Fresh branch with up-to-date changes from Main. Changes from fix/rounding have also been implemented here. This commit also includes the changes necessary so that the cluster finder can search for NxN clusters while saving MxM which greatly improves performance and the efficiency of pile-up rejection later down the line
All checks were successful
Build on RHEL8 / build (push) Successful in 2m41s
Build on RHEL9 / build (push) Successful in 2m56s
Run tests using data on local RHEL8 / build (push) Successful in 3m3s

This commit is contained in:
2026-01-22 15:49:03 +01:00
parent 9d6798b9c5
commit c1ad43e53d
5 changed files with 29 additions and 19 deletions

View File

@@ -26,11 +26,13 @@ class ClusterFinder {
const PEDESTAL_TYPE m_nSigma;
const PEDESTAL_TYPE c2;
const PEDESTAL_TYPE c3;
const uint32_t ClusterSizeX;
const uint32_t ClusterSizeY;
Pedestal<PEDESTAL_TYPE> m_pedestal;
ClusterVector<ClusterType> m_clusters;
static const uint8_t ClusterSizeX = ClusterType::cluster_size_x;
static const uint8_t ClusterSizeY = ClusterType::cluster_size_y;
static const uint8_t SavedClusterSizeX = ClusterType::cluster_size_x;
static const uint8_t SavedClusterSizeY = ClusterType::cluster_size_y;
using CT = typename ClusterType::value_type;
public:
@@ -43,10 +45,12 @@ class ClusterFinder {
*
*/
ClusterFinder(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
size_t capacity = 1000000)
size_t capacity = 1000000,
uint32_t cluster_size_x = 3, uint32_t cluster_size_y = 3)
: m_image_size(image_size), m_nSigma(nSigma),
c2(sqrt((ClusterSizeY + 1) / 2 * (ClusterSizeX + 1) / 2)),
c3(sqrt(ClusterSizeX * ClusterSizeY)),
c2(sqrt((cluster_size_y + 1) / 2 * (cluster_size_x + 1) / 2)),
c3(sqrt(cluster_size_x * cluster_size_y)),
ClusterSizeX(cluster_size_x), ClusterSizeY(cluster_size_y),
m_pedestal(image_size[0], image_size[1]), m_clusters(capacity) {
LOG(logDEBUG) << "ClusterFinder: "
<< "image_size: " << image_size[0] << "x" << image_size[1]
@@ -83,6 +87,9 @@ class ClusterFinder {
// // 4,4 -> +/- 2
int dy = ClusterSizeY / 2;
int dx = ClusterSizeX / 2;
int dy2 = SavedClusterSizeY / 2;
int dx2 = SavedClusterSizeX / 2;
int has_center_pixel_x =
ClusterSizeX %
2; // for even sized clusters there is no proper cluster center and
@@ -144,8 +151,8 @@ class ClusterFinder {
// It's worth redoing the look since most of the time we
// don't have a photon
int i = 0;
for (int ir = -dy; ir < dy + has_center_pixel_y; ir++) {
for (int ic = -dx; ic < dx + has_center_pixel_x; ic++) {
for (int ir = -dy2; ir < dy2 + has_center_pixel_y; ir++) {
for (int ic = -dx2; ic < dx2 + has_center_pixel_x; ic++) {
if (ix + ic >= 0 && ix + ic < frame.shape(1) &&
iy + ir >= 0 && iy + ir < frame.shape(0)) {

View File

@@ -126,7 +126,8 @@ class ClusterFinderMT {
* @param n_threads number of threads to use
*/
ClusterFinderMT(Shape<2> image_size, PEDESTAL_TYPE nSigma = 5.0,
size_t capacity = 2000, size_t n_threads = 3)
size_t capacity = 2000, size_t n_threads = 3,
uint32_t cluster_size_x = 3, uint32_t cluster_size_y = 3)
: m_n_threads(n_threads) {
LOG(logDEBUG1) << "ClusterFinderMT: "
@@ -139,7 +140,7 @@ class ClusterFinderMT {
m_cluster_finders.push_back(
std::make_unique<
ClusterFinder<ClusterType, FRAME_TYPE, PEDESTAL_TYPE>>(
image_size, nSigma, capacity));
image_size, nSigma, capacity, cluster_size_x, cluster_size_y));
}
for (size_t i = 0; i < n_threads; i++) {
m_input_queues.emplace_back(std::make_unique<InputQueue>(200));

