mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-12-27 15:31:24 +01:00
Merge branch 'main' into dev/license
This commit is contained in:
@@ -443,6 +443,7 @@ if(AARE_TESTS)
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Dtype.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Frame.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/DetectorGeometry.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/Interpolation.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/RawMasterFile.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NDArray.test.cpp
|
||||
${CMAKE_CURRENT_SOURCE_DIR}/src/NDView.test.cpp
|
||||
|
||||
78
RELEASE.md
78
RELEASE.md
@@ -1,58 +1,64 @@
|
||||
# Release notes
|
||||
|
||||
This document describes the difference between Release 2025.8.22 and RELEASE_DATE.
|
||||
|
||||
## Changes:
|
||||
|
||||
Features:
|
||||
### New Features:
|
||||
|
||||
- Added SPDX-License-Identifier: MPL-2.0 to source files
|
||||
- max_sum_2x2 including index of subcluster with highest energy is now available from Python API
|
||||
- Calculate Eta3 supports all cluster types
|
||||
- interpolation class supports using cross eta3x3 and eta3x3 on full cluster as well as eta2x2 on full cluster
|
||||
- interpolation class has option to calculate the rosenblatt transform
|
||||
- reduction operations to reduce Clusters of general size to 2x2 or 3x3 clusters
|
||||
- `max_sum_2x2` including index of subcluster with highest energy is now available from Python API
|
||||
- interpolation supports bilinear interpolation of eta values for more fine grained transformed uniform coordinates
|
||||
- Interpolation is documented
|
||||
|
||||
- Added tell to ClusterFile. Returns position in bytes for debugging
|
||||
|
||||
### Resolved Features:
|
||||
|
||||
- calculate_eta coincides with theoretical definition
|
||||
|
||||
### Bugfixes:
|
||||
|
||||
- eta calculation assumes correct photon center
|
||||
- eta transformation to uniform coordinates starts at 0
|
||||
- Bug in interpolation
|
||||
- File supports reading new master json file format (multiple ROI's not supported yet)
|
||||
|
||||
|
||||
### API Changes:
|
||||
|
||||
- ClusterFinder for 2x2 Cluster disabled
|
||||
- eta stores corner as enum class cTopLeft, cTopRight, BottomLeft, cBottomRight indicating 2x2 subcluster with largest energy relative to cluster center
|
||||
- max_sum_2x2 returns corner as index
|
||||
|
||||
## Download, Documentation & Support
|
||||
|
||||
Bugfixes:
|
||||
### Download
|
||||
|
||||
- File supports reading new master json file format (multiple ROI's not supported yet)
|
||||
- Added tell to ClusterFile. Returns position in bytes for debugging
|
||||
|
||||
### 2025.8.22
|
||||
|
||||
Features:
|
||||
|
||||
- Apply calibration works in G0 if passes a 2D calibration and pedestal
|
||||
- count pixels that switch
|
||||
- calculate pedestal (also g0 version)
|
||||
- NDArray::view() needs an lvalue to reduce issues with the view outliving the array
|
||||
The Source Code:
|
||||
https://github.com/slsdetectorgroup/aare
|
||||
|
||||
|
||||
Bugfixes:
|
||||
|
||||
- Now using glibc 2.17 in conda builds (was using the host)
|
||||
- Fixed shifted pixels in clusters close to the edge of a frame
|
||||
|
||||
### 2025.7.18
|
||||
|
||||
Features:
|
||||
|
||||
- Cluster finder now works with 5x5, 7x7 and 9x9 clusters
|
||||
- Added ClusterVector::empty() member
|
||||
- Added apply_calibration function for Jungfrau data
|
||||
|
||||
Bugfixes:
|
||||
- Fixed reading RawFiles with ROI fully excluding some sub files.
|
||||
- Decoding of MH02 files placed the pixels in wrong position
|
||||
- Removed unused file: ClusterFile.cpp
|
||||
### Documentation
|
||||
|
||||
|
||||
### 2025.5.22
|
||||
Documentation including installation details:
|
||||
https://github.com/slsdetectorgroup/aare
|
||||
|
||||
Features:
|
||||
|
||||
- Added scurve fitting
|
||||
### Support
|
||||
|
||||
|
||||
erik.frojdh@psi.ch \
|
||||
alice.mazzoleni@psi.ch \
|
||||
dhanya.thattil@psi.ch
|
||||
|
||||
|
||||
Bugfixes:
|
||||
|
||||
- Fixed crash when opening raw files with large number of data files
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -9,6 +9,7 @@ class ClusterFixture : public benchmark::Fixture {
|
||||
public:
|
||||
Cluster<int, 2, 2> cluster_2x2{};
|
||||
Cluster<int, 3, 3> cluster_3x3{};
|
||||
Cluster<int, 4, 4> cluster_4x4{};
|
||||
|
||||
private:
|
||||
using benchmark::Fixture::SetUp;
|
||||
@@ -27,6 +28,13 @@ class ClusterFixture : public benchmark::Fixture {
|
||||
|
||||
cluster_3x3.x = 0;
|
||||
cluster_3x3.y = 0;
|
||||
|
||||
int temp_data3[16] = {1, 2, 3, 4, 5, 6, 7, 8,
|
||||
9, 10, 11, 12, 13, 14, 15, 16};
|
||||
std::copy(std::begin(temp_data3), std::end(temp_data3),
|
||||
std::begin(cluster_4x4.data));
|
||||
cluster_4x4.x = 0;
|
||||
cluster_4x4.y = 0;
|
||||
}
|
||||
|
||||
// void TearDown(::benchmark::State& state) {
|
||||
@@ -68,4 +76,29 @@ BENCHMARK_F(ClusterFixture, CalculateGeneralEtaFor3x3Cluster)
|
||||
benchmark::DoNotOptimize(eta);
|
||||
}
|
||||
}
|
||||
|
||||
BENCHMARK_F(ClusterFixture, Calculate2x2Etawithreduction)
|
||||
(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
auto reduced_cluster = reduce_to_2x2(cluster_4x4);
|
||||
Eta2 eta = calculate_eta2(reduced_cluster);
|
||||
auto reduced_cluster_from_3x3 = reduce_to_2x2(cluster_3x3);
|
||||
Eta2 eta2 = calculate_eta2(reduced_cluster_from_3x3);
|
||||
benchmark::DoNotOptimize(eta);
|
||||
benchmark::DoNotOptimize(eta2);
|
||||
}
|
||||
}
|
||||
|
||||
BENCHMARK_F(ClusterFixture, Calculate2x2Etawithoutreduction)
|
||||
(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
Eta2 eta = calculate_eta2(cluster_4x4);
|
||||
Eta2 eta2 = calculate_eta2(cluster_3x3);
|
||||
benchmark::DoNotOptimize(eta);
|
||||
benchmark::DoNotOptimize(eta2);
|
||||
}
|
||||
}
|
||||
|
||||
// BENCHMARK_MAIN();
|
||||
@@ -34,8 +34,8 @@ class ClustersForReduceFixture : public benchmark::Fixture {
|
||||
};
|
||||
|
||||
template <typename T>
|
||||
Cluster<T, 3, 3, int16_t> reduce_to_3x3(const Cluster<T, 5, 5, int16_t> &c) {
|
||||
Cluster<T, 3, 3, int16_t> result;
|
||||
Cluster<T, 3, 3, uint16_t> reduce_to_3x3(const Cluster<T, 5, 5, uint16_t> &c) {
|
||||
Cluster<T, 3, 3, uint16_t> result;
|
||||
|
||||
// Write out the sums in the hope that the compiler can optimize this
|
||||
std::array<T, 9> sum_3x3_subclusters;
|
||||
@@ -141,7 +141,7 @@ Cluster<T, 3, 3, int16_t> reduce_to_3x3(const Cluster<T, 5, 5, int16_t> &c) {
|
||||
BENCHMARK_F(ClustersForReduceFixture, Reduce2x2)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
benchmark::DoNotOptimize(reduce_to_2x2<int, 3, 3, int16_t>(
|
||||
benchmark::DoNotOptimize(reduce_to_2x2<int, 3, 3, uint16_t>(
|
||||
cluster_3x3)); // make sure compiler evaluates the expression
|
||||
}
|
||||
}
|
||||
@@ -157,7 +157,7 @@ BENCHMARK_F(ClustersForReduceFixture, Reduce3x3)(benchmark::State &st) {
|
||||
for (auto _ : st) {
|
||||
// This code gets timed
|
||||
benchmark::DoNotOptimize(
|
||||
reduce_to_3x3<int, 5, 5, int16_t>(cluster_5x5));
|
||||
reduce_to_3x3<int, 5, 5, uint16_t>(cluster_5x5));
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
@@ -28,6 +28,8 @@ configure_file(
|
||||
@ONLY
|
||||
)
|
||||
|
||||
file(COPY "${CMAKE_CURRENT_SOURCE_DIR}/figures"
|
||||
DESTINATION "${SPHINX_BUILD}")
|
||||
|
||||
configure_file(
|
||||
"${CMAKE_CURRENT_SOURCE_DIR}/static/extra.css"
|
||||
|
||||
BIN
docs/figures/Eta2x2.pdf
Normal file
BIN
docs/figures/Eta2x2.pdf
Normal file
Binary file not shown.
BIN
docs/figures/Eta2x2.png
Normal file
BIN
docs/figures/Eta2x2.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 6.7 KiB |
BIN
docs/figures/Eta2x2Full.pdf
Normal file
BIN
docs/figures/Eta2x2Full.pdf
Normal file
Binary file not shown.
BIN
docs/figures/Eta2x2Full.png
Normal file
BIN
docs/figures/Eta2x2Full.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 10 KiB |
BIN
docs/figures/Eta3x3.pdf
Normal file
BIN
docs/figures/Eta3x3.pdf
Normal file
Binary file not shown.
