std::end(temp_data2),
std::begin(cluster_3x3.data));
cluster_3x3.x = 5;
cluster_3x3.y = 5;
}
// void TearDown(::benchmark::State& state) {
// }
};
template <typename T>
Cluster<T, 3, 3, int16_t> reduce_to_3x3(const Cluster<T, 5, 5, int16_t> &c) {
Cluster<T, 3, 3, int16_t> result;
// Write out the sums in the hope that the compiler can optimize this
std::array<T, 9> sum_3x3_subclusters;
// Write out the sums in the hope that the compiler can optimize this
sum_3x3_subclusters[0] = c.data[0] + c.data[1] + c.data[2] + c.data[5] +
c.data[6] + c.data[7] + c.data[10] + c.data[11] +
c.data[12];
sum_3x3_subclusters[1] = c.data[1] + c.data[2] + c.data[3] + c.data[6] +
c.data[7] + c.data[8] + c.data[11] + c.data[12] +
c.data[13];
sum_3x3_subclusters[2] = c.data[2] + c.data[3] + c.data[4] + c.data[7] +
c.data[8] + c.data[9] + c.data[12] + c.data[13] +
c.data[14];
sum_3x3_subclusters[3] = c.data[5] + c.data[6] + c.data[7] + c.data[10] +
c.data[11] + c.data[12] + c.data[15] + c.data[16] +
c.data[17];
sum_3x3_subclusters[4] = c.data[6] + c.data[7] + c.data[8] + c.data[11] +
c.data[12] + c.data[13] + c.data[16] + c.data[17] +
c.data[18];
sum_3x3_subclusters[5] = c.data[7] + c.data[8] + c.data[9] + c.data[12] +
c.data[13] + c.data[14] + c.data[17] + c.data[18] +
c.data[19];
sum_3x3_subclusters[6] = c.data[10] + c.data[11] + c.data[12] + c.data[15] +
c.data[16] + c.data[17] + c.data[20] + c.data[21] +
c.data[22];
sum_3x3_subclusters[7] = c.data[11] + c.data[12] + c.data[13] + c.data[16] +
c.data[17] + c.data[18] + c.data[21] + c.data[22] +
c.data[23];
sum_3x3_subclusters[8] = c.data[12] + c.data[13] + c.data[14] + c.data[17] +
c.data[18] + c.data[19] + c.data[22] + c.data[23] +
c.data[24];
auto index = std::max_element(sum_3x3_subclusters.begin(),
sum_3x3_subclusters.end()) -
sum_3x3_subclusters.begin();
switch (index) {
case 0:
result.x = c.x - 1;
result.y = c.y + 1;
result.data = {c.data[0], c.data[1], c.data[2], c.data[5], c.data[6],
c.data[7], c.data[10], c.data[11], c.data[12]};
break;
case 1:
result.x = c.x;
result.y = c.y + 1;
result.data = {c.data[1], c.data[2], c.data[3], c.data[6], c.data[7],
c.data[8], c.data[11], c.data[12], c.data[13]};
break;
case 2:
result.x = c.x + 1;
result.y = c.y + 1;
result.data = {c.data[2], c.data[3], c.data[4], c.data[7], c.data[8],
c.data[9], c.data[12], c.data[13], c.data[14]};
break;
case 3:
result.x = c.x - 1;
result.y = c.y;
result.data = {c.data[5], c.data[6], c.data[7],
c.data[10], c.data[11], c.data[12],
c.data[15], c.data[16], c.data[17]};
break;
case 4:
result.x = c.x + 1;
result.y = c.y;
result.data = {c.data[6], c.data[7], c.data[8],
c.data[11], c.data[12], c.data[13],
c.data[16], c.data[17], c.data[18]};
break;
case 5:
result.x = c.x + 1;
result.y = c.y;
result.data = {c.data[7], c.data[8], c.data[9],
c.data[12], c.data[13], c.data[14],
c.data[17], c.data[18], c.data[19]};
break;
case 6:
result.x = c.x + 1;
result.y = c.y - 1;
result.data = {c.data[10], c.data[11], c.data[12],
c.data[15], c.data[16], c.data[17],
c.data[20], c.data[21], c.data[22]};
break;
case 7:
result.x = c.x + 1;
result.y = c.y - 1;
result.data = {c.data[11], c.data[12], c.data[13],
c.data[16], c.data[17], c.data[18],
c.data[21], c.data[22], c.data[23]};
break;
case 8:
result.x = c.x + 1;
result.y = c.y - 1;
result.data = {c.data[12], c.data[13], c.data[14],
c.data[17], c.data[18], c.data[19],
c.data[22], c.data[23], c.data[24]};
break;
}
return result;
}
BENCHMARK_F(ClustersForReduceFixture, Reduce2x2)(benchmark::State &st) {
for (auto _ : st) {
// This code gets timed
benchmark::DoNotOptimize(reduce_to_2x2<int, 3, 3, int16_t>(
cluster_3x3)); // make sure compiler evaluates the expression
}
}
BENCHMARK_F(ClustersForReduceFixture, SpecificReduce2x2)(benchmark::State &st) {
for (auto _ : st) {
// This code gets timed
benchmark::DoNotOptimize(reduce_to_2x2<int>(cluster_3x3));
}
}
BENCHMARK_F(ClustersForReduceFixture, Reduce3x3)(benchmark::State &st) {
for (auto _ : st) {
// This code gets timed
benchmark::DoNotOptimize(
reduce_to_3x3<int, 5, 5, int16_t>(cluster_5x5));
}
}
BENCHMARK_F(ClustersForReduceFixture, SpecificReduce3x3)(benchmark::State &st) {
for (auto _ : st) {
// This code gets timed
benchmark::DoNotOptimize(reduce_to_3x3<int>(cluster_5x5));
}
}

View File

@@ -3,3 +3,14 @@ python:
- 3.12
- 3.13
c_compiler:
- gcc # [linux]
c_stdlib:
- sysroot # [linux]
cxx_compiler:
- gxx # [linux]
c_stdlib_version: # [linux]
- 2.17 # [linux]