View File

@@ -29,24 +29,24 @@ def _get_class(name, cluster_size, dtype):
def ClusterFinder(image_size, cluster_size=(3,3), n_sigma=5, dtype = np.int32, capacity = 1024):
def ClusterFinder(image_size, saved_cluster_size=(3,3), checked_cluster_size=(3,3), n_sigma=5, dtype = np.int32, capacity = 1024):
"""
Factory function to create a ClusterFinder object. Provides a cleaner syntax for
the templated ClusterFinder in C++.
"""
cls = _get_class("ClusterFinder", cluster_size, dtype)
return cls(image_size, n_sigma=n_sigma, capacity=capacity)
cls = _get_class("ClusterFinder", saved_cluster_size, dtype)
return cls(image_size, n_sigma=n_sigma, capacity=capacity, cluster_size_x=checked_cluster_size[0], cluster_size_y=checked_cluster_size[1])
def ClusterFinderMT(image_size, cluster_size = (3,3), dtype=np.int32, n_sigma=5, capacity = 1024, n_threads = 3):
def ClusterFinderMT(image_size, saved_cluster_size=(3,3), checked_cluster_size=(3,3), dtype=np.int32, n_sigma=5, capacity = 1024, n_threads = 3):
"""
Factory function to create a ClusterFinderMT object. Provides a cleaner syntax for
the templated ClusterFinderMT in C++.
"""
cls = _get_class("ClusterFinderMT", cluster_size, dtype)
return cls(image_size, n_sigma=n_sigma, capacity=capacity, n_threads=n_threads)
cls = _get_class("ClusterFinderMT", saved_cluster_size, dtype)
return cls(image_size, n_sigma=n_sigma, capacity=capacity, n_threads=n_threads, cluster_size_x=checked_cluster_size[0], cluster_size_y=checked_cluster_size[1])
def ClusterCollector(clusterfindermt, dtype=np.int32):

View File

@@ -31,8 +31,9 @@ void define_ClusterFinder(py::module &m, const std::string &typestr) {
py::class_<ClusterFinder<ClusterType, uint16_t, pd_type>>(
m, class_name.c_str())
.def(py::init<Shape<2>, pd_type, size_t>(), py::arg("image_size"),
py::arg("n_sigma") = 5.0, py::arg("capacity") = 1'000'000)
.def(py::init<Shape<2>, pd_type, size_t, uint32_t, uint32_t>(), py::arg("image_size"),
py::arg("n_sigma") = 5.0, py::arg("capacity") = 1'000'000,
py::arg("cluster_size_x") = 3, py::arg("cluster_size_y") = 3)
.def("push_pedestal_frame",
[](ClusterFinder<ClusterType, uint16_t, pd_type> &self,
py::array_t<uint16_t> frame) {

View File

@@ -31,9 +31,10 @@ void define_ClusterFinderMT(py::module &m, const std::string &typestr) {
py::class_<ClusterFinderMT<ClusterType, uint16_t, pd_type>>(
m, class_name.c_str())
.def(py::init<Shape<2>, pd_type, size_t, size_t>(),
.def(py::init<Shape<2>, pd_type, size_t, size_t, uint32_t, uint32_t>(),
py::arg("image_size"), py::arg("n_sigma") = 5.0,
py::arg("capacity") = 2048, py::arg("n_threads") = 3)
py::arg("capacity") = 2048, py::arg("n_threads") = 3,
py::arg("cluster_size_x") = 3, py::arg("cluster_size_y") = 3)
.def("push_pedestal_frame",
[](ClusterFinderMT<ClusterType, uint16_t, pd_type> &self,
py::array_t<uint16_t> frame) {