mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-12-30 08:51:27 +01:00
Dev/expose sum 2x2 to python (#238)
Saverio requested that max_sum_2x2 exposes index information in python - max_sum_2x2 returns a corner as index - replaced eta corner with corner enum class - max_sum_2x2 now returns index as well in python - added link to Documenation in README Note: Some Tests fail in EtaCalculation due to previous PR about updating Eta 2x2 will fix in other PR
This commit is contained in:
@@ -1,6 +1,10 @@
|
||||
# aare
|
||||
Data analysis library for PSI hybrid detectors
|
||||
|
||||
## Documentation
|
||||
|
||||
Detailed documentation including installation can be found in [Documentation](https://slsdetectorgroup.github.io/aare/)
|
||||
|
||||
|
||||
## Build and install
|
||||
|
||||
|
||||
@@ -1,5 +1,13 @@
|
||||
# Release notes
|
||||
|
||||
### 2025.10.27
|
||||
|
||||
Features:
|
||||
|
||||
- max_sum_2x2 including index of subcluster with highest energy is now available from Python API
|
||||
- eta stores corner as enum class cTopLeft, cTopRight, BottomLeft, cBottomRight indicating 2x2 subcluster with largest energy relative to cluster center
|
||||
- max_sum_2x2 returns corner as index
|
||||
|
||||
### 2025.10.1
|
||||
|
||||
Bugfixes:
|
||||
|
||||
@@ -3,16 +3,10 @@
|
||||
#include "aare/Cluster.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
enum class corner : int {
|
||||
cTopLeft = 0,
|
||||
cTopRight = 1,
|
||||
cBottomLeft = 2,
|
||||
cBottomRight = 3
|
||||
};
|
||||
|
||||
enum class pixel : int {
|
||||
pBottomLeft = 0,
|
||||
pBottom = 1,
|
||||
@@ -28,7 +22,7 @@ enum class pixel : int {
|
||||
template <typename T> struct Eta2 {
|
||||
double x;
|
||||
double y;
|
||||
int c{0};
|
||||
corner c{0};
|
||||
T sum;
|
||||
};
|
||||
|
||||
@@ -66,11 +60,11 @@ calculate_eta2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
|
||||
(ClusterSizeX / 2) + (ClusterSizeY / 2) * ClusterSizeX;
|
||||
|
||||
auto max_sum = cl.max_sum_2x2();
|
||||
eta.sum = max_sum.first;
|
||||
int c = max_sum.second;
|
||||
eta.sum = max_sum.sum;
|
||||
corner c = max_sum.index;
|
||||
|
||||
// subcluster top right from center
|
||||
switch (static_cast<corner>(c)) {
|
||||
switch (c) {
|
||||
case (corner::cTopLeft):
|
||||
if ((cl.data[cluster_center_index - 1] +
|
||||
cl.data[cluster_center_index]) != 0)
|
||||
|
||||
@@ -8,6 +8,7 @@
|
||||
|
||||
#pragma once
|
||||
|
||||
#include "defs.hpp"
|
||||
#include <algorithm>
|
||||
#include <array>
|
||||
#include <cstdint>
|
||||
@@ -45,7 +46,7 @@ struct Cluster {
|
||||
* @return photon energy of subcluster, 2x2 subcluster index relative to
|
||||
* cluster center
|
||||
*/
|
||||
std::pair<T, int> max_sum_2x2() const {
|
||||
Sum_index_pair<T, corner> max_sum_2x2() const {
|
||||
|
||||
if constexpr (cluster_size_x == 3 && cluster_size_y == 3) {
|
||||
std::array<T, 4> sum_2x2_subclusters;
|
||||
@@ -56,9 +57,11 @@ struct Cluster {
|
||||
int index = std::max_element(sum_2x2_subclusters.begin(),
|
||||
sum_2x2_subclusters.end()) -
|
||||
sum_2x2_subclusters.begin();
|
||||
return std::make_pair(sum_2x2_subclusters[index], index);
|
||||
return Sum_index_pair<T, corner>{sum_2x2_subclusters[index],
|
||||
corner{index}};
|
||||
} else if constexpr (cluster_size_x == 2 && cluster_size_y == 2) {
|
||||
return std::make_pair(data[0] + data[1] + data[2] + data[3], 0);