BIN
docs/figures/Eta3x3.png
Normal file
BIN
docs/figures/Eta3x3.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 13 KiB |
BIN
docs/figures/Eta3x3Cross.pdf
Normal file
BIN
docs/figures/Eta3x3Cross.pdf
Normal file
Binary file not shown.
BIN
docs/figures/Eta3x3Cross.png
Normal file
BIN
docs/figures/Eta3x3Cross.png
Normal file
Binary file not shown.
|
After Width: | Height: | Size: 9.5 KiB |
15
docs/src/Cluster.rst
Normal file
15
docs/src/Cluster.rst
Normal file
@@ -0,0 +1,15 @@
|
||||
Cluster
|
||||
========
|
||||
|
||||
.. doxygenstruct:: aare::Cluster
|
||||
:members:
|
||||
:undoc-members:
|
||||
:private-members:
|
||||
|
||||
|
||||
**Free Functions:**
|
||||
|
||||
.. doxygenfunction:: aare::reduce_to_3x3(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>&)
|
||||
|
||||
.. doxygenfunction:: aare::reduce_to_2x2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>&)
|
||||
|
||||
102
docs/src/Interpolation.rst
Normal file
102
docs/src/Interpolation.rst
Normal file
@@ -0,0 +1,102 @@
|
||||
Interpolation
|
||||
==============
|
||||
|
||||
Interpolation class for :math:`\eta` Interpolation.
|
||||
|
||||
The Interpolator class provides methods to interpolate the positions of photons based on their :math:`\eta` values.
|
||||
|
||||
.. warning::
|
||||
The interpolation might lead to erroneous photon positions for clusters at the boarders of a frame. Make sure to filter out such cases.
|
||||
|
||||
:math:`\eta`-Functions:
|
||||
---------------------------
|
||||
|
||||
.. doxygenstruct:: aare::Eta2
|
||||
:members:
|
||||
:undoc-members:
|
||||
:private-members:
|
||||
|
||||
.. note::
|
||||
The corner value ``c`` is only relevant when one uses ``calculate_eta_2`` or ``calculate_full_eta2``. Otherwise its default value is ``cTopLeft``.
|
||||
|
||||
Supported are the following :math:`\eta`-functions:
|
||||
|
||||
|
||||
.. image:: ../figures/Eta2x2.png
|
||||
:target: ../figures/Eta2x2.png
|
||||
:width: 650px
|
||||
:align: center
|
||||
:alt: Eta2x2
|
||||
|
||||
.. math::
|
||||
\begin{equation*}
|
||||
{\color{blue}{\eta_x}} = \frac{Q_{1,1}}{Q_{1,0} + Q_{1,1}} \quad \quad
|
||||
{\color{green}{\eta_y}} = \frac{Q_{1,1}}{Q_{0,1} + Q_{1,1}}
|
||||
\end{equation*}
|
||||
|
||||
|
||||
.. doxygenfunction:: aare::calculate_eta2(const ClusterVector<ClusterType>&)
|
||||
|
||||
.. doxygenfunction:: aare::calculate_eta2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>&)
|
||||
|
||||
.. image:: ../figures/Eta2x2Full.png
|
||||
:target: ../figures/Eta2x2Full.png
|
||||
:width: 650px
|
||||
:align: center
|
||||
:alt: Eta2x2 Full
|
||||
|
||||
.. math::
|
||||
\begin{equation*}
|
||||
{\color{blue}{\eta_x}} = \frac{Q_{0,1} + Q_{1,1}}{\sum_i^{2}\sum_j^{2}Q_{i,j}} \quad \quad
|
||||
{\textcolor{green}{\eta_y}} = \frac{Q_{1,0} + Q_{1,1}}{\sum_i^{2}\sum_j^{2}Q_{i,j}}
|
||||
\end{equation*}
|
||||
|
||||
|
||||
.. doxygenfunction:: aare::calculate_full_eta2(const ClusterVector<ClusterType>&)
|
||||
|
||||
.. doxygenfunction:: aare::calculate_full_eta2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>&)
|
||||
|
||||
.. image:: ../figures/Eta3x3.png
|
||||
:target: ../figures/Eta3x3.png
|
||||
:width: 650px
|
||||
:align: center
|
||||
:alt: Eta3x3
|
||||
|
||||
.. math::
|
||||
\begin{equation*}
|
||||
{\color{blue}{\eta_x}} = \frac{\sum_{i}^{3} Q_{i,2} - \sum_{i}^{3} Q_{i,0}}{\sum_{i}^{3}\sum_{j}^{3} Q_{i,j}} \quad \quad
|
||||
{\color{green}{\eta_y}} = \frac{\sum_{j}^{3} Q_{2,j} - \sum_{j}^{3} Q_{0,j}}{\sum_{i}^{3}\sum_{j}^{3} Q_{i,j}}
|
||||
\end{equation*}
|
||||
|
||||
.. doxygenfunction:: aare::calculate_eta3(const ClusterVector<Cluster<T, 3,3, CoordType>>&)
|
||||
|
||||
.. doxygenfunction:: aare::calculate_eta3(const Cluster<T, 3, 3, CoordType>&)
|
||||
|
||||
.. image:: ../figures/Eta3x3Cross.png
|
||||
:target: ../figures/Eta3x3Cross.png
|
||||
:width: 650px
|
||||
:align: center
|
||||
:alt: Cross Eta3x3
|
||||
|
||||
.. math::
|
||||
\begin{equation*}
|
||||
{\color{blue}{\eta_x}} = \frac{Q_{1,2} - Q_{1,0}}{Q_{1,0} + Q_{1,1} + Q_{1,0}} \quad \quad
|
||||
{\color{green}{\eta_y}} = \frac{Q_{0,2} - Q_{0,1}}{Q_{0,1} + Q_{1,1} + Q_{1,2}}
|
||||
\end{equation*}
|
||||
|
||||
.. doxygenfunction:: aare::calculate_cross_eta3(const ClusterVector<Cluster<T, 3,3, CoordType>>&)
|
||||
|
||||
.. doxygenfunction:: aare::calculate_cross_eta3(const Cluster<T, 3, 3, CoordType>&)
|
||||
|
||||
Interpolation class:
|
||||
---------------------
|
||||
|
||||
.. Warning::
|
||||
Make sure to use the same :math:`\eta`-function during interpolation as given by the joint :math:`\eta`-distribution passed to the constructor.
|
||||
|
||||
.. doxygenclass:: aare::Interpolator
|
||||
:members:
|
||||
:undoc-members:
|
||||
:private-members:
|
||||
|
||||
|
||||
@@ -29,6 +29,8 @@ AARE
|
||||
pyCtbRawFile
|
||||
pyClusterFile
|
||||
pyClusterVector
|
||||
pyCluster
|
||||
pyInterpolation
|
||||
pyJungfrauDataFile
|
||||
pyRawFile
|
||||
pyRawMasterFile
|
||||
@@ -47,10 +49,12 @@ AARE
|
||||
Frame
|
||||
File
|
||||
Dtype
|
||||
Cluster
|
||||
ClusterFinder
|
||||
ClusterFinderMT
|
||||
ClusterFile
|
||||
ClusterVector
|
||||
Interpolation
|
||||
JungfrauDataFile
|
||||
Pedestal
|
||||
RawFile
|
||||
|
||||
23
docs/src/pyCluster.rst
Normal file
23
docs/src/pyCluster.rst
Normal file
@@ -0,0 +1,23 @@
|
||||
Cluster
|
||||
========
|
||||
|
||||
.. py:currentmodule:: aare
|
||||
|
||||
.. autoclass:: Cluster
|
||||
:members:
|
||||
:undoc-members:
|
||||
:inherited-members:
|
||||
|
||||
|
||||
Below is the API of a cluster of size :math:`3\times 3` and type ``int`` but all variants share the same API.
|
||||
|
||||
.. autoclass:: aare._aare.Cluster3x3i
|
||||
:special-members: __init__
|
||||
:members:
|
||||
:undoc-members:
|
||||
:show-inheritance:
|
||||
:inherited-members:
|
||||
|
||||
.. note::
|
||||
More functions can be found in the :ref:`ClusterVector <py_clustervector>` documentation. Generally apply functions directly on the ``ClusterVector`` instead of looping over individual clusters.
|
||||
|
||||
@@ -1,3 +1,5 @@
|
||||
.. _py_clustervector:
|
||||
|
||||
ClusterVector
|
||||
================
|
||||
|
||||
@@ -28,6 +30,13 @@ C++ functions that support the ClusterVector or to view it as a numpy array.
|
||||
|
||||
.. py:currentmodule:: aare
|
||||
|
||||
.. autoclass:: ClusterVector
|
||||
:members:
|
||||
:undoc-members:
|
||||
:inherited-members:
|
||||
|
||||
Below is the API of the ClusterVector_Cluster3x3i but all variants share the same API.
|
||||
|
||||
.. autoclass:: aare._aare.ClusterVector_Cluster3x3i
|
||||
:special-members: __init__
|
||||
:members:
|
||||
|
||||
94
docs/src/pyInterpolation.rst
Normal file
94
docs/src/pyInterpolation.rst
Normal file
@@ -0,0 +1,94 @@
|
||||
Interpolation
|
||||
==============
|
||||
|
||||
Interpolation class for :math:`\eta` Interpolation.
|
||||
|
||||
The Interpolator class provides methods to interpolate the positions of photons based on their :math:`\eta` values.
|
||||
|
||||
.. warning::
|
||||
The interpolation might lead to erroneous photon positions for clusters at the boarders of a frame. Make sure to filter out such cases.