View File

@@ -16,6 +16,8 @@ build:
requirements:
build:
- {{ compiler('c') }}
- {{ stdlib("c") }}
- {{ compiler('cxx') }}
- cmake
- ninja

View File

@@ -12,4 +12,11 @@ ClusterVector
:members:
:undoc-members:
:private-members:
**Free Functions:**
.. doxygenfunction:: aare::reduce_to_3x3(const ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>>&)
.. doxygenfunction:: aare::reduce_to_2x2(const ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>>&)

View File

@@ -33,4 +33,17 @@ C++ functions that support the ClusterVector or to view it as a numpy array.
:members:
:undoc-members:
:show-inheritance:
:inherited-members:
:inherited-members:
**Free Functions:**
.. autofunction:: reduce_to_3x3
:noindex:
Reduce a single Cluster to 3x3 by taking the 3x3 subcluster with highest photon energy.
.. autofunction:: reduce_to_2x2
:noindex:
Reduce a single Cluster to 2x2 by taking the 2x2 subcluster with highest photon energy.

View File

@@ -28,7 +28,7 @@ enum class pixel : int {
template <typename T> struct Eta2 {
double x;
double y;
int c;
int c{0};
T sum;
};
@@ -70,6 +70,8 @@ calculate_eta2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
size_t index_bottom_left_max_2x2_subcluster =
(int(c / (ClusterSizeX - 1))) * ClusterSizeX + c % (ClusterSizeX - 1);
// calculate direction of gradient
// check that cluster center is in max subcluster
if (cluster_center_index != index_bottom_left_max_2x2_subcluster &&
cluster_center_index != index_bottom_left_max_2x2_subcluster + 1 &&
@@ -128,12 +130,15 @@ Eta2<T> calculate_eta2(const Cluster<T, 2, 2, int16_t> &cl) {
Eta2<T> eta{};
if ((cl.data[0] + cl.data[1]) != 0)
eta.x = static_cast<double>(cl.data[1]) / (cl.data[0] + cl.data[1]);
eta.x = static_cast<double>(cl.data[1]) /
(cl.data[0] + cl.data[1]); // between (0,1) the closer to zero
// left value probably larger
if ((cl.data[0] + cl.data[2]) != 0)
eta.y = static_cast<double>(cl.data[2]) / (cl.data[0] + cl.data[2]);
eta.y = static_cast<double>(cl.data[2]) /
(cl.data[0] + cl.data[2]); // between (0,1) the closer to zero
// bottom value probably larger
eta.sum = cl.sum();
eta.c = static_cast<int>(corner::cBottomLeft); // TODO! This is not correct,
// but need to put something
return eta;
}
@@ -150,13 +155,11 @@ template <typename T> Eta2<T> calculate_eta3(const Cluster<T, 3, 3> &cl) {
eta.sum = sum;
eta.c = corner::cBottomLeft;
if ((cl.data[3] + cl.data[4] + cl.data[5]) != 0)
eta.x = static_cast<double>(-cl.data[3] + cl.data[3 + 2]) /
(cl.data[3] + cl.data[4] + cl.data[5]);
(cl.data[3] + cl.data[4] + cl.data[5]); // (-1,1)
if ((cl.data[1] + cl.data[4] + cl.data[7]) != 0)