|
||||
return Sum_index_pair<T, corner>{
|
||||
data[0] + data[1] + data[2] + data[3], corner{0}};
|
||||
} else {
|
||||
constexpr size_t cluster_center_index =
|
||||
(ClusterSizeX / 2) + (ClusterSizeY / 2) * ClusterSizeX;
|
||||
@@ -97,7 +100,8 @@ struct Cluster {
|
||||
int index = std::max_element(sum_2x2_subcluster.begin(),
|
||||
sum_2x2_subcluster.end()) -
|
||||
sum_2x2_subcluster.begin();
|
||||
return std::make_pair(sum_2x2_subcluster[index], index);
|
||||
return Sum_index_pair<T, corner>{sum_2x2_subcluster[index],
|
||||
corner{index}};
|
||||
}
|
||||
}
|
||||
};
|
||||
@@ -125,8 +129,8 @@ reduce_to_2x2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &c) {
|
||||
(ClusterSizeX / 2) + (ClusterSizeY / 2) * ClusterSizeX;
|
||||
|
||||
int16_t index_bottom_left_max_2x2_subcluster =
|
||||
(int(index / (ClusterSizeX - 1))) * ClusterSizeX +
|
||||
index % (ClusterSizeX - 1);
|
||||
(int(static_cast<int>(index) / (ClusterSizeX - 1))) * ClusterSizeX +
|
||||
static_cast<int>(index) % (ClusterSizeX - 1);
|
||||
|
||||
result.x =
|
||||
c.x + (index_bottom_left_max_2x2_subcluster - cluster_center_index) %
|
||||
@@ -149,22 +153,22 @@ Cluster<T, 2, 2, int16_t> reduce_to_2x2(const Cluster<T, 3, 3, int16_t> &c) {
|
||||
|
||||
auto [s, i] = c.max_sum_2x2();
|
||||
switch (i) {
|
||||
case 0:
|
||||
case corner::cTopLeft:
|
||||
result.x = c.x - 1;
|
||||
result.y = c.y + 1;
|
||||
result.data = {c.data[0], c.data[1], c.data[3], c.data[4]};
|
||||
break;
|
||||
case 1:
|
||||
case corner::cTopRight:
|
||||
result.x = c.x;
|
||||
result.y = c.y + 1;
|
||||
result.data = {c.data[1], c.data[2], c.data[4], c.data[5]};
|
||||
break;
|
||||
case 2:
|
||||
case corner::cBottomLeft:
|
||||
result.x = c.x - 1;
|
||||
result.y = c.y;
|
||||
result.data = {c.data[3], c.data[4], c.data[6], c.data[7]};
|
||||
break;
|
||||
case 3:
|
||||
case corner::cBottomRight:
|
||||
result.x = c.x;
|
||||
result.y = c.y;
|
||||
result.data = {c.data[4], c.data[5], c.data[7], c.data[8]};
|
||||
|
||||
@@ -5,6 +5,7 @@
|
||||
#include "aare/ClusterFinderMT.hpp"
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/ProducerConsumerQueue.hpp"
|
||||
#include "aare/defs.hpp"
|
||||
|
||||
namespace aare {
|
||||
|
||||
|
||||
@@ -453,8 +453,8 @@ bool ClusterFile<ClusterType, Enable>::is_selected(ClusterType &cl) {
|
||||
|
||||
if (m_noise_map) {
|
||||
auto sum_1x1 = cl.data[cluster_center_index]; // central pixel
|
||||
auto sum_2x2 = cl.max_sum_2x2().first; // highest sum of 2x2 subclusters
|
||||
auto total_sum = cl.sum(); // sum of all pixels
|
||||
auto sum_2x2 = cl.max_sum_2x2().sum; // highest sum of 2x2 subclusters
|
||||
auto total_sum = cl.sum(); // sum of all pixels
|
||||
|
||||
auto noise =
|
||||
(*m_noise_map)(cl.y, cl.x); // TODO! check if this is correct
|
||||
|
||||
@@ -86,15 +86,14 @@ class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
|
||||
/**
|
||||
* @brief Sum the pixels in the 2x2 subcluster with the biggest pixel sum in
|
||||
* each cluster
|
||||
* @return std::vector<T> vector of sums for each cluster
|
||||
* @return vector of sums index pairs for each cluster
|
||||
*/
|
||||
std::vector<T> sum_2x2() {
|
||||
std::vector<T> sums_2x2(m_data.size());
|
||||
std::vector<Sum_index_pair<T, corner>> sum_2x2() {
|
||||
std::vector<Sum_index_pair<T, corner>> sums_2x2(m_data.size());
