added theoretical explanation of eta interpolation to documentation

This commit is contained in:
2025-12-12 14:38:29 +01:00
parent c4d1a8f3f4
commit ca5c9a99f9
3 changed files with 72 additions and 15 deletions

View File

@@ -1,12 +1,41 @@
Interpolation
==============
Interpolation class for :math:`\eta` Interpolation.
The Interpolation class implements the :math:`\eta`-interpolation method.
This interpolation technique is based on charge sharing: for detected photon hits (e.g. clusters), it refines the estimated photon hit using information from neighboring pixels.
The Interpolator class provides methods to interpolate the positions of photons based on their :math:`\eta` values.
The method relies on the so-called :math:`\eta`-functions, which describe the relationship between the energy measured in the central cluster pixel (the initially estimated photon hit) and the energies measured in its neighboring pixels.
Depending on how much energy each neighboring pixel receives relative to the central pixel, the estimated photon hit is shifted toward that neighbor by a certain offset to the actual photon hit position in the pixel :math:`(x, y)`.
The mapping between the :math:`\eta` values and the corresponding spatial photon position :math:`(x,y)` can be viewed as an optimal transport problem.
One can readily compute the probability distribution :math:`P_{\eta}` of the :math:`\eta` values by forming a 2D histogram.
However, the probability distribution :math:`P_{x,y}` of the true photon positions is generally unknown unless the detector is illuminated uniformly (i.e. under flat-field conditions).
In a flat-field, the photon positions are uniformly distributed.
With this assumption, the problem reduces to determining a transport map :math:`T:(\eta_x,\eta_y) \rightarrow (x,y)`, that pushes forward the distribution of :math:`(\eta_x, \eta_y)` to the known uniform distribution of photon positions of a flatfield.
The map :math:`T` is given by:
.. math::
\begin{align*}
T_1: & F_{x}^{-1} F_{\eta_x|\eta_y} \\
T_2: & F_{y}^{-1} F_{\eta_y|\eta_x},
\end{align*}
where :math:`F_{\eta_x|\eta_y}` and :math:`F_{\eta_y|\eta_x}` are the conditional cumulative distribution functions e.g. :math:`F_{\eta_x|\eta_y}(\eta_x', \eta_y') = P_{\eta_x, \eta_y}(\eta_x \leq \eta_x' | \eta_y = \eta_y')`.
And :math:`F_{x}` and :math:`F_{y}` are the cumulative distribution functions of :math:`x` and :math:`y`. Note as :math:`x` and :math:`y` are uniformly distributed :math:`F_{x}` and :math:`F_{y}` are the identity functions. The map :math:`T` thus simplifies to
.. math::
\begin{align*}
T_1: & F_{\eta_x|\eta_y} \\
T_2: & F_{\eta_y|\eta_x}.
\end{align*}
Note that for the implementation :math:`P_{\eta}` is not only a distribution of :math:`\eta_x`, :math:`\eta_y` but also of the estimated photon energy :math:`e`.
The energy level correlates slightly with the z-depth. Higher z-depth leads to more charge sharing and a different :math:`\eta` distribution. Thus we create a mapping :math:`T` for each energy level.
.. warning::
The interpolation might lead to erroneous photon positions for clusters at the boarders of a frame. Make sure to filter out such cases.
:math:`\eta`-Functions:
---------------------------
@@ -21,6 +50,8 @@ The Interpolator class provides methods to interpolate the positions of photons
Supported are the following :math:`\eta`-functions:
:math:`\eta`-Function on 2x2 Clusters:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. image:: ../figures/Eta2x2.png
:target: ../figures/Eta2x2.png
@@ -34,11 +65,18 @@ Supported are the following :math:`\eta`-functions:
{\color{green}{\eta_y}} = \frac{Q_{1,1}}{Q_{0,1} + Q_{1,1}}
\end{equation*}
The :math:`\eta` values can range between 0,1. Note they only range between 0,1 because the position of the center pixel (red) can change.
If the center pixel is in the bottom left pixel :math:`\eta_x` will be close to zero. If the center pixel is in the bottom right pixel :math:`\eta_y` will be close to 1.
One can apply this :math:`\eta` not only on 2x2 clusters but on clusters with any size. Then the 2x2 subcluster with maximum energy is choosen and the :math:`\eta` function applied on the subcluster.
.. doxygenfunction:: aare::calculate_eta2(const ClusterVector<ClusterType>&)
.. doxygenfunction:: aare::calculate_eta2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>&)
Full :math:`\eta`-Function on 2x2 Clusters:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. image:: ../figures/Eta2x2Full.png
:target: ../figures/Eta2x2Full.png
:width: 650px
@@ -51,11 +89,16 @@ Supported are the following :math:`\eta`-functions:
{\textcolor{green}{\eta_y}} = \frac{Q_{1,0} + Q_{1,1}}{\sum_i^{2}\sum_j^{2}Q_{i,j}}
\end{equation*}
The :math:`\eta` values can range between 0,1. Note they only range between 0,1 because the position of the center pixel (red) can change.
If the center pixel is in the bottom left pixel :math:`\eta_x` will be close to zero. If the center pixel is in the bottom right pixel :math:`\eta_y` will be close to 1.
.. doxygenfunction:: aare::calculate_full_eta2(const ClusterVector<ClusterType>&)
.. doxygenfunction:: aare::calculate_full_eta2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>&)
Full :math:`\eta`-Function on 3x3 Clusters:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. image:: ../figures/Eta3x3.png
:target: ../figures/Eta3x3.png
:width: 650px
@@ -64,14 +107,19 @@ Supported are the following :math:`\eta`-functions:
.. math::
\begin{equation*}
{\color{blue}{\eta_x}} = \frac{\sum_{i}^{3} Q_{i,2} - \sum_{i}^{3} Q_{i,0}}{\sum_{i}^{3}\sum_{j}^{3} Q_{i,j}} \quad \quad
{\color{green}{\eta_y}} = \frac{\sum_{j}^{3} Q_{2,j} - \sum_{j}^{3} Q_{0,j}}{\sum_{i}^{3}\sum_{j}^{3} Q_{i,j}}
{\color{blue}{\eta_x}} = \frac{\sum_{i=0}^{2} Q_{i,2} - \sum_{i=0}^{2} Q_{i,0}}{\sum_{i=0}^{2}\sum_{j=0}^{2} Q_{i,j}} \quad \quad
{\color{green}{\eta_y}} = \frac{\sum_{j=0}^{2} Q_{2,j} - \sum_{j=0}^{2} Q_{0,j}}{\sum_{i=0}^{2}\sum_{j=0}^{2} Q_{i,j}}
\end{equation*}
The :math:`\eta` values can range between -0.5,0.5.
.. doxygenfunction:: aare::calculate_eta3(const ClusterVector<Cluster<T, 3,3, CoordType>>&)
.. doxygenfunction:: aare::calculate_eta3(const Cluster<T, 3, 3, CoordType>&)
Cross :math:`\eta`-Function on 3x3 Clusters:
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
.. image:: ../figures/Eta3x3Cross.png
:target: ../figures/Eta3x3Cross.png
:width: 650px
@@ -80,10 +128,12 @@ Supported are the following :math:`\eta`-functions:
.. math::
\begin{equation*}
{\color{blue}{\eta_x}} = \frac{Q_{1,2} - Q_{1,0}}{Q_{1,0} + Q_{1,1} + Q_{1,0}} \quad \quad
{\color{green}{\eta_y}} = \frac{Q_{0,2} - Q_{0,1}}{Q_{0,1} + Q_{1,1} + Q_{1,2}}
{\color{blue}{\eta_x}} = \frac{Q_{1,2} - Q_{1,0}}{Q_{1,0} + Q_{1,1} + Q_{1,2}} \quad \quad
{\color{green}{\eta_y}} = \frac{Q_{0,2} - Q_{0,1}}{Q_{0,1} + Q_{1,1} + Q_{2,1}}
\end{equation*}
The :math:`\eta` values can range between -0.5,0.5.
.. doxygenfunction:: aare::calculate_cross_eta3(const ClusterVector<Cluster<T, 3,3, CoordType>>&)
.. doxygenfunction:: aare::calculate_cross_eta3(const Cluster<T, 3, 3, CoordType>&)
@@ -91,9 +141,15 @@ Supported are the following :math:`\eta`-functions:
Interpolation class:
---------------------
.. warning::
The interpolation might lead to erroneous photon positions for clusters at the borders of a frame. Make sure to filter out such cases.
.. Warning::
Make sure to use the same :math:`\eta`-function during interpolation as given by the joint :math:`\eta`-distribution passed to the constructor.
.. Note::
Make sure to use resonable energy bins, when constructing the joint distribution. If data is too sparse for a given energy the interpolation will lead to erreneous results.
.. doxygenclass:: aare::Interpolator
:members:
:undoc-members:

View File

@@ -29,7 +29,8 @@ template <typename T> struct Eta2 {
double x{};
/// @brief eta in y direction
double y{};
/// @brief index of subcluster given as corner relative to cluster center
/// @brief index of subcluster with highest energy value (given as corner
/// relative to cluster center)
corner c{0};
/// @brief photon energy (cluster sum)
T sum{};

View File

@@ -47,11 +47,11 @@ class Interpolator {
public:
/**
* @brief Constructor for the Interpolator class
* @param etacube joint distribution of etaX, etaY and photon energy
* @param etacube joint distribution of etaX, etaY and photon energy (note
* first dimension is etaX, second etaY, third photon energy)
* @param xbins bin edges for etaX
* @param ybins bin edges for etaY
* @param ebins bin edges for photon energy
* @note note first dimension is etaX, second etaY, third photon energy
*/
Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
NDView<double, 1> ybins, NDView<double, 1> ebins);
@@ -69,8 +69,8 @@ class Interpolator {
* @brief transforms the joint eta distribution of etaX and etaY to the two
* independant uniform distributions based on the Roseblatt transform for
* each energy level
* @param etacube joint distribution of etaX, etaY and photon energy
* @note note first dimension is etaX, second etaY, third photon energy
* @param etacube joint distribution of etaX, etaY and photon energy (first
* dimension is etaX, second etaY, third photon energy)
*/
void rosenblatttransform(NDView<double, 3> etacube);
@@ -85,8 +85,8 @@ class Interpolator {
* calculate_eta2
* @return interpolated photons (photon positions are given as double but
* following row column format e.g. x=0, y=0 means top row and first column
* of frame) (An interpolated photon position of (1.5, 2.5) means that the
* photon hit is estimated to be the pixel center of pixel (1,2))
* of frame) (An interpolated photon position of (1.5, 2.5) corresponds to
* an estimated photon hit at the pixel center of pixel (1,2))
*/
template <auto EtaFunction = calculate_eta2, typename ClusterType,
typename Eanble = std::enable_if_t<is_cluster_v<ClusterType>>>