158
include/aare/Cluster.hpp Normal file → Executable file
View File

@@ -8,6 +8,7 @@
#pragma once
#include "logger.hpp"
#include <algorithm>
#include <array>
#include <cstdint>
@@ -74,6 +75,163 @@ struct Cluster {
}
};
/**
* @brief Reduce a cluster to a 2x2 cluster by selecting the 2x2 block with the
* highest sum.
* @param c Cluster to reduce
* @return reduced cluster
*/
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = int16_t>
Cluster<T, 2, 2, CoordType>
reduce_to_2x2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &c) {
static_assert(ClusterSizeX >= 2 && ClusterSizeY >= 2,
"Cluster sizes must be at least 2x2 for reduction to 2x2");
// TODO maybe add sanity check and check that center is in max subcluster
Cluster<T, 2, 2, CoordType> result;
auto [sum, index] = c.max_sum_2x2();
int16_t cluster_center_index =
(ClusterSizeX / 2) + (ClusterSizeY / 2) * ClusterSizeX;
int16_t index_bottom_left_max_2x2_subcluster =
(int(index / (ClusterSizeX - 1))) * ClusterSizeX +
index % (ClusterSizeX - 1);
result.x =
c.x + (index_bottom_left_max_2x2_subcluster - cluster_center_index) %
ClusterSizeX;
result.y =
c.y - (index_bottom_left_max_2x2_subcluster - cluster_center_index) /
ClusterSizeX;
result.data = {
c.data[index_bottom_left_max_2x2_subcluster],
c.data[index_bottom_left_max_2x2_subcluster + 1],
c.data[index_bottom_left_max_2x2_subcluster + ClusterSizeX],
c.data[index_bottom_left_max_2x2_subcluster + ClusterSizeX + 1]};
return result;
}
template <typename T>
Cluster<T, 2, 2, int16_t> reduce_to_2x2(const Cluster<T, 3, 3, int16_t> &c) {
Cluster<T, 2, 2, int16_t> result;
auto [s, i] = c.max_sum_2x2();
switch (i) {
case 0:
result.x = c.x - 1;
result.y = c.y + 1;
result.data = {c.data[0], c.data[1], c.data[3], c.data[4]};
break;
case 1:
result.x = c.x;
result.y = c.y + 1;
result.data = {c.data[1], c.data[2], c.data[4], c.data[5]};
break;
case 2:
result.x = c.x - 1;
result.y = c.y;
result.data = {c.data[3], c.data[4], c.data[6], c.data[7]};
break;
case 3:
result.x = c.x;
result.y = c.y;
result.data = {c.data[4], c.data[5], c.data[7], c.data[8]};
break;
}
return result;
}
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = int16_t>
inline std::pair<T, uint16_t>
max_3x3_sum(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cluster) {
if constexpr (ClusterSizeX == 3 && ClusterSizeY == 3) {
return std::make_pair(cluster.sum(), 0);
} else {
size_t index = 0;
T max_3x3_subcluster_sum = 0;
for (size_t i = 0; i < ClusterSizeY - 2; ++i) {
for (size_t j = 0; j < ClusterSizeX - 2; ++j) {
T sum = cluster.data[i * ClusterSizeX + j] +
cluster.data[i * ClusterSizeX + j + 1] +
cluster.data[i * ClusterSizeX + j + 2] +
cluster.data[(i + 1) * ClusterSizeX + j] +
cluster.data[(i + 1) * ClusterSizeX + j + 1] +
cluster.data[(i + 1) * ClusterSizeX + j + 2] +
cluster.data[(i + 2) * ClusterSizeX + j] +
cluster.data[(i + 2) * ClusterSizeX + j + 1] +
cluster.data[(i + 2) * ClusterSizeX + j + 2];
if (sum > max_3x3_subcluster_sum) {
max_3x3_subcluster_sum = sum;
index = i * (ClusterSizeX - 2) + j;
}
}
}
return std::make_pair(max_3x3_subcluster_sum, index);
}
}
/**
* @brief Reduce a cluster to a 3x3 cluster by selecting the 3x3 block with the
* highest sum.
* @param c Cluster to reduce
* @return reduced cluster
*/
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = int16_t>
Cluster<T, 3, 3, CoordType>
reduce_to_3x3(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &c) {
static_assert(ClusterSizeX >= 3 && ClusterSizeY >= 3,
"Cluster sizes must be at least 3x3 for reduction to 3x3");
Cluster<T, 3, 3, CoordType> result;
// TODO maybe add sanity check and check that center is in max subcluster
auto [sum, index] = max_3x3_sum(c);
int16_t cluster_center_index =
(ClusterSizeX / 2) + (ClusterSizeY / 2) * ClusterSizeX;
int16_t index_center_max_3x3_subcluster =
(int(index / (ClusterSizeX - 2))) * ClusterSizeX + ClusterSizeX +
index % (ClusterSizeX - 2) + 1;
int16_t index_3x3_subcluster_cluster_center =
int((cluster_center_index - 1 - ClusterSizeX) / ClusterSizeX) *
(ClusterSizeX - 2) +
(cluster_center_index - 1 - ClusterSizeX) % ClusterSizeX;
result.x =
c.x + (index % (ClusterSizeX - 2) -
(index_3x3_subcluster_cluster_center % (ClusterSizeX - 2)));
result.y =
c.y - (index / (ClusterSizeX - 2) -
(index_3x3_subcluster_cluster_center / (ClusterSizeX - 2)));
result.data = {c.data[index_center_max_3x3_subcluster - ClusterSizeX - 1],
c.data[index_center_max_3x3_subcluster - ClusterSizeX],
c.data[index_center_max_3x3_subcluster - ClusterSizeX + 1],
c.data[index_center_max_3x3_subcluster - 1],
c.data[index_center_max_3x3_subcluster],
c.data[index_center_max_3x3_subcluster + 1],
c.data[index_center_max_3x3_subcluster + ClusterSizeX - 1],
c.data[index_center_max_3x3_subcluster + ClusterSizeX],
c.data[index_center_max_3x3_subcluster + ClusterSizeX + 1]};
return result;
}
// Type Traits for is_cluster_type
template <typename T>
struct is_cluster : std::false_type {}; // Default case: Not a Cluster

View File

@@ -19,11 +19,9 @@ class ClusterFinder {
const PEDESTAL_TYPE c3;
Pedestal<PEDESTAL_TYPE> m_pedestal;
ClusterVector<ClusterType> m_clusters;
const uint32_t ClusterSizeX;
const uint32_t ClusterSizeY;
static const uint8_t SavedClusterSizeX = ClusterType::cluster_size_x;
static const uint8_t SavedClusterSizeY = ClusterType::cluster_size_y;
static const uint8_t ClusterSizeX = ClusterType::cluster_size_x;
static const uint8_t ClusterSizeY = ClusterType::cluster_size_y;
using CT = typename ClusterType::value_type;
public:
@@ -36,12 +34,10 @@ class ClusterFinder {
*
*/
ClusterFinder(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
size_t capacity = 1000000,
uint32_t cluster_size_x = 3, uint32_t cluster_size_y = 3)
size_t capacity = 1000000)
: m_image_size(image_size), m_nSigma(nSigma),
c2(sqrt((cluster_size_y + 1) / 2 * (cluster_size_x + 1) / 2)),
c3(sqrt(cluster_size_x * cluster_size_y)),
ClusterSizeX(cluster_size_x), ClusterSizeY(cluster_size_y),
c2(sqrt((ClusterSizeY + 1) / 2 * (ClusterSizeX + 1) / 2)),
c3(sqrt(ClusterSizeX * ClusterSizeY)),
m_pedestal(image_size[0], image_size[1]), m_clusters(capacity) {
LOG(logDEBUG) << "ClusterFinder: "
<< "image_size: " << image_size[0] << "x" << image_size[1]
@@ -78,9 +74,6 @@ class ClusterFinder {
// // 4,4 -> +/- 2
int dy = ClusterSizeY / 2;
int dx = ClusterSizeX / 2;
int dy2 = SavedClusterSizeY / 2;
int dx2 = SavedClusterSizeX / 2;
int has_center_pixel_x =
ClusterSizeX %
2; // for even sized clusters there is no proper cluster center and
@@ -142,14 +135,16 @@ class ClusterFinder {
// It's worth redoing the look since most of the time we
// don't have a photon
int i = 0;
for (int ir = -dy2; ir < dy2 + has_center_pixel_y; ir++) {
for (int ic = -dx2; ic < dx2 + has_center_pixel_y; ic++) {
for (int ir = -dy; ir < dy + has_center_pixel_y; ir++) {
for (int ic = -dx; ic < dx + has_center_pixel_y; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
iy + ir >= 0 && iy + ir < frame.shape(0)) {
CT tmp = static_cast<CT>(frame(iy + ir, ix + ic)) - static_cast<CT>(m_pedestal.mean(iy + ir, ix + ic));
cluster.data[i] = tmp; // Watch for out of bounds access
CT tmp =
static_cast<CT>(frame(iy + ir, ix + ic)) -
static_cast<CT>(
m_pedestal.mean(iy + ir, ix + ic));
cluster.data[i] =
tmp; // Watch for out of bounds access
}
i++;
}