|
||||
|
||||
Below is an example of the Eta class of type ``double``. Supported are ``Etaf`` of type ``float`` and ``Etai`` of type ``int``.
|
||||
|
||||
.. autoclass:: aare._aare.Etad
|
||||
:members:
|
||||
:private-members:
|
||||
|
||||
.. note::
|
||||
The corner value ``c`` is only relevant when one uses ``calculate_eta_2`` or ``calculate_full_eta2``. Otherwise its default value is ``cTopLeft``.
|
||||
|
||||
Supported are the following :math:`\eta`-functions:
|
||||
|
||||
.. py:currentmodule:: aare
|
||||
|
||||
.. image:: ../figures/Eta2x2.png
|
||||
:target: ../figures/Eta2x2.png
|
||||
:width: 650px
|
||||
:align: center
|
||||
:alt: Eta2x2
|
||||
|
||||
.. math::
|
||||
\begin{equation*}
|
||||
{\color{blue}{\eta_x}} = \frac{Q_{1,1}}{Q_{1,0} + Q_{1,1}} \quad \quad
|
||||
{\color{green}{\eta_y}} = \frac{Q_{1,1}}{Q_{0,1} + Q_{1,1}}
|
||||
\end{equation*}
|
||||
|
||||
.. autofunction:: calculate_eta2
|
||||
|
||||
.. image:: ../figures/Eta2x2Full.png
|
||||
:target: ../figures/Eta2x2Full.png
|
||||
:width: 650px
|
||||
:align: center
|
||||
:alt: Eta2x2 Full
|
||||
|
||||
.. math::
|
||||
\begin{equation*}
|
||||
{\color{blue}{\eta_x}} = \frac{Q_{0,1} + Q_{1,1}}{\sum_i^{2}\sum_j^{2}Q_{i,j}} \quad \quad
|
||||
{\textcolor{green}{\eta_y}} = \frac{Q_{1,0} + Q_{1,1}}{\sum_i^{2}\sum_j^{2}Q_{i,j}}
|
||||
\end{equation*}
|
||||
|
||||
.. autofunction:: calculate_full_eta2
|
||||
|
||||
.. image:: ../figures/Eta3x3.png
|
||||
:target: ../figures/Eta3x3.png
|
||||
:width: 650px
|
||||
:align: center
|
||||
:alt: Eta3x3
|
||||
|
||||
.. math::
|
||||
\begin{equation*}
|
||||
{\color{blue}{\eta_x}} = \frac{\sum_{i}^{3} Q_{i,2} - \sum_{i}^{3} Q_{i,0}}{\sum_{i}^{3}\sum_{j}^{3} Q_{i,j}} \quad \quad
|
||||
{\color{green}{\eta_y}} = \frac{\sum_{j}^{3} Q_{2,j} - \sum_{j}^{3} Q_{0,j}}{\sum_{i}^{3}\sum_{j}^{3} Q_{i,j}}
|
||||
\end{equation*}
|
||||
|
||||
.. autofunction:: calculate_eta3
|
||||
|
||||
.. image:: ../figures/Eta3x3Cross.png
|
||||
:target: ../figures/Eta3x3Cross.png
|
||||
:width: 650px
|
||||
:align: center
|
||||
:alt: Cross Eta3x3
|
||||
|
||||
.. math::
|
||||
\begin{equation*}
|
||||
{\color{blue}{\eta_x}} = \frac{Q_{1,2} - Q_{1,0}}{Q_{1,0} + Q_{1,1} + Q_{1,0}} \quad \quad
|
||||
{\color{green}{\eta_y}} = \frac{Q_{0,2} - Q_{0,1}}{Q_{0,1} + Q_{1,1} + Q_{1,2}}
|
||||
\end{equation*}
|
||||
|
||||
.. autofunction:: calculate_cross_eta3
|
||||
|
||||
|
||||
Interpolation class for :math:`\eta`-Interpolation
|
||||
----------------------------------------------------
|
||||
|
||||
.. Warning::
|
||||
Make sure to use the same :math:`\eta`-function during interpolation as given by the joint :math:`\eta`-distribution passed to the constructor.
|
||||
|
||||
.. py:currentmodule:: aare
|
||||
|
||||
.. autoclass:: Interpolator
|
||||
:special-members: __init__
|
||||
:members:
|
||||
:undoc-members:
|
||||
:inherited-members:
|
||||
|
||||
@@ -20,37 +20,124 @@ enum class pixel : int {
|
||||
pTopRight = 8
|
||||
};
|
||||
|
||||
// TODO: better to have sum after x,y
|
||||
/**
|
||||
* eta struct
|
||||
*/
|
||||
template <typename T> struct Eta2 {
|
||||
double x;
|
||||
double y;
|
||||
/// @brief eta in x direction
|
||||
double x{};
|
||||
/// @brief eta in y direction
|
||||
double y{};
|
||||
/// @brief index of subcluster given as corner relative to cluster center
|
||||
corner c{0};
|
||||
T sum;
|
||||
/// @brief photon energy (cluster sum)
|
||||
T sum{};
|
||||
};
|
||||
|
||||
/**
|
||||
* @brief Calculate the eta2 values for all clusters in a Clustervector
|
||||
* @brief Calculate the eta2 values for all clusters in a ClusterVector
|
||||
*/
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
NDArray<double, 2> calculate_eta2(const ClusterVector<ClusterType> &clusters) {
|
||||
NDArray<double, 2> eta2({static_cast<int64_t>(clusters.size()), 2});
|
||||
std::vector<Eta2<typename ClusterType::value_type>>
|
||||
calculate_eta2(const ClusterVector<ClusterType> &clusters) {
|
||||
|
||||
std::vector<Eta2<typename ClusterType::value_type>> eta2{};
|
||||
eta2.reserve(clusters.size());
|
||||
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto e = calculate_eta2(clusters[i]);
|
||||
eta2(i, 0) = e.x;
|
||||
eta2(i, 1) = e.y;
|
||||
eta2.push_back(e);
|
||||
}
|
||||
|
||||
return eta2;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Calculate the full eta2 values for all clusters in a ClusterVector
|
||||
*/
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
std::vector<Eta2<typename ClusterType::value_type>>
|
||||
calculate_full_eta2(const ClusterVector<ClusterType> &clusters) {
|
||||
std::vector<Eta2<typename ClusterType::value_type>> eta2{};
|
||||
eta2.reserve(clusters.size());
|
||||
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto e = calculate_full_eta2(clusters[i]);
|
||||
eta2.push_back(e);
|
||||
}
|
||||
|
||||
return eta2;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Calculate eta3 for all 3x3 clusters in a ClusterVector
|
||||
*/
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
std::vector<Eta2<typename ClusterType::value_type>>
|
||||
calculate_eta3(const ClusterVector<ClusterType> &clusters) {
|
||||
std::vector<Eta2<typename ClusterType::value_type>> eta2{};
|
||||
eta2.reserve(clusters.size());
|
||||
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto e = calculate_eta3(clusters[i]);
|
||||
eta2.push_back(e);
|
||||
}
|
||||
|
||||
return eta2;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Calculate cross eta3 for all 3x3 clusters in a ClusterVector
|
||||
*/
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
std::vector<Eta2<typename ClusterType::value_type>>
|
||||
calculate_cross_eta3(const ClusterVector<ClusterType> &clusters) {
|
||||
std::vector<Eta2<typename ClusterType::value_type>> eta2{};
|
||||
eta2.reserve(clusters.size());
|
||||
|
||||
for (size_t i = 0; i < clusters.size(); i++) {
|
||||
auto e = calculate_cross_eta3(clusters[i]);
|
||||
eta2.push_back(e);
|
||||
}
|
||||
|
||||
return eta2;
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief helper function to calculate eta2 x and y values
|
||||
* @param eta reference to the Eta2 object to update
|
||||
* @param left_x value of the left pixel
|
||||
* @param right_x value of the right pixel
|
||||
* @param bottom_y value of the bottom pixel
|
||||
* @param top_y value of the top pixel
|
||||
*/
|
||||
template <typename T>
|
||||
inline void calculate_eta2(Eta2<T> &eta, const T left_x, const T right_x,
|
||||
const T bottom_y, const T top_y) {
|
||||
if ((right_x + left_x) != 0)
|
||||
eta.x = static_cast<double>(right_x) /
|
||||
static_cast<double>(right_x + left_x); // between (0,1) the
|
||||
// closer to zero left
|
||||
// value probably larger
|
||||
if ((top_y + bottom_y) != 0)
|
||||
eta.y = static_cast<double>(top_y) /
|
||||
static_cast<double>(top_y + bottom_y); // between (0,1) the
|
||||
// closer to zero bottom
|
||||
// value probably larger
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Calculate the eta2 values for a generic sized cluster and return them
|
||||
* in a Eta2 struct containing etay, etax and the index of the respective 2x2
|
||||
* subcluster.
|
||||
* in a Eta2 struct containing etay, etax and the index (as corner) of the
|
||||
* respective 2x2 subcluster relative to the cluster center.