|
||||
|
||||
std::transform(m_data.begin(), m_data.end(), sums_2x2.begin(),
|
||||
[](const ClusterType &cluster) {
|
||||
return cluster.max_sum_2x2().first;
|
||||
});
|
||||
std::transform(
|
||||
m_data.begin(), m_data.end(), sums_2x2.begin(),
|
||||
[](const ClusterType &cluster) { return cluster.max_sum_2x2(); });
|
||||
|
||||
return sums_2x2;
|
||||
}
|
||||
|
||||
@@ -331,6 +331,19 @@ enum DACIndex {
|
||||
SLOW_ADC_TEMP
|
||||
};
|
||||
|
||||
// helper pair class to easily expose in python
|
||||
template <typename T1, typename T2> struct Sum_index_pair {
|
||||
T1 sum;
|
||||
T2 index;
|
||||
};
|
||||
|
||||
enum class corner : int {
|
||||
cTopLeft = 0,
|
||||
cTopRight = 1,
|
||||
cBottomLeft = 2,
|
||||
cBottomRight = 3
|
||||
};
|
||||
|
||||
enum class TimingMode { Auto, Trigger };
|
||||
enum class FrameDiscardPolicy { NoDiscard, Discard, DiscardPartial };
|
||||
|
||||
|
||||
@@ -58,7 +58,17 @@ void define_Cluster(py::module &m, const std::string &typestr) {
|
||||
&Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>::x)
|
||||
|
||||
.def_readonly("y",
|
||||
&Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>::y);
|
||||
&Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>::y)
|
||||
|
||||
.def(
|
||||
"max_sum_2x2",
|
||||
[](Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType> &self) {
|
||||
auto max_sum = self.max_sum_2x2();
|
||||
return py::make_tuple(max_sum.sum,
|
||||
static_cast<int>(max_sum.index));
|
||||
},
|
||||
R"(calculates sum of 2x2 subcluster with highest energy and index relative to cluster center 0: top_left, 1: top_right, 2: bottom_left, 3: bottom_right
|
||||
)");
|
||||
}
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
|
||||
@@ -44,11 +44,16 @@ void define_ClusterVector(py::module &m, const std::string &typestr) {
|
||||
auto *vec = new std::vector<Type>(self.sum());
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def("sum_2x2",
|
||||
[](ClusterVector<ClusterType> &self) {
|
||||
auto *vec = new std::vector<Type>(self.sum_2x2());
|
||||
return return_vector(vec);
|
||||
})
|
||||
.def(
|
||||
"sum_2x2",
|
||||
[](ClusterVector<ClusterType> &self) {
|
||||
auto *vec = new std::vector<Sum_index_pair<Type, corner>>(
|
||||
self.sum_2x2());
|
||||
|
||||
return return_vector(vec);
|
||||
},
|
||||
R"(calculates sum of 2x2 subcluster with highest energy and index relative to cluster center 0: top_left, 1: top_right, 2: bottom_left, 3: bottom_right
|
||||
)")
|
||||
.def_property_readonly("size", &ClusterVector<ClusterType>::size)
|
||||
.def("item_size", &ClusterVector<ClusterType>::item_size)
|
||||
.def_property_readonly("fmt",
|
||||
|
||||
@@ -114,4 +114,11 @@ PYBIND11_MODULE(_aare, m) {
|
||||
reduce_to_3x3<int, 9, 9, uint16_t>(m);
|
||||
reduce_to_3x3<double, 9, 9, uint16_t>(m);
|
||||
reduce_to_3x3<float, 9, 9, uint16_t>(m);
|
||||
|
||||
using Sum_index_pair_d = Sum_index_pair<double, corner>;
|
||||
PYBIND11_NUMPY_DTYPE(Sum_index_pair_d, sum, index);
|
||||
using Sum_index_pair_f = Sum_index_pair<float, corner>;
|
||||
PYBIND11_NUMPY_DTYPE(Sum_index_pair_f, sum, index);
|
||||
using Sum_index_pair_i = Sum_index_pair<int, corner>;
|
||||
PYBIND11_NUMPY_DTYPE(Sum_index_pair_i, sum, index);
|
||||
}
|
||||
|
||||
@@ -86,6 +86,17 @@ def test_calculate_eta():
|
||||
assert eta2[1,0] == 0.5
|
||||
assert eta2[1,1] == 0.4 #2/5