View File

@@ -121,8 +121,7 @@ class ClusterFinderMT {
* @param n_threads number of threads to use
*/
ClusterFinderMT(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
size_t capacity = 2000, size_t n_threads = 3,
uint32_t cluster_size_x = 3, uint32_t cluster_size_y = 3)
size_t capacity = 2000, size_t n_threads = 3)
: m_n_threads(n_threads) {
LOG(logDEBUG1) << "ClusterFinderMT: "
@@ -135,7 +134,7 @@ class ClusterFinderMT {
m_cluster_finders.push_back(
std::make_unique<
ClusterFinder<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>>(
image_size, nSigma, capacity, cluster_size_x, cluster_size_y));
image_size, nSigma, capacity));
}
for (size_t i = 0; i < n_threads; i++) {
m_input_queues.emplace_back(std::make_unique<InputQueue>(200));

View File

@@ -32,8 +32,7 @@ class ClusterVector; // Forward declaration
*/
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType>
class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>>
{
class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
std::vector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> m_data{};
int32_t m_frame_number{0}; // TODO! Check frame number size and type
@@ -173,4 +172,40 @@ class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>>
}
};
/**
* @brief Reduce a cluster to a 2x2 cluster by selecting the 2x2 block with the
* highest sum.
* @param cv Clustervector containing clusters to reduce
* @return Clustervector with reduced clusters
*/
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = uint16_t>
ClusterVector<Cluster<T, 2, 2, CoordType>> reduce_to_2x2(
const ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>>
&cv) {
ClusterVector<Cluster<T, 2, 2, CoordType>> result;
for (const auto &c : cv) {
result.push_back(reduce_to_2x2(c));
}
return result;
}
/**
* @brief Reduce a cluster to a 3x3 cluster by selecting the 3x3 block with the
* highest sum.
* @param cv Clustervector containing clusters to reduce
* @return Clustervector with reduced clusters
*/
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = uint16_t>
ClusterVector<Cluster<T, 3, 3, CoordType>> reduce_to_3x3(
const ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>>
&cv) {
ClusterVector<Cluster<T, 3, 3, CoordType>> result;
for (const auto &c : cv) {
result.push_back(reduce_to_3x3(c));
}
return result;
}
} // namespace aare

View File

@@ -105,7 +105,7 @@ class Frame {
* @tparam T type of the pixels
* @return NDView<T, 2>
*/
template <typename T> NDView<T, 2> view() {
template <typename T> NDView<T, 2> view() & {
std::array<ssize_t, 2> shape = {static_cast<ssize_t>(m_rows),
static_cast<ssize_t>(m_cols)};
T *data = reinterpret_cast<T *>(m_data);

View File

@@ -45,19 +45,63 @@ template <class T> struct ProducerConsumerQueue {
ProducerConsumerQueue(const ProducerConsumerQueue &) = delete;
ProducerConsumerQueue &operator=(const ProducerConsumerQueue &) = delete;
ProducerConsumerQueue(ProducerConsumerQueue &&other) {
// ProducerConsumerQueue(ProducerConsumerQueue &&other) {
// size_ = other.size_;
// records_ = other.records_;
// other.records_ = nullptr;
// readIndex_ = other.readIndex_.load(std::memory_order_acquire);
// writeIndex_ = other.writeIndex_.load(std::memory_order_acquire);
// }
ProducerConsumerQueue(ProducerConsumerQueue&& other) noexcept {
size_ = other.size_;
records_ = other.records_;
readIndex_.store(other.readIndex_.load(std::memory_order_acquire),
std::memory_order_relaxed);
writeIndex_.store(other.writeIndex_.load(std::memory_order_acquire),
std::memory_order_relaxed);
other.records_ = nullptr;
readIndex_ = other.readIndex_.load(std::memory_order_acquire);
writeIndex_ = other.writeIndex_.load(std::memory_order_acquire);
other.size_ = 0;
other.readIndex_.store(0, std::memory_order_relaxed);
other.writeIndex_.store(0, std::memory_order_relaxed);
}
ProducerConsumerQueue &operator=(ProducerConsumerQueue &&other) {
// ProducerConsumerQueue &operator=(ProducerConsumerQueue &&other) {
// size_ = other.size_;
// records_ = other.records_;
// other.records_ = nullptr;
// readIndex_ = other.readIndex_.load(std::memory_order_acquire);
// writeIndex_ = other.writeIndex_.load(std::memory_order_acquire);
// return *this;
// }
ProducerConsumerQueue& operator=(ProducerConsumerQueue&& other) {
if (this == &other) return *this;
//Destroy existing elements and free old storage
if (records_ && !std::is_trivially_destructible<T>::value) {
size_t r = readIndex_.load(std::memory_order_relaxed);
size_t w = writeIndex_.load(std::memory_order_relaxed);
while (r != w) {
records_[r].~T();
if (++r == size_) r = 0;
}
}
std::free(records_);
//Steal other's state
size_ = other.size_;
records_ = other.records_;
readIndex_.store( other.readIndex_.load(std::memory_order_acquire), std::memory_order_relaxed );
writeIndex_.store( other.writeIndex_.load(std::memory_order_acquire), std::memory_order_relaxed );
//leave 'other' empty and harmless
other.records_ = nullptr;
readIndex_ = other.readIndex_.load(std::memory_order_acquire);
writeIndex_ = other.writeIndex_.load(std::memory_order_acquire);
other.size_ = 0;
other.readIndex_.store(0, std::memory_order_relaxed);
other.writeIndex_.store(0, std::memory_order_relaxed);
return *this;
}