|
||||
*/
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
typename CoordType = uint16_t>
|
||||
Eta2<T>
|
||||
calculate_eta2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
|
||||
|
||||
@@ -67,67 +154,36 @@ calculate_eta2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
|
||||
// subcluster top right from center
|
||||
switch (c) {
|
||||
case (corner::cTopLeft):
|
||||
if ((cl.data[cluster_center_index - 1] +
|
||||
cl.data[cluster_center_index]) != 0)
|
||||
eta.x = static_cast<double>(cl.data[cluster_center_index - 1]) /
|
||||
static_cast<double>(cl.data[cluster_center_index - 1] +
|
||||
calculate_eta2(eta, cl.data[cluster_center_index - 1],
|
||||
cl.data[cluster_center_index],
|
||||
cl.data[cluster_center_index - ClusterSizeX],
|
||||
cl.data[cluster_center_index]);
|
||||
if ((cl.data[cluster_center_index - ClusterSizeX] +
|
||||
cl.data[cluster_center_index]) != 0)
|
||||
eta.y = static_cast<double>(
|
||||
cl.data[cluster_center_index - ClusterSizeX]) /
|
||||
static_cast<double>(
|
||||
cl.data[cluster_center_index - ClusterSizeX] +
|
||||
cl.data[cluster_center_index]);
|
||||
|
||||
// dx = 0
|
||||
// dy = 0
|
||||
// dx = -1
|
||||
// dy = -1
|
||||
break;
|
||||
case (corner::cTopRight):
|
||||
if (cl.data[cluster_center_index] + cl.data[cluster_center_index + 1] !=
|
||||
0)
|
||||
eta.x = static_cast<double>(cl.data[cluster_center_index]) /
|
||||
static_cast<double>(cl.data[cluster_center_index] +
|
||||
cl.data[cluster_center_index + 1]);
|
||||
if ((cl.data[cluster_center_index - ClusterSizeX] +
|
||||
cl.data[cluster_center_index]) != 0)
|
||||
eta.y = static_cast<double>(
|
||||
cl.data[cluster_center_index - ClusterSizeX]) /
|
||||
static_cast<double>(
|
||||
cl.data[cluster_center_index - ClusterSizeX] +
|
||||
calculate_eta2(eta, cl.data[cluster_center_index],
|
||||
cl.data[cluster_center_index + 1],
|
||||
cl.data[cluster_center_index - ClusterSizeX],
|
||||
cl.data[cluster_center_index]);
|
||||
// dx = 1
|
||||
// dy = 0
|
||||
// dx = 0
|
||||
// dy = -1
|
||||
break;
|
||||
case (corner::cBottomLeft):
|
||||
if ((cl.data[cluster_center_index - 1] +
|
||||
cl.data[cluster_center_index]) != 0)
|
||||
eta.x = static_cast<double>(cl.data[cluster_center_index - 1]) /
|
||||
static_cast<double>(cl.data[cluster_center_index - 1] +
|
||||
cl.data[cluster_center_index]);
|
||||
if ((cl.data[cluster_center_index] +
|
||||
cl.data[cluster_center_index + ClusterSizeX]) != 0)
|
||||
eta.y = static_cast<double>(cl.data[cluster_center_index]) /
|
||||
static_cast<double>(
|
||||
cl.data[cluster_center_index] +
|
||||
calculate_eta2(eta, cl.data[cluster_center_index - 1],
|
||||
cl.data[cluster_center_index],
|
||||
cl.data[cluster_center_index],
|
||||
cl.data[cluster_center_index + ClusterSizeX]);
|
||||
// dx = 0
|
||||
// dy = 1
|
||||
// dx = -1
|
||||
// dy = 0
|
||||
break;
|
||||
case (corner::cBottomRight):
|
||||
if (cl.data[cluster_center_index] + cl.data[cluster_center_index + 1] !=
|
||||
0)
|
||||
eta.x = static_cast<double>(cl.data[cluster_center_index]) /
|
||||
static_cast<double>(cl.data[cluster_center_index] +
|
||||
cl.data[cluster_center_index + 1]);
|
||||
if ((cl.data[cluster_center_index] +
|
||||
cl.data[cluster_center_index + ClusterSizeX]) != 0)
|
||||
eta.y = static_cast<double>(cl.data[cluster_center_index]) /
|
||||
static_cast<double>(
|
||||
cl.data[cluster_center_index] +
|
||||
calculate_eta2(eta, cl.data[cluster_center_index],
|
||||
cl.data[cluster_center_index + 1],
|
||||
cl.data[cluster_center_index],
|
||||
cl.data[cluster_center_index + ClusterSizeX]);
|
||||
// dx = 1
|
||||
// dy = 1
|
||||
// dx = 0
|
||||
// dy = 0
|
||||
break;
|
||||
}
|
||||
|
||||
@@ -136,69 +192,255 @@ calculate_eta2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
|
||||
return eta;
|
||||
}
|
||||
|
||||
// TODO! Look up eta2 calculation - photon center should be bottom right corner
|
||||
template <typename T>
|
||||
Eta2<T> calculate_eta2(const Cluster<T, 2, 2, int16_t> &cl) {
|
||||
/**
|
||||
* @brief Calculate the eta2 values for a generic sized cluster and return them
|
||||
* in a Eta2 struct containing etay, etax and the index (as corner) of the
|
||||
* respective 2x2 subcluster relative to the cluster center.
|
||||
*/
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
Eta2<T> calculate_full_eta2(
|
||||
const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
|
||||
|
||||
static_assert(ClusterSizeX > 1 && ClusterSizeY > 1);
|
||||
Eta2<T> eta{};
|
||||
|
||||
if ((cl.data[0] + cl.data[1]) != 0)
|
||||
eta.x = static_cast<double>(cl.data[2]) /
|
||||
(cl.data[2] + cl.data[3]); // between (0,1) the closer to zero
|
||||
// left value probably larger
|
||||
if ((cl.data[0] + cl.data[2]) != 0)
|
||||
eta.y = static_cast<double>(cl.data[1]) /
|
||||
(cl.data[1] + cl.data[3]); // between (0,1) the closer to zero
|
||||
// bottom value probably larger
|
||||
constexpr size_t cluster_center_index =
|
||||
(ClusterSizeX / 2) + (ClusterSizeY / 2) * ClusterSizeX;
|
||||
|
||||
auto max_sum = cl.max_sum_2x2();
|
||||
eta.sum = max_sum.sum;
|
||||
corner c = max_sum.index;
|
||||
|
||||
// subcluster top right from center
|
||||
switch (c) {
|
||||
case (corner::cTopLeft):
|
||||
if (eta.sum != 0) {
|
||||
eta.x = static_cast<double>(
|
||||
cl.data[cluster_center_index] +
|
||||
cl.data[cluster_center_index - ClusterSizeX]) /
|
||||
static_cast<double>(eta.sum);
|
||||
|
||||
eta.y = static_cast<double>(cl.data[cluster_center_index - 1] +
|
||||
cl.data[cluster_center_index]) /
|
||||
static_cast<double>(eta.sum);
|
||||
}
|
||||
// dx = -1
|
||||
// dy = -1
|
||||
break;
|
||||
case (corner::cTopRight):
|
||||
if (eta.sum != 0) {
|
||||
eta.x = static_cast<double>(
|
||||
cl.data[cluster_center_index + 1] +
|
||||
cl.data[cluster_center_index - ClusterSizeX + 1]) /
|
||||
static_cast<double>(eta.sum);
|
||||
eta.y = static_cast<double>(cl.data[cluster_center_index] +
|
||||
cl.data[cluster_center_index + 1]) /
|
||||
static_cast<double>(eta.sum);
|
||||
}
|
||||
// dx = 0
|
||||
// dy = -1
|
||||
break;
|
||||
case (corner::cBottomLeft):
|
||||
if (eta.sum != 0) {
|
||||
eta.x = static_cast<double>(
|
||||
cl.data[cluster_center_index] +
|
||||
cl.data[cluster_center_index + ClusterSizeX]) /
|
||||
static_cast<double>(eta.sum);
|
||||
eta.y = static_cast<double>(
|
||||
cl.data[cluster_center_index + ClusterSizeX] +
|
||||
cl.data[cluster_center_index + ClusterSizeX - 1]) /
|
||||
static_cast<double>(eta.sum);
|
||||
}
|
||||
// dx = -1
|
||||
// dy = 0
|
||||
break;
|
||||
case (corner::cBottomRight):
|
||||
if (eta.sum != 0) {
|
||||
eta.x = static_cast<double>(
|
||||
cl.data[cluster_center_index + 1] +
|
||||
cl.data[cluster_center_index + ClusterSizeX + 1]) /
|
||||
static_cast<double>(eta.sum);
|
||||
eta.y = static_cast<double>(
|
||||
cl.data[cluster_center_index + ClusterSizeX] +
|
||||
cl.data[cluster_center_index + ClusterSizeX + 1]) /
|
||||
static_cast<double>(eta.sum);
|
||||
}
|
||||
// dx = 0
|
||||
// dy = 0
|
||||
break;
|
||||
}
|
||||
|
||||
eta.c = c;
|
||||
|
||||
return eta;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Eta2<T> calculate_eta2(const Cluster<T, 2, 2, uint16_t> &cl) {
|
||||
Eta2<T> eta{};
|
||||
|
||||