|
||||
|
||||
|
||||
def test_max_sum():
|
||||
"""Max 2x2 Sum"""
|
||||
cluster = _aare.Cluster3x3i(5,5,np.array([1, 1, 1, 2, 3, 1, 2, 2, 1], dtype=np.int32))
|
||||
|
||||
max_sum = cluster.max_sum_2x2()
|
||||
|
||||
assert max_sum[0] == 9
|
||||
assert max_sum[1] == 2
|
||||
|
||||
|
||||
def test_cluster_finder():
|
||||
"""Test ClusterFinder"""
|
||||
|
||||
|
||||
@@ -32,6 +32,18 @@ def test_push_back_on_cluster_vector():
|
||||
assert arr[0]['y'] == 22
|
||||
|
||||
|
||||
def test_max_2x2_sum():
|
||||
"""max_2x2_sum"""
|
||||
cv = _aare.ClusterVector_Cluster3x3i()
|
||||
cv.push_back(_aare.Cluster3x3i(19, 22, np.array([0,1,0,2,3,0,2,1,0], dtype=np.int32)))
|
||||
cv.push_back(_aare.Cluster3x3i(19, 22, np.ones(9, dtype=np.int32)))
|
||||
assert cv.size == 2
|
||||
max_2x2 = cv.sum_2x2()
|
||||
assert max_2x2.size == 2
|
||||
assert max_2x2[0]["sum"] == 8
|
||||
assert max_2x2[0]["index"] == 2
|
||||
|
||||
|
||||
def test_make_a_hitmap_from_cluster_vector():
|
||||
cv = _aare.ClusterVector_Cluster3x3i()
|
||||
|
||||
|
||||
@@ -21,22 +21,20 @@ using ClusterTypes =
|
||||
auto get_test_parameters() {
|
||||
return GENERATE(
|
||||
std::make_tuple(ClusterTypes{Cluster<int, 2, 2>{0, 0, {1, 2, 3, 1}}},
|
||||
Eta2<int>{2. / 3, 3. / 4,
|
||||
static_cast<int>(corner::cBottomLeft), 7}),
|
||||
Eta2<int>{2. / 3, 3. / 4, corner::cTopLeft, 7}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 3, 3>{0, 0, {1, 2, 3, 4, 5, 6, 1, 2, 7}}},
|
||||
Eta2<int>{6. / 11, 2. / 7, static_cast<int>(corner::cTopRight),
|
||||
20}),
|
||||
Eta2<int>{6. / 11, 2. / 7, corner::cBottomRight, 20}),
|
||||
std::make_tuple(ClusterTypes{Cluster<int, 5, 5>{
|
||||
0, 0, {1, 6, 7, 6, 5, 4, 3, 2, 1, 2, 8, 9, 8,
|
||||
1, 4, 5, 6, 7, 8, 4, 1, 1, 1, 1, 1}}},
|
||||
Eta2<int>{8. / 17, 7. / 15, 9, 30}),
|
||||
0, 0, {1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 9, 8,
|
||||
1, 4, 1, 6, 7, 8, 1, 1, 1, 1, 1, 1}}},
|
||||
Eta2<int>{8. / 17, 7. / 15, corner::cBottomLeft, 30}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 4, 2>{0, 0, {1, 4, 7, 2, 5, 6, 4, 3}}},
|
||||
Eta2<int>{4. / 10, 4. / 11, 1, 21}),
|
||||
Eta2<int>{4. / 10, 4. / 11, corner::cTopLeft, 21}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 2, 3>{0, 0, {1, 3, 2, 3, 4, 2}}},
|
||||
Eta2<int>{3. / 5, 2. / 5, 1, 11}));
|
||||
Eta2<int>{3. / 5, 2. / 5, corner::cBottomLeft, 11}));
|
||||
}
|
||||
|
||||
TEST_CASE("compute_largest_2x2_subcluster", "[eta_calculation]") {
|
||||
@@ -91,7 +89,7 @@ TEST_CASE("Calculate eta2 for a 3x3 int32 cluster with the largest 2x2 sum in "
|
||||
// 30, 23, 5
|
||||
|
||||
auto eta = calculate_eta2(cl);
|
||||
CHECK(eta.c == static_cast<int>(corner::cBottomLeft));
|
||||
CHECK(eta.c == corner::cBottomLeft);
|
||||
CHECK(eta.x == 50.0 / (20 + 50)); // 4/(3+4)
|
||||
CHECK(eta.y == 50.0 / (23 + 50)); // 4/(1+4)
|
||||
CHECK(eta.sum == 30 + 23 + 20 + 50);
|
||||
@@ -120,7 +118,7 @@ TEST_CASE("Calculate eta2 for a 3x3 int32 cluster with the largest 2x2 sum in "
|
||||
// 8, 12, 5
|
||||
|
||||
auto eta = calculate_eta2(cl);
|
||||
CHECK(eta.c == static_cast<int>(corner::cTopLeft));
|
||||
CHECK(eta.c == corner::cTopLeft);
|
||||
CHECK(eta.x == 80. / (77 + 80)); // 4/(3+4)
|
||||
CHECK(eta.y == 91.0 / (91 + 80)); // 7/(7+4)
|
||||
CHECK(eta.sum == 77 + 80 + 82 + 91);
|
||||
|
||||
Reference in New Issue
Block a user