View File

@@ -26,34 +26,33 @@ def _get_class(name, cluster_size, dtype):
def ClusterFinder(image_size, saved_cluster_size, checked_cluster_size, n_sigma=5, dtype = np.int32, capacity = 1024):
def ClusterFinder(image_size, cluster_size, n_sigma=5, dtype = np.int32, capacity = 1024):
"""
Factory function to create a ClusterFinder object. Provides a cleaner syntax for
the templated ClusterFinder in C++.
"""
cls = _get_class("ClusterFinder", saved_cluster_size, dtype)
return cls(image_size, n_sigma=n_sigma, capacity=capacity, cluster_size_x=checked_cluster_size[0], cluster_size_y=checked_cluster_size[1])
cls = _get_class("ClusterFinder", cluster_size, dtype)
return cls(image_size, n_sigma=n_sigma, capacity=capacity)
def ClusterFinderMT(image_size, saved_cluster_size = (3,3), checked_cluster_size = (3,3), dtype=np.int32, n_sigma=5, capacity = 1024, n_threads = 3):
def ClusterFinderMT(image_size, cluster_size = (3,3), dtype=np.int32, n_sigma=5, capacity = 1024, n_threads = 3):
"""
Factory function to create a ClusterFinderMT object. Provides a cleaner syntax for
the templated ClusterFinderMT in C++.
"""
cls = _get_class("ClusterFinderMT", saved_cluster_size, dtype)
return cls(image_size, n_sigma=n_sigma, capacity=capacity, n_threads=n_threads, cluster_size_x=checked_cluster_size[0], cluster_size_y=checked_cluster_size[1])
cls = _get_class("ClusterFinderMT", cluster_size, dtype)
return cls(image_size, n_sigma=n_sigma, capacity=capacity, n_threads=n_threads)
def ClusterCollector(clusterfindermt, cluster_size = (3,3), dtype=np.int32):
def ClusterCollector(clusterfindermt, dtype=np.int32):
"""
Factory function to create a ClusterCollector object. Provides a cleaner syntax for
the templated ClusterCollector in C++.
"""
cls = _get_class("ClusterCollector", cluster_size, dtype)
cls = _get_class("ClusterCollector", clusterfindermt.cluster_size, dtype)
return cls(clusterfindermt)
def ClusterFileSink(clusterfindermt, cluster_file, dtype=np.int32):

View File

@@ -17,7 +17,7 @@ from .ClusterVector import ClusterVector
from ._aare import fit_gaus, fit_pol1, fit_scurve, fit_scurve2
from ._aare import Interpolator
from ._aare import calculate_eta2
from ._aare import reduce_to_2x2, reduce_to_3x3
from ._aare import apply_custom_weights

View File

@@ -24,7 +24,8 @@ void define_Cluster(py::module &m, const std::string &typestr) {
py::class_<Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>>(
m, class_name.c_str(), py::buffer_protocol())
.def(py::init([](uint8_t x, uint8_t y, py::array_t<Type> data) {
.def(py::init([](uint8_t x, uint8_t y,
py::array_t<Type, py::array::forcecast> data) {
py::buffer_info buf_info = data.request();
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType> cluster;
cluster.x = x;
@@ -34,31 +35,58 @@ void define_Cluster(py::module &m, const std::string &typestr) {
cluster.data[i] = r(i);
}
return cluster;
}));
}))
/*
//TODO! Review if to keep or not
.def_property(
"data",
[](ClusterType &c) -> py::array {
return py::array(py::buffer_info(
c.data, sizeof(Type),
py::format_descriptor<Type>::format(), // Type
// format
1, // Number of dimensions
{static_cast<ssize_t>(ClusterSizeX *
ClusterSizeY)}, // Shape (flattened)
{sizeof(Type)} // Stride (step size between elements)
));
// TODO! Review if to keep or not
.def_property_readonly(
"data",
[](Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType> &c)
-> py::array {
return py::array(py::buffer_info(
c.data.data(), sizeof(Type),
py::format_descriptor<Type>::format(), // Type
// format
2, // Number of dimensions
{static_cast<ssize_t>(ClusterSizeX),
static_cast<ssize_t>(ClusterSizeY)}, // Shape (flattened)
{sizeof(Type) * ClusterSizeY, sizeof(Type)}
// Stride (step size between elements)
));
})
.def_readonly("x",
&Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>::x)
.def_readonly("y",
&Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>::y);
}
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = int16_t>
void reduce_to_3x3(py::module &m) {
m.def(
"reduce_to_3x3",
[](const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
return reduce_to_3x3(cl);
},
[](ClusterType &c, py::array_t<Type> arr) {
py::buffer_info buf_info = arr.request();
Type *ptr = static_cast<Type *>(buf_info.ptr);
std::copy(ptr, ptr + ClusterSizeX * ClusterSizeY,
c.data); // TODO dont iterate over centers!!!
py::return_value_policy::move,
"Reduce cluster to 3x3 subcluster by taking the 3x3 subcluster with "
"the highest photon energy.");
}
});
*/
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = int16_t>
void reduce_to_2x2(py::module &m) {
m.def(
"reduce_to_2x2",
[](const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
return reduce_to_2x2(cl);
},
py::return_value_policy::move,
"Reduce cluster to 2x2 subcluster by taking the 2x2 subcluster with "
"the highest photon energy.");
}
#pragma GCC diagnostic pop