// TODO: maybe have as member function of cluster
|
||||
const uint8_t photon_hit_index =
|
||||
std::max_element(cl.data.begin(), cl.data.end()) - cl.data.begin();
|
||||
|
||||
eta.c = static_cast<corner>(3 - photon_hit_index);
|
||||
|
||||
switch (eta.c) {
|
||||
case corner::cTopLeft:
|
||||
calculate_eta2(eta, cl.data[2], cl.data[3], cl.data[1], cl.data[3]);
|
||||
break;
|
||||
case corner::cTopRight:
|
||||
calculate_eta2(eta, cl.data[2], cl.data[3], cl.data[0], cl.data[2]);
|
||||
break;
|
||||
case corner::cBottomLeft:
|
||||
calculate_eta2(eta, cl.data[0], cl.data[1], cl.data[1], cl.data[3]);
|
||||
break;
|
||||
case corner::cBottomRight:
|
||||
calculate_eta2(eta, cl.data[0], cl.data[1], cl.data[0], cl.data[2]);
|
||||
break;
|
||||
}
|
||||
|
||||
eta.sum = cl.sum();
|
||||
|
||||
return eta;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Eta2<T> calculate_full_eta2(const Cluster<T, 2, 2, uint16_t> &cl) {
|
||||
|
||||
Eta2<T> eta{};
|
||||
|
||||
eta.sum = cl.sum();
|
||||
|
||||
const uint8_t photon_hit_index =
|
||||
std::max_element(cl.data.begin(), cl.data.end()) - cl.data.begin();
|
||||
|
||||
eta.c = static_cast<corner>(3 - photon_hit_index);
|
||||
|
||||
if (eta.sum != 0) {
|
||||
eta.x = static_cast<double>(cl.data[1] + cl.data[3]) /
|
||||
static_cast<double>(eta.sum);
|
||||
eta.y = static_cast<double>(cl.data[2] + cl.data[3]) /
|
||||
static_cast<double>(eta.sum);
|
||||
}
|
||||
|
||||
return eta;
|
||||
}
|
||||
|
||||
// TODO generalize
|
||||
template <typename T>
|
||||
Eta2<T> calculate_eta2(const Cluster<T, 1, 2, int16_t> &cl) {
|
||||
Eta2<T> calculate_eta2(const Cluster<T, 1, 2, uint16_t> &cl) {
|
||||
Eta2<T> eta{};
|
||||
|
||||
eta.x = 0;
|
||||
eta.y = static_cast<double>(cl.data[0]) / cl.data[1];
|
||||
eta.y = static_cast<double>(cl.data[1]) / cl.data[0];
|
||||
eta.sum = cl.sum();
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Eta2<T> calculate_eta2(const Cluster<T, 2, 1, int16_t> &cl) {
|
||||
Eta2<T> calculate_eta2(const Cluster<T, 2, 1, uint16_t> &cl) {
|
||||
Eta2<T> eta{};
|
||||
|
||||
eta.x = static_cast<double>(cl.data[0]) / cl.data[1];
|
||||
eta.x = static_cast<double>(cl.data[1]) / cl.data[0];
|
||||
eta.y = 0;
|
||||
eta.sum = cl.sum();
|
||||
}
|
||||
|
||||
// calculates Eta3 for 3x3 cluster based on code from analyze_cluster
|
||||
// TODO only supported for 3x3 Clusters
|
||||
template <typename T> Eta2<T> calculate_eta3(const Cluster<T, 3, 3> &cl) {
|
||||
/**
|
||||
* @brief calculates cross Eta3 for 3x3 cluster
|
||||
* cross Eta3 calculates the eta by taking into account only the cross pixels
|
||||
* {top, bottom, left, right, center}
|
||||
*/
|
||||
template <typename T, typename CoordType = uint16_t>
|
||||
Eta2<T> calculate_cross_eta3(const Cluster<T, 3, 3, CoordType> &cl) {
|
||||
|
||||
Eta2<T> eta{};
|
||||
|
||||
T sum = 0;
|
||||
T photon_energy = cl.sum();
|
||||
|
||||
std::for_each(std::begin(cl.data), std::end(cl.data),
|
||||
[&sum](T x) { sum += x; });
|
||||
|
||||
eta.sum = sum;
|
||||
eta.sum = photon_energy;
|
||||
|
||||
if ((cl.data[3] + cl.data[4] + cl.data[5]) != 0)
|
||||
|
||||
eta.x = static_cast<double>(-cl.data[3] + cl.data[3 + 2]) /
|
||||
eta.x =
|
||||
static_cast<double>(-cl.data[3] + cl.data[3 + 2]) /
|
||||
|
||||
(cl.data[3] + cl.data[4] + cl.data[5]); // (-1,1)
|
||||
static_cast<double>(cl.data[3] + cl.data[4] + cl.data[5]); // (-1,1)
|
||||
|
||||
if ((cl.data[1] + cl.data[4] + cl.data[7]) != 0)
|
||||
|
||||
eta.y = static_cast<double>(-cl.data[1] + cl.data[2 * 3 + 1]) /
|
||||
|
||||
(cl.data[1] + cl.data[4] + cl.data[7]);
|
||||
static_cast<double>(cl.data[1] + cl.data[4] + cl.data[7]);
|
||||
|
||||
return eta;
|
||||
}
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
Eta2<T> calculate_cross_eta3(
|
||||
const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
|
||||
|
||||
static_assert(ClusterSizeX > 2 && ClusterSizeY > 2,
|
||||
"calculate_eta3 only defined for clusters larger than 2x2");
|
||||
|
||||
if constexpr (ClusterSizeX != 3 || ClusterSizeY != 3) {
|
||||
auto reduced_cluster = reduce_cluster_to_3x3(cl);
|
||||
return calculate_cross_eta3(reduced_cluster);
|
||||
} else {
|
||||
return calculate_cross_eta3(cl);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief calculates Eta3 for 3x3 cluster
|
||||
* It calculates the eta by taking into account all pixels in the 3x3 cluster
|
||||
*/
|
||||
template <typename T, typename CoordType = uint16_t>
|
||||
Eta2<T> calculate_eta3(const Cluster<T, 3, 3, CoordType> &cl) {
|
||||
|
||||
Eta2<T> eta{};
|
||||
|
||||
T photon_energy = cl.sum();
|
||||
|
||||
eta.sum = photon_energy;
|
||||
|
||||
// TODO: how do we handle potential arithmetic overflows? - T could be
|
||||
// uint16
|
||||
if (photon_energy != 0) {
|
||||
std::array<T, 2> column_sums{
|
||||
static_cast<T>(cl.data[0] + cl.data[3] + cl.data[6]),
|
||||
static_cast<T>(cl.data[2] + cl.data[5] + cl.data[8])};
|
||||
|
||||
eta.x = static_cast<double>(-column_sums[0] + column_sums[1]) /
|
||||
static_cast<double>(photon_energy);
|
||||
|
||||
std::array<T, 2> row_sums{
|
||||
static_cast<T>(cl.data[0] + cl.data[1] + cl.data[2]),
|
||||
static_cast<T>(cl.data[6] + cl.data[7] + cl.data[8])};
|
||||
|
||||
eta.y = static_cast<double>(-row_sums[0] + row_sums[1]) /
|
||||
static_cast<double>(photon_energy);
|
||||
}
|
||||
|
||||
return eta;
|
||||
}
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
Eta2<T>
|
||||
calculate_eta3(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
|
||||
|
||||
static_assert(ClusterSizeX > 2 && ClusterSizeY > 2,
|
||||
"calculate_eta3 only defined for clusters larger than 2x2");
|
||||
|
||||
if constexpr (ClusterSizeX != 3 || ClusterSizeY != 3) {
|
||||
auto reduced_cluster = reduce_cluster_to_3x3(cl);
|
||||
return calculate_eta3(reduced_cluster);
|
||||
} else {
|
||||
return calculate_eta3(cl);
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace aare
|
||||
@@ -19,6 +19,10 @@
|
||||
namespace aare {
|
||||
|
||||
// requires clause c++20 maybe update
|
||||
|
||||
/**
|
||||
* @brief Cluster struct
|
||||
*/
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
struct Cluster {
|
||||
@@ -29,8 +33,11 @@ struct Cluster {
|
||||
static_assert(ClusterSizeX > 0 && ClusterSizeY > 0,
|
||||
"Cluster sizes must be bigger than zero");
|
||||
|
||||
/// @brief Cluster center x coordinate (in pixel coordinates)
|
||||
CoordType x;
|
||||
/// @brief Cluster center y coordinate (in pixel coordinates)
|
||||
CoordType y;
|
||||
/// @brief Cluster data stored in row-major order starting from top-left
|
||||
std::array<T, ClusterSizeX * ClusterSizeY> data;
|
||||
|
||||
static constexpr uint8_t cluster_size_x = ClusterSizeX;
|
||||
@@ -38,10 +45,12 @@ struct Cluster {
|
||||
using value_type = T;
|
||||
using coord_type = CoordType;
|
||||
|
||||
/**
|
||||
* @brief Sum of all elements in the cluster
|
||||
*/
|
||||
T sum() const { return std::accumulate(data.begin(), data.end(), T{}); }
|
||||
|
||||
// TODO: handle 1 dimensional clusters
|
||||
// TODO: change int to corner
|
||||
/**
|
||||
* @brief sum of 2x2 subcluster with highest energy
|
||||
* @return photon energy of subcluster, 2x2 subcluster index relative to
|
||||
@@ -112,66 +121,71 @@ struct Cluster {
|
||||
* highest sum.