View File

@@ -30,9 +30,8 @@ void define_ClusterFinder(py::module &m, const std::string &typestr) {
py::class_<ClusterFinder<ClusterType, uint16_t, pd_type>>(
m, class_name.c_str())
.def(py::init<Shape<2>, pd_type, size_t, uint32_t, uint32_t>(), py::arg("image_size"),
py::arg("n_sigma") = 5.0, py::arg("capacity") = 1'000'000,
py::arg("cluster_size_x") = 3, py::arg("cluster_size_y") = 3)
.def(py::init<Shape<2>, pd_type, size_t>(), py::arg("image_size"),
py::arg("n_sigma") = 5.0, py::arg("capacity") = 1'000'000)
.def("push_pedestal_frame",
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
py::array_t<uint16_t> frame) {

View File

@@ -30,10 +30,9 @@ void define_ClusterFinderMT(py::module &m, const std::string &typestr) {
py::class_<ClusterFinderMT<ClusterType, uint16_t, pd_type>>(
m, class_name.c_str())
.def(py::init<Shape<2>, pd_type, size_t, size_t, uint32_t, uint32_t>(),
.def(py::init<Shape<2>, pd_type, size_t, size_t>(),
py::arg("image_size"), py::arg("n_sigma") = 5.0,
py::arg("capacity") = 2048, py::arg("n_threads") = 3,
py::arg("cluster_size_x") = 3, py::arg("cluster_size_y") = 3)
py::arg("capacity") = 2048, py::arg("n_threads") = 3)
.def("push_pedestal_frame",
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
py::array_t<uint16_t> frame) {

View File

@@ -104,4 +104,47 @@ void define_ClusterVector(py::module &m, const std::string &typestr) {
});
}
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = uint16_t>
void define_2x2_reduction(py::module &m) {
m.def(
"reduce_to_2x2",
[](const ClusterVector<
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>> &cv) {
return new ClusterVector<Cluster<Type, 2, 2, CoordType>>(
reduce_to_2x2(cv));
},
R"(
Reduce cluster to 2x2 subcluster by taking the 2x2 subcluster with
the highest photon energy."
Parameters
----------
cv : ClusterVector
)",
py::arg("clustervector"));
}
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
typename CoordType = uint16_t>
void define_3x3_reduction(py::module &m) {
m.def(
"reduce_to_3x3",
[](const ClusterVector<
Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>> &cv) {
return new ClusterVector<Cluster<Type, 3, 3, CoordType>>(
reduce_to_3x3(cv));
},
R"(
Reduce cluster to 3x3 subcluster by taking the 3x3 subcluster with
the highest photon energy."
Parameters
----------
cv : ClusterVector
)",
py::arg("clustervector"));
}
#pragma GCC diagnostic pop

View File

@@ -47,7 +47,9 @@ double, 'f' for float)
define_ClusterFileSink<T, N, M, U>(m, "Cluster" #N "x" #M #TYPE_CODE); \
define_ClusterCollector<T, N, M, U>(m, "Cluster" #N "x" #M #TYPE_CODE); \
define_Cluster<T, N, M, U>(m, #N "x" #M #TYPE_CODE); \
register_calculate_eta<T, N, M, U>(m);
register_calculate_eta<T, N, M, U>(m); \
define_2x2_reduction<T, N, M, U>(m); \
reduce_to_2x2<T, N, M, U>(m);
PYBIND11_MODULE(_aare, m) {
define_file_io_bindings(m);
@@ -85,8 +87,29 @@ PYBIND11_MODULE(_aare, m) {
DEFINE_CLUSTER_BINDINGS(double, 9, 9, uint16_t, d);
DEFINE_CLUSTER_BINDINGS(float, 9, 9, uint16_t, f);
DEFINE_CLUSTER_BINDINGS(int, 21, 21, uint16_t, i);
DEFINE_CLUSTER_BINDINGS(double, 21, 21, uint16_t, d);
DEFINE_CLUSTER_BINDINGS(float, 21, 21, uint16_t, f);
define_3x3_reduction<int, 3, 3, uint16_t>(m);
define_3x3_reduction<double, 3, 3, uint16_t>(m);
define_3x3_reduction<float, 3, 3, uint16_t>(m);
define_3x3_reduction<int, 5, 5, uint16_t>(m);
define_3x3_reduction<double, 5, 5, uint16_t>(m);
define_3x3_reduction<float, 5, 5, uint16_t>(m);
define_3x3_reduction<int, 7, 7, uint16_t>(m);
define_3x3_reduction<double, 7, 7, uint16_t>(m);
define_3x3_reduction<float, 7, 7, uint16_t>(m);
define_3x3_reduction<int, 9, 9, uint16_t>(m);
define_3x3_reduction<double, 9, 9, uint16_t>(m);
define_3x3_reduction<float, 9, 9, uint16_t>(m);
reduce_to_3x3<int, 3, 3, uint16_t>(m);
reduce_to_3x3<double, 3, 3, uint16_t>(m);
reduce_to_3x3<float, 3, 3, uint16_t>(m);
reduce_to_3x3<int, 5, 5, uint16_t>(m);
reduce_to_3x3<double, 5, 5, uint16_t>(m);
reduce_to_3x3<float, 5, 5, uint16_t>(m);
reduce_to_3x3<int, 7, 7, uint16_t>(m);
reduce_to_3x3<double, 7, 7, uint16_t>(m);
reduce_to_3x3<float, 7, 7, uint16_t>(m);
reduce_to_3x3<int, 9, 9, uint16_t>(m);
reduce_to_3x3<double, 9, 9, uint16_t>(m);
reduce_to_3x3<float, 9, 9, uint16_t>(m);
}

View File

@@ -101,6 +101,27 @@ def test_cluster_finder():
assert clusters.size == 0
def test_2x2_reduction():
"""Test 2x2 Reduction"""
cluster = _aare.Cluster3x3i(5,5,np.array([1, 1, 1, 2, 3, 1, 2, 2, 1], dtype=np.int32))
reduced_cluster = _aare.reduce_to_2x2(cluster)
assert reduced_cluster.x == 4
assert reduced_cluster.y == 5
assert (reduced_cluster.data == np.array([[2, 3], [2, 2]], dtype=np.int32)).all()
def test_3x3_reduction():
"""Test 3x3 Reduction"""
cluster = _aare.Cluster5x5d(5,5,np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 1.0, 2.0, 2.0, 3.0,
1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], dtype=np.double))
reduced_cluster = _aare.reduce_to_3x3(cluster)
assert reduced_cluster.x == 4
assert reduced_cluster.y == 5
assert (reduced_cluster.data == np.array([[1.0, 2.0, 1.0], [2.0, 2.0, 3.0], [1.0, 2.0, 1.0]], dtype=np.double)).all()

View File

@@ -5,7 +5,7 @@ import time
from pathlib import Path
import pickle
from aare import ClusterFile
from aare import ClusterFile, ClusterVector
from aare import _aare
from conftest import test_data_path
@@ -51,4 +51,36 @@ def test_make_a_hitmap_from_cluster_vector():
# print(img)
# print(ref)
assert (img == ref).all()
def test_2x2_reduction():
cv = ClusterVector((3,3))
cv.push_back(_aare.Cluster3x3i(5, 5, np.array([1, 1, 1, 2, 3, 1, 2, 2, 1], dtype=np.int32)))
cv.push_back(_aare.Cluster3x3i(5, 5, np.array([2, 2, 1, 2, 3, 1, 1, 1, 1], dtype=np.int32)))
reduced_cv = np.array(_aare.reduce_to_2x2(cv), copy=False)
assert reduced_cv.size == 2
assert reduced_cv[0]["x"] == 4
assert reduced_cv[0]["y"] == 5
assert (reduced_cv[0]["data"] == np.array([[2, 3], [2, 2]], dtype=np.int32)).all()
assert reduced_cv[1]["x"] == 4
assert reduced_cv[1]["y"] == 6
assert (reduced_cv[1]["data"] == np.array([[2, 2], [2, 3]], dtype=np.int32)).all()
def test_3x3_reduction():
cv = _aare.ClusterVector_Cluster5x5d()
cv.push_back(_aare.Cluster5x5d(5,5,np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 1.0, 2.0, 2.0, 3.0,
1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], dtype=np.double)))
cv.push_back(_aare.Cluster5x5d(5,5,np.array([1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 1.0, 2.0, 2.0, 3.0,
1.0, 1.0, 1.0, 2.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0], dtype=np.double)))
reduced_cv = np.array(_aare.reduce_to_3x3(cv), copy=False)
assert reduced_cv.size == 2
assert reduced_cv[0]["x"] == 4
assert reduced_cv[0]["y"] == 5
assert (reduced_cv[0]["data"] == np.array([[1.0, 2.0, 1.0], [2.0, 2.0, 3.0], [1.0, 2.0, 1.0]], dtype=np.double)).all()

View File

@@ -18,4 +18,86 @@ TEST_CASE("Test sum of Cluster", "[.cluster]") {
Cluster<int, 2, 2> cluster{0, 0, {1, 2, 3, 4}};
CHECK(cluster.sum() == 10);
}
using ClusterTypes = std::variant<Cluster<int, 2, 2>, Cluster<int, 3, 3>,
Cluster<int, 5, 5>, Cluster<int, 2, 3>>;
using ClusterTypesLargerThan2x2 =
std::variant<Cluster<int, 3, 3>, Cluster<int, 4, 4>, Cluster<int, 5, 5>>;
TEST_CASE("Test reduce to 2x2 Cluster", "[.cluster]") {
auto [cluster, expected_reduced_cluster] = GENERATE(
std::make_tuple(ClusterTypes{Cluster<int, 2, 2>{5, 5, {1, 2, 3, 4}}},
Cluster<int, 2, 2>{4, 6, {1, 2, 3, 4}}),
std::make_tuple(
ClusterTypes{Cluster<int, 3, 3>{5, 5, {1, 1, 1, 1, 3, 2, 1, 2, 2}}},
Cluster<int, 2, 2>{5, 5, {3, 2, 2, 2}}),
std::make_tuple(
ClusterTypes{Cluster<int, 3, 3>{5, 5, {1, 1, 1, 2, 3, 1, 2, 2, 1}}},
Cluster<int, 2, 2>{4, 5, {2, 3, 2, 2}}),
std::make_tuple(
ClusterTypes{Cluster<int, 3, 3>{5, 5, {2, 2, 1, 2, 3, 1, 1, 1, 1}}},
Cluster<int, 2, 2>{4, 6, {2, 2, 2, 3}}),
std::make_tuple(
ClusterTypes{Cluster<int, 3, 3>{5, 5, {1, 2, 2, 1, 3, 2, 1, 1, 1}}},
Cluster<int, 2, 2>{5, 6, {2, 2, 3, 2}}),
std::make_tuple(ClusterTypes{Cluster<int, 5, 5>{
5, 5, {1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3,
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}},
Cluster<int, 2, 2>{5, 6, {2, 2, 3, 2}}),
std::make_tuple(ClusterTypes{Cluster<int, 5, 5>{
5, 5, {1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}},
Cluster<int, 2, 2>{4, 6, {2, 2, 2, 3}}),
std::make_tuple(
ClusterTypes{Cluster<int, 2, 3>{5, 5, {2, 2, 3, 2, 1, 1}}},
Cluster<int, 2, 2>{4, 6, {2, 2, 3, 2}}));
auto reduced_cluster = std::visit(
[](const auto &clustertype) { return reduce_to_2x2(clustertype); },
cluster);
CHECK(reduced_cluster.x == expected_reduced_cluster.x);
CHECK(reduced_cluster.y == expected_reduced_cluster.y);
CHECK(std::equal(reduced_cluster.data.begin(),
reduced_cluster.data.begin() + 4,
expected_reduced_cluster.data.begin()));
}
TEST_CASE("Test reduce to 3x3 Cluster", "[.cluster]") {
auto [cluster, expected_reduced_cluster] = GENERATE(
std::make_tuple(ClusterTypesLargerThan2x2{Cluster<int, 3, 3>{
5, 5, {1, 1, 1, 1, 3, 1, 1, 1, 1}}},
Cluster<int, 3, 3>{5, 5, {1, 1, 1, 1, 3, 1, 1, 1, 1}}),
std::make_tuple(
ClusterTypesLargerThan2x2{Cluster<int, 4, 4>{
5, 5, {2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1}}},
Cluster<int, 3, 3>{4, 6, {2, 2, 1, 2, 2, 1, 1, 1, 3}}),
std::make_tuple(
ClusterTypesLargerThan2x2{Cluster<int, 4, 4>{
5, 5, {1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 1, 1}}},
Cluster<int, 3, 3>{5, 6, {1, 2, 2, 1, 2, 2, 1, 3, 1}}),
std::make_tuple(
ClusterTypesLargerThan2x2{Cluster<int, 4, 4>{
5, 5, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 2}}},
Cluster<int, 3, 3>{5, 5, {1, 1, 1, 1, 3, 2, 1, 2, 2}}),
std::make_tuple(
ClusterTypesLargerThan2x2{Cluster<int, 4, 4>{
5, 5, {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 2, 2, 1, 1}}},
Cluster<int, 3, 3>{4, 5, {1, 1, 1, 2, 2, 3, 2, 2, 1}}),
std::make_tuple(ClusterTypesLargerThan2x2{Cluster<int, 5, 5>{
5, 5, {1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3,
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1}}},
Cluster<int, 3, 3>{4, 5, {1, 2, 1, 2, 2, 3, 1, 2, 1}}));
auto reduced_cluster = std::visit(
[](const auto &clustertype) { return reduce_to_3x3(clustertype); },
cluster);
CHECK(reduced_cluster.x == expected_reduced_cluster.x);
CHECK(reduced_cluster.y == expected_reduced_cluster.y);
CHECK(std::equal(reduced_cluster.data.begin(),
reduced_cluster.data.begin() + 9,
expected_reduced_cluster.data.begin()));
}