|
||||
* @param c Cluster to reduce
|
||||
* @return reduced cluster
|
||||
* @note The cluster is filled using row major ordering starting at the top-left
|
||||
* (thus for a max subcluster in the top left cornern the photon hit is at
|
||||
* the fourth position)
|
||||
*/
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = int16_t>
|
||||
typename CoordType = uint16_t>
|
||||
Cluster<T, 2, 2, CoordType>
|
||||
reduce_to_2x2(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &c) {
|
||||
|
||||
static_assert(ClusterSizeX >= 2 && ClusterSizeY >= 2,
|
||||
"Cluster sizes must be at least 2x2 for reduction to 2x2");
|
||||
|
||||
// TODO maybe add sanity check and check that center is in max subcluster
|
||||
Cluster<T, 2, 2, CoordType> result;
|
||||
Cluster<T, 2, 2, CoordType> result{};
|
||||
|
||||
auto [sum, index] = c.max_sum_2x2();
|
||||
|
||||
int16_t cluster_center_index =
|
||||
constexpr int16_t cluster_center_index =
|
||||
(ClusterSizeX / 2) + (ClusterSizeY / 2) * ClusterSizeX;
|
||||
|
||||
int16_t index_bottom_left_max_2x2_subcluster =
|
||||
(int(static_cast<int>(index) / (ClusterSizeX - 1))) * ClusterSizeX +
|
||||
static_cast<int>(index) % (ClusterSizeX - 1);
|
||||
int16_t index_top_left_max_2x2_subcluster = cluster_center_index;
|
||||
switch (index) {
|
||||
case corner::cTopLeft:
|
||||
index_top_left_max_2x2_subcluster -= (ClusterSizeX + 1);
|
||||
break;
|
||||
case corner::cTopRight:
|
||||
index_top_left_max_2x2_subcluster -= ClusterSizeX;
|
||||
break;
|
||||
case corner::cBottomLeft:
|
||||
index_top_left_max_2x2_subcluster -= 1;
|
||||
break;
|
||||
case corner::cBottomRight:
|
||||
// no change needed
|
||||
break;
|
||||
}
|
||||
|
||||
result.x =
|
||||
c.x + (index_bottom_left_max_2x2_subcluster - cluster_center_index) %
|
||||
ClusterSizeX;
|
||||
result.x = c.x;
|
||||
result.y = c.y;
|
||||
|
||||
result.y =
|
||||
c.y - (index_bottom_left_max_2x2_subcluster - cluster_center_index) /
|
||||
ClusterSizeX;
|
||||
result.data = {
|
||||
c.data[index_bottom_left_max_2x2_subcluster],
|
||||
c.data[index_bottom_left_max_2x2_subcluster + 1],
|
||||
c.data[index_bottom_left_max_2x2_subcluster + ClusterSizeX],
|
||||
c.data[index_bottom_left_max_2x2_subcluster + ClusterSizeX + 1]};
|
||||
c.data[index_top_left_max_2x2_subcluster],
|
||||
c.data[index_top_left_max_2x2_subcluster + 1],
|
||||
c.data[index_top_left_max_2x2_subcluster + ClusterSizeX],
|
||||
c.data[index_top_left_max_2x2_subcluster + ClusterSizeX + 1]};
|
||||
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T>
|
||||
Cluster<T, 2, 2, int16_t> reduce_to_2x2(const Cluster<T, 3, 3, int16_t> &c) {
|
||||
Cluster<T, 2, 2, int16_t> result;
|
||||
Cluster<T, 2, 2, uint16_t> reduce_to_2x2(const Cluster<T, 3, 3, uint16_t> &c) {
|
||||
Cluster<T, 2, 2, uint16_t> result{};
|
||||
|
||||
auto [s, i] = c.max_sum_2x2();
|
||||
result.x = c.x;
|
||||
result.y = c.y;
|
||||
switch (i) {
|
||||
case corner::cTopLeft:
|
||||
result.x = c.x - 1;
|
||||
result.y = c.y + 1;
|
||||
result.data = {c.data[0], c.data[1], c.data[3], c.data[4]};
|
||||
break;
|
||||
case corner::cTopRight:
|
||||
result.x = c.x;
|
||||
result.y = c.y + 1;
|
||||
result.data = {c.data[1], c.data[2], c.data[4], c.data[5]};
|
||||
break;
|
||||
case corner::cBottomLeft:
|
||||
result.x = c.x - 1;
|
||||
result.y = c.y;
|
||||
result.data = {c.data[3], c.data[4], c.data[6], c.data[7]};
|
||||
break;
|
||||
case corner::cBottomRight:
|
||||
result.x = c.x;
|
||||
result.y = c.y;
|
||||
result.data = {c.data[4], c.data[5], c.data[7], c.data[8]};
|
||||
break;
|
||||
}
|
||||
@@ -179,43 +193,8 @@ Cluster<T, 2, 2, int16_t> reduce_to_2x2(const Cluster<T, 3, 3, int16_t> &c) {
|
||||
return result;
|
||||
}
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = int16_t>
|
||||
inline std::pair<T, uint16_t>
|
||||
max_3x3_sum(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cluster) {
|
||||
|
||||
if constexpr (ClusterSizeX == 3 && ClusterSizeY == 3) {
|
||||
return std::make_pair(cluster.sum(), 0);
|
||||
} else {
|
||||
|
||||
size_t index = 0;
|
||||
T max_3x3_subcluster_sum = 0;
|
||||
for (size_t i = 0; i < ClusterSizeY - 2; ++i) {
|
||||
for (size_t j = 0; j < ClusterSizeX - 2; ++j) {
|
||||
|
||||
T sum = cluster.data[i * ClusterSizeX + j] +
|
||||
cluster.data[i * ClusterSizeX + j + 1] +
|
||||
cluster.data[i * ClusterSizeX + j + 2] +
|
||||
cluster.data[(i + 1) * ClusterSizeX + j] +
|
||||
cluster.data[(i + 1) * ClusterSizeX + j + 1] +
|
||||
cluster.data[(i + 1) * ClusterSizeX + j + 2] +
|
||||
cluster.data[(i + 2) * ClusterSizeX + j] +
|
||||
cluster.data[(i + 2) * ClusterSizeX + j + 1] +
|
||||
cluster.data[(i + 2) * ClusterSizeX + j + 2];
|
||||
if (sum > max_3x3_subcluster_sum) {
|
||||
max_3x3_subcluster_sum = sum;
|
||||
index = i * (ClusterSizeX - 2) + j;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return std::make_pair(max_3x3_subcluster_sum, index);
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Reduce a cluster to a 3x3 cluster by selecting the 3x3 block with the
|
||||
* highest sum.
|
||||
* @brief Reduce a cluster to a 3x3 cluster
|
||||
* @param c Cluster to reduce
|
||||
* @return reduced cluster
|
||||
*/
|
||||
@@ -227,40 +206,24 @@ reduce_to_3x3(const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &c) {
|
||||
static_assert(ClusterSizeX >= 3 && ClusterSizeY >= 3,
|
||||
"Cluster sizes must be at least 3x3 for reduction to 3x3");
|
||||
|
||||
Cluster<T, 3, 3, CoordType> result;
|
||||
|
||||
// TODO maybe add sanity check and check that center is in max subcluster
|
||||
|
||||
auto [sum, index] = max_3x3_sum(c);
|
||||
Cluster<T, 3, 3, CoordType> result{};
|
||||
|
||||
int16_t cluster_center_index =
|
||||
(ClusterSizeX / 2) + (ClusterSizeY / 2) * ClusterSizeX;
|
||||
|
||||
int16_t index_center_max_3x3_subcluster =
|
||||
(int(index / (ClusterSizeX - 2))) * ClusterSizeX + ClusterSizeX +
|
||||
index % (ClusterSizeX - 2) + 1;
|
||||
result.x = c.x;
|
||||
result.y = c.y;
|
||||
|
||||
int16_t index_3x3_subcluster_cluster_center =
|
||||
int((cluster_center_index - 1 - ClusterSizeX) / ClusterSizeX) *
|
||||
(ClusterSizeX - 2) +
|
||||
(cluster_center_index - 1 - ClusterSizeX) % ClusterSizeX;
|
||||
result.data = {c.data[cluster_center_index - ClusterSizeX - 1],
|
||||
c.data[cluster_center_index - ClusterSizeX],
|
||||
c.data[cluster_center_index - ClusterSizeX + 1],
|
||||
c.data[cluster_center_index - 1],
|
||||
c.data[cluster_center_index],
|
||||
c.data[cluster_center_index + 1],
|
||||
c.data[cluster_center_index + ClusterSizeX - 1],
|
||||
c.data[cluster_center_index + ClusterSizeX],
|
||||
c.data[cluster_center_index + ClusterSizeX + 1]};
|
||||
|
||||
result.x =
|
||||
c.x + (index % (ClusterSizeX - 2) -
|
||||
(index_3x3_subcluster_cluster_center % (ClusterSizeX - 2)));
|
||||
result.y =
|
||||
c.y - (index / (ClusterSizeX - 2) -
|
||||
(index_3x3_subcluster_cluster_center / (ClusterSizeX - 2)));
|
||||
|
||||
result.data = {c.data[index_center_max_3x3_subcluster - ClusterSizeX - 1],
|
||||
c.data[index_center_max_3x3_subcluster - ClusterSizeX],
|
||||
c.data[index_center_max_3x3_subcluster - ClusterSizeX + 1],
|
||||
c.data[index_center_max_3x3_subcluster - 1],
|
||||
c.data[index_center_max_3x3_subcluster],
|
||||
c.data[index_center_max_3x3_subcluster + 1],
|
||||
c.data[index_center_max_3x3_subcluster + ClusterSizeX - 1],
|
||||
c.data[index_center_max_3x3_subcluster + ClusterSizeX],
|
||||
c.data[index_center_max_3x3_subcluster + ClusterSizeX + 1]};
|
||||
return result;
|
||||
}
|
||||
|
||||
|
||||
@@ -11,7 +11,8 @@
|
||||
namespace aare {
|
||||
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>,
|
||||
typename = std::enable_if_t<no_2x2_cluster<ClusterType>::value>>
|
||||
class ClusterFileSink {
|
||||
ProducerConsumerQueue<ClusterVector<ClusterType>> *m_source;
|
||||
std::atomic<bool> m_stop_requested{false};
|
||||
|
||||
@@ -11,8 +11,16 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
template <typename ClusterType,
|
||||
typename = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
struct no_2x2_cluster {
|
||||
constexpr static bool value =
|
||||
ClusterType::cluster_size_x > 2 && ClusterType::cluster_size_y > 2;
|
||||
};
|
||||
|
||||
template <typename ClusterType = Cluster<int32_t, 3, 3>,
|
||||
typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
|
||||
typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double,
|
||||
typename = std::enable_if_t<no_2x2_cluster<ClusterType>::value>>
|
||||
class ClusterFinder {
|
||||
Shape<2> m_image_size;
|
||||
const PEDESTAL_TYPE m_nSigma;
|
||||
|
||||
@@ -33,7 +33,8 @@ struct FrameWrapper {
|
||||
* @tparam CT type of the cluster data
|
||||
*/
|
||||
template <typename ClusterType = Cluster<int32_t, 3, 3>,
|
||||
typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double>
|
||||
typename FRAME_TYPE = uint16_t, typename PEDESTAL_TYPE = double,
|
||||
typename = std::enable_if_t<no_2x2_cluster<ClusterType>::value>>
|
||||
class ClusterFinderMT {
|
||||
|
||||
protected:
|
||||
|
||||
@@ -29,7 +29,7 @@ class ClusterVector; // Forward declaration
|
||||
* needed.
|
||||
* @tparam T data type of the pixels in the cluster
|
||||
* @tparam CoordType data type of the x and y coordinates of the cluster
|
||||
* (normally int16_t)
|
||||
* (normally uint16_t)
|
||||
*/
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType>
|
||||
@@ -177,9 +177,12 @@ class ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>> {
|
||||
* highest sum.
|
||||
* @param cv Clustervector containing clusters to reduce
|
||||
* @return Clustervector with reduced clusters
|
||||
* @note The cluster is filled using row major ordering starting at the top-left
|
||||
* (thus for a max subcluster in the top left cornern the photon hit is at
|
||||
* the fourth position)
|
||||
*/
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
typename CoordType>
|
||||
ClusterVector<Cluster<T, 2, 2, CoordType>> reduce_to_2x2(
|
||||
const ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>>
|
||||
&cv) {
|
||||
@@ -191,13 +194,12 @@ ClusterVector<Cluster<T, 2, 2, CoordType>> reduce_to_2x2(
|
||||
}
|
||||
|
||||
/**
|
||||
* @brief Reduce a cluster to a 3x3 cluster by selecting the 3x3 block with the
|
||||
* highest sum.
|
||||
* @brief Reduce a cluster to a 3x3 cluster
|
||||
* @param cv Clustervector containing clusters to reduce
|
||||
* @return Clustervector with reduced clusters
|
||||
*/
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
typename CoordType>
|
||||
ClusterVector<Cluster<T, 3, 3, CoordType>> reduce_to_3x3(
|
||||
const ClusterVector<Cluster<T, ClusterSizeX, ClusterSizeY, CoordType>>
|
||||
&cv) {
|
||||
|
||||
@@ -18,7 +18,10 @@ struct Photon {
|
||||
};
|
||||
|
||||
class Interpolator {
|
||||
// marginal CDF of eta_x (if rosenblatt applied), conditional
|
||||
// CDF of eta_x conditioned on eta_y
|
||||
NDArray<double, 3> m_ietax;
|
||||
// conditional CDF of eta_y conditioned on eta_x
|
||||
NDArray<double, 3> m_ietay;
|
||||
|
||||
NDArray<double, 1> m_etabinsx;
|
||||
@@ -26,108 +29,210 @@ class Interpolator {
|
||||
NDArray<double, 1> m_energy_bins;
|
||||
|
||||
public:
|
||||
/**
|
||||
* @brief Constructor for the Interpolator class
|
||||
* @param etacube joint distribution of etaX, etaY and photon energy
|
||||
* @param xbins bin edges for etaX
|
||||
* @param ybins bin edges for etaY
|
||||
* @param ebins bin edges for photon energy
|
||||
* @note note first dimension is etaX, second etaY, third photon energy
|
||||
*/
|
||||
Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
|
||||
NDView<double, 1> ybins, NDView<double, 1> ebins);
|
||||
|
||||
/**
|
||||
* @brief Constructor for the Interpolator class
|
||||
* @param xbins bin edges for etaX
|
||||
* @param ybins bin edges for etaY
|
||||
* @param ebins bin edges for photon energy
|
||||
*/
|
||||
Interpolator(NDView<double, 1> xbins, NDView<double, 1> ybins,
|
||||
NDView<double, 1> ebins);
|
||||
|
||||
/**
|
||||
* @brief transforms the joint eta distribution of etaX and etaY to the two
|
||||
* independant uniform distributions based on the Roseblatt transform for
|
||||
* each energy level
|
||||
* @param etacube joint distribution of etaX, etaY and photon energy
|
||||
* @note note first dimension is etaX, second etaY, third photon energy
|
||||
*/
|
||||
void rosenblatttransform(NDView<double, 3> etacube);
|
||||
|
||||
NDArray<double, 3> get_ietax() { return m_ietax; }
|
||||
NDArray<double, 3> get_ietay() { return m_ietay; }
|
||||
|
||||
template <typename ClusterType,
|
||||
/**
|
||||
* @brief interpolates the cluster centers for all clusters to a better
|
||||
* precision
|
||||
* @tparam ClusterType Type of Clusters to interpolate
|
||||
* @tparam Etafunction Function object that calculates desired eta default:
|
||||
* calculate_eta2
|
||||
* @return interpolated photons (photon positions are given as double but
|
||||
* following row column format e.g. x=0, y=0 means top row and first column
|
||||
* of frame)
|
||||
*/
|
||||
template <auto EtaFunction = calculate_eta2, typename ClusterType,
|
||||
typename Eanble = std::enable_if_t<is_cluster_v<ClusterType>>>
|
||||
std::vector<Photon> interpolate(const ClusterVector<ClusterType> &clusters);
|
||||
|
||||
private:
|
||||
/**
|
||||
* @brief implements underlying interpolation logic based on EtaFunction
|
||||
* Type
|
||||
* @tparam EtaFunction Function object that calculates desired eta default:
|
||||
* @param u: transformed photon position in x between [0,1]
|
||||
* @param v: transformed photon position in y between [0,1]
|
||||
* @param c: corner of eta
|
||||
*/
|
||||
template <auto EtaFunction, typename ClusterType>
|
||||
void interpolation_logic(Photon &photon, const double u, const double v,
|
||||
const corner c = corner::cTopLeft);
|
||||
|
||||
/**
|
||||
* @brief bilinear interpolation of the transformed eta values
|
||||
* @param ix index of etaX bin
|
||||
* @param iy index of etaY bin
|
||||
* @param ie index of energy bin
|
||||
* @return pair of interpolated transformed eta values (ietax, ietay)
|
||||
*/
|
||||
template <typename T>
|
||||
std::pair<double, double>
|
||||
bilinear_interpolation(const size_t ix, const size_t iy, const size_t ie,
|
||||
const Eta2<T> &eta);
|
||||
};
|
||||
|
||||
// TODO: generalize to support any clustertype!!! otherwise add std::enable_if_t
|
||||
// to only take Cluster2x2 and Cluster3x3
|
||||
template <typename ClusterType, typename Enable>
|
||||
template <typename T>
|
||||
std::pair<double, double>
|
||||
Interpolator::bilinear_interpolation(const size_t ix, const size_t iy,
|
||||
const size_t ie, const Eta2<T> &eta) {
|
||||
auto next_index_y = static_cast<ssize_t>(iy + 1) >= m_ietax.shape(1)
|
||||
? m_ietax.shape(1) - 1
|
||||
: iy + 1;
|
||||
auto next_index_x = static_cast<ssize_t>(ix + 1) >= m_ietax.shape(0)
|
||||
? m_ietax.shape(0) - 1
|
||||
: ix + 1;
|
||||
|
||||
// bilinear interpolation
|
||||
double ietax_interp_left = linear_interpolation(
|
||||
{m_etabinsy(iy), m_etabinsy(iy + 1)},
|
||||
{m_ietax(ix, iy, ie), m_ietax(ix, next_index_y, ie)}, eta.y);
|
||||
double ietax_interp_right =
|
||||
linear_interpolation({m_etabinsy(iy), m_etabinsy(iy + 1)},
|
||||
{m_ietax(next_index_x, iy, ie),
|
||||
m_ietax(next_index_x, next_index_y, ie)},
|
||||
eta.y);
|
||||
|
||||
// transformed photon position x between [0,1]
|
||||
double ietax_interpolated =
|
||||
linear_interpolation({m_etabinsx(ix), m_etabinsx(ix + 1)},
|
||||
{ietax_interp_left, ietax_interp_right}, eta.x);
|
||||
|
||||
double ietay_interp_left = linear_interpolation(
|
||||
{m_etabinsx(ix), m_etabinsx(ix + 1)},
|
||||
{m_ietay(ix, iy, ie), m_ietay(next_index_x, iy, ie)}, eta.x);
|
||||
double ietay_interp_right =
|
||||
linear_interpolation({m_etabinsx(ix), m_etabinsx(ix + 1)},
|
||||
{m_ietay(ix, next_index_y, ie),
|
||||
m_ietay(next_index_x, next_index_y, ie)},
|
||||
eta.x);
|
||||
|
||||
// transformed photon position y between [0,1]
|
||||
double ietay_interpolated =
|
||||
linear_interpolation({m_etabinsy(iy), m_etabinsy(iy + 1)},
|
||||
{ietay_interp_left, ietay_interp_right}, eta.y);
|
||||
|
||||
return {ietax_interpolated, ietay_interpolated};
|
||||
}
|
||||
|
||||
template <auto EtaFunction, typename ClusterType, typename Enable>
|
||||
std::vector<Photon>
|
||||
Interpolator::interpolate(const ClusterVector<ClusterType> &clusters) {
|
||||
std::vector<Photon> photons;
|
||||
photons.reserve(clusters.size());
|
||||
|
||||
if (clusters.cluster_size_x() == 3 || clusters.cluster_size_y() == 3) {
|
||||
for (const ClusterType &cluster : clusters) {
|
||||
|
||||
auto eta = calculate_eta2(cluster);
|
||||
auto eta = EtaFunction(cluster);
|
||||
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = static_cast<decltype(photon.energy)>(eta.sum);
|
||||
|
||||
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