View File

@@ -57,6 +57,7 @@ class ClusterFinderMTWrapper
size_t m_sink_size() const { return this->m_sink.sizeGuess(); }
};
TEST_CASE("multithreaded cluster finder", "[.with-data]") {
auto fpath =
test_data_path() / "raw/moench03/cu_half_speed_master_4.json";
@@ -81,7 +82,8 @@ TEST_CASE("multithreaded cluster finder", "[.with-data]") {
CHECK(cf.m_input_queues_are_empty() == true);
for (size_t i = 0; i < n_frames_pd; ++i) {
cf.find_clusters(file.read_frame().view<uint16_t>());
auto frame = file.read_frame();
cf.find_clusters(frame.view<uint16_t>());
}
cf.stop();

20
src/Makefile Normal file
View File

@@ -0,0 +1,20 @@
# Makefile
CXX := g++
CXXFLAGS := -std=c++17 -O0 -g
INCLUDE := -I../include
SRC := ProducerConsumerQueue.test.cpp
BIN := test_pcq
.PHONY: all clean run
all: $(BIN)
$(BIN): $(SRC)
$(CXX) $(CXXFLAGS) $(INCLUDE) $< -o $@
run: $(BIN)
./$(BIN)
clean:
$(RM) $(BIN)

View File

@@ -0,0 +1,83 @@
#include <iostream>
#include <atomic>
#include <string>
#include <vector>
#include "aare/ProducerConsumerQueue.hpp"
struct Tracker {
static std::atomic<int> ctors;
static std::atomic<int> dtors;
static std::atomic<int> moves;
static std::atomic<int> live;
std::string tag;
std::vector<int> buf;
Tracker() = delete;
explicit Tracker(int id)
: tag("T" + std::to_string(id)), buf(1 << 18, id)
{
++ctors; ++live;
}
Tracker(Tracker&& other) noexcept
: tag(std::move(other.tag)), buf(std::move(other.buf))
{
++moves;
++ctors;
++live;
}
Tracker& operator=(Tracker&&) = delete;
Tracker(const Tracker&) = delete;
Tracker& operator=(const Tracker&) = delete;
~Tracker()
{
++dtors; --live;
}
};
std::atomic<int> Tracker::ctors{0};
std::atomic<int> Tracker::dtors{0};
std::atomic<int> Tracker::moves{0};
std::atomic<int> Tracker::live{0};
int main() {
using Queue = aare::ProducerConsumerQueue<Tracker>;
// Scope make sure destructors have ran before we check the counters.
{
Queue q1(8);
Queue q2(8);
for (int i = 0; i < 3; ++i) q2.write(Tracker(100 + i));
for (int i = 0; i < 5; ++i) q1.write(Tracker(200 + i));
q2 = std::move(q1);
Tracker tmp(9999);
if (auto* p = q2.frontPtr())
{
(void)p;
}
}
std::cout << "ctors=" << Tracker::ctors.load()
<< " dtors=" << Tracker::dtors.load()
<< " moves=" << Tracker::moves.load()
<< " live=" << Tracker::live.load()
<< "\n";
bool ok = (Tracker::ctors.load() == Tracker::dtors.load()) && (Tracker::live.load() == 0);
if (!ok)
{
std::cerr << "Leak or skipped destructors detected (move-assignment bug)\n";
return 1;
}
std::cout << "No leaks; move-assignment cleans up correctly\n";
return 0;
}

View File

@@ -7,6 +7,7 @@ Script to update VERSION file with semantic versioning if provided as an argumen
import sys
import os
import re
from datetime import datetime
from packaging.version import Version, InvalidVersion
@@ -26,9 +27,9 @@ def get_version():
# Check at least one argument is passed
if len(sys.argv) < 2:
return "0.0.0"
version = sys.argv[1]
version = datetime.today().strftime('%Y.%-m.%-d')
else:
version = sys.argv[1]
try:
v = Version(version) # normalize check if version follows PEP 440 specification
@@ -54,4 +55,4 @@ def write_version_to_file(version):
if __name__ == "__main__":
version = get_version()
write_version_to_file(version)
write_version_to_file(version)