|
||||
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
|
||||
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
|
||||
// std::cout << "eta.x: " << eta.x << " eta.y: " << eta.y << std::endl;
|
||||
|
||||
// Finding the index of the last element that is smaller
|
||||
// should work fine as long as we have many bins
|
||||
auto ie = last_smaller(m_energy_bins, photon.energy);
|
||||
auto ix = last_smaller(m_etabinsx, eta.x);
|
||||
auto iy = last_smaller(m_etabinsy, eta.y);
|
||||
|
||||
// fmt::print("ex: {}, ix: {}, iy: {}\n", ie, ix, iy);
|
||||
// std::cout << "ix: " << ix << " iy: " << iy << std::endl;
|
||||
|
||||
// TODO: bilinear interpolation only works if all bins have a size > 1 -
|
||||
// otherwise bilinear interpolation with zero values which skew the
|
||||
// results
|
||||
// TODO: maybe trim the bins at the edges with zero values beforehand
|
||||
// auto [ietax_interpolated, ietay_interpolated] =
|
||||
// bilinear_interpolation(ix, iy, ie, eta);
|
||||
|
||||
double ietax_interpolated = m_ietax(ix, iy, ie);
|
||||
double ietay_interpolated = m_ietay(ix, iy, ie);
|
||||
|
||||
interpolation_logic<EtaFunction, ClusterType>(
|
||||
photon, ietax_interpolated, ietay_interpolated, eta.c);
|
||||
|
||||
double dX, dY;
|
||||
// cBottomLeft = 0,
|
||||
// cBottomRight = 1,
|
||||
// cTopLeft = 2,
|
||||
// cTopRight = 3
|
||||
// TODO: could also chaneg the sign of the eta calculation
|
||||
switch (static_cast<corner>(eta.c)) {
|
||||
case corner::cTopLeft:
|
||||
dX = 0.0;
|
||||
dY = 0.0;
|
||||
break;
|
||||
case corner::cTopRight:;
|
||||
dX = 1.0;
|
||||
dY = 0.0;
|
||||
break;
|
||||
case corner::cBottomLeft:
|
||||
dX = 0.0;
|
||||
dY = 1.0;
|
||||
break;
|
||||
case corner::cBottomRight:
|
||||
dX = 1.0;
|
||||
dY = 1.0;
|
||||
break;
|
||||
}
|
||||
photon.x -= m_ietax(ix, iy, ie) - dX;
|
||||
photon.y -= m_ietay(ix, iy, ie) - dY;
|
||||
photons.push_back(photon);
|
||||
}
|
||||
} else if (clusters.cluster_size_x() == 2 ||
|
||||
clusters.cluster_size_y() == 2) {
|
||||
for (const ClusterType &cluster : clusters) {
|
||||
auto eta = calculate_eta2(cluster);
|
||||
|
||||
Photon photon;
|
||||
photon.x = cluster.x;
|
||||
photon.y = cluster.y;
|
||||
photon.energy = static_cast<decltype(photon.energy)>(eta.sum);
|
||||
|
||||
// Now do some actual interpolation.
|
||||
// Find which energy bin the cluster is in
|
||||
// auto ie = nearest_index(m_energy_bins, photon.energy)-1;
|
||||
// auto ix = nearest_index(m_etabinsx, eta.x)-1;
|
||||
// auto iy = nearest_index(m_etabinsy, eta.y)-1;
|
||||
// Finding the index of the last element that is smaller
|
||||
// should work fine as long as we have many bins
|
||||
auto ie = last_smaller(m_energy_bins, photon.energy);
|
||||
auto ix = last_smaller(m_etabinsx, eta.x);
|
||||
auto iy = last_smaller(m_etabinsy, eta.y);
|
||||
|
||||
// TODO: why 2?
|
||||
photon.x -=
|
||||
m_ietax(ix, iy, ie); // eta goes between 0 and 1 but we could
|
||||
// move the hit anywhere in the 2x2
|
||||
photon.y -= m_ietay(ix, iy, ie);
|
||||
photons.push_back(photon);
|
||||
}
|
||||
|
||||
} else {
|
||||
throw std::runtime_error(
|
||||
"Only 3x3 and 2x2 clusters are supported for interpolation");
|
||||
}
|
||||
|
||||
return photons;
|
||||
}
|
||||
|
||||
template <auto EtaFunction, typename ClusterType>
|
||||
void Interpolator::interpolation_logic(Photon &photon, const double u,
|
||||
const double v, const corner c) {
|
||||
|
||||
// std::cout << "u: " << u << " v: " << v << std::endl;
|
||||
|
||||
// TODO: try to call this with std::is_same_v and have it constexpr if
|
||||
// possible
|
||||
if (EtaFunction == &calculate_eta2<typename ClusterType::value_type,
|
||||
ClusterType::cluster_size_x,
|
||||
ClusterType::cluster_size_y,
|
||||
typename ClusterType::coord_type> ||
|
||||
EtaFunction == &calculate_full_eta2<typename ClusterType::value_type,
|
||||
ClusterType::cluster_size_x,
|
||||
ClusterType::cluster_size_y,
|
||||
typename ClusterType::coord_type>) {
|
||||
double dX{}, dY{};
|
||||
|
||||
// TODO: could also chaneg the sign of the eta calculation
|
||||
switch (c) {
|
||||
case corner::cTopLeft:
|
||||
dX = -1.0;
|
||||
dY = -1.0;
|
||||
break;
|
||||
case corner::cTopRight:;
|
||||
dX = 0.0;
|
||||
dY = -1.0;
|
||||
break;
|
||||
case corner::cBottomLeft:
|
||||
dX = -1.0;
|
||||
dY = 0.0;
|
||||
break;
|
||||
case corner::cBottomRight:
|
||||
dX = 0.0;
|
||||
dY = 0.0;
|
||||
break;
|
||||
}
|
||||
photon.x = photon.x + 0.5 + u + dX; // use pixel center + 0.5
|
||||
photon.y = photon.y + 0.5 + v +
|
||||
dY; // eta2 calculates the ratio between bottom and sum of
|
||||
// bottom and top shift by 1 add eta value correctly
|
||||
} else {
|
||||
photon.x += u;
|
||||
photon.y += v;
|
||||
}
|
||||
}
|
||||
|
||||
} // namespace aare
|
||||
@@ -110,4 +110,19 @@ template <typename Container> bool all_equal(const Container &c) {
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* linear interpolation
|
||||
* @param bin_edge left and right bin edges
|
||||
* @param bin_values function values at bin edges
|
||||
* @param coord coordinate to interpolate at
|
||||
* @return interpolated value at coord
|
||||
*/
|
||||
inline double linear_interpolation(const std::pair<double, double> &bin_edge,
|
||||
const std::pair<double, double> &bin_values,
|
||||
const double coord) {
|
||||
const double bin_width = bin_edge.second - bin_edge.first;
|
||||
return bin_values.first * (1 - (coord - bin_edge.first) / bin_width) +
|
||||
bin_values.second * (coord - bin_edge.first) / bin_width;
|
||||
}
|
||||
|
||||
} // namespace aare
|
||||
@@ -32,7 +32,7 @@ set( PYTHON_FILES
|
||||
aare/CtbRawFile.py
|
||||
aare/ClusterFinder.py
|
||||
aare/ClusterVector.py
|
||||
|
||||
aare/Cluster.py
|
||||
aare/calibration.py
|
||||
aare/func.py
|
||||
aare/RawFile.py
|
||||
|
||||
24
python/aare/Cluster.py
Normal file
24
python/aare/Cluster.py
Normal file
@@ -0,0 +1,24 @@
|
||||
from . import _aare
|
||||
import numpy as np
|
||||
from .ClusterFinder import _type_to_char
|
||||
|
||||
|
||||
def Cluster(x : int, y : int, data, cluster_size=(3,3), dtype = np.int32):
|
||||
"""
|
||||
Factory function to create a Cluster object. Provides a cleaner syntax for
|
||||
the templated Cluster in C++.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from aare import Cluster
|
||||
|
||||
Cluster(cluster_size=(3,3), dtype=np.float64)
|
||||
"""
|
||||
|
||||
try:
|
||||
class_name = f"Cluster{cluster_size[0]}x{cluster_size[1]}{_type_to_char(dtype)}"
|
||||
cls = getattr(_aare, class_name)
|
||||
except AttributeError:
|
||||
raise ValueError(f"Unsupported combination of type and cluster size: {dtype}/{cluster_size} when requesting {class_name}")
|
||||
|
||||
return cls(x, y, data)
|
||||
@@ -11,6 +11,8 @@ def _type_to_char(dtype):
|
||||
return 'f'
|
||||
elif dtype == np.float64:
|
||||
return 'd'
|
||||
elif dtype == np.int16:
|
||||
return 'i16'
|
||||
else:
|
||||
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32, np.float32, and np.float64 are supported.")
|
||||
|
||||
@@ -27,7 +29,7 @@ def _get_class(name, cluster_size, dtype):
|
||||
|
||||
|
||||
|
||||
def ClusterFinder(image_size, cluster_size, n_sigma=5, dtype = np.int32, capacity = 1024):
|
||||
def ClusterFinder(image_size, cluster_size=(3,3), n_sigma=5, dtype = np.int32, capacity = 1024):
|
||||
"""
|
||||
Factory function to create a ClusterFinder object. Provides a cleaner syntax for
|
||||
the templated ClusterFinder in C++.
|
||||
@@ -66,7 +68,7 @@ def ClusterFileSink(clusterfindermt, cluster_file, dtype=np.int32):
|
||||
return cls(clusterfindermt, cluster_file)
|
||||
|
||||
|
||||
def ClusterFile(fname, cluster_size=(3,3), dtype=np.int32, chunk_size = 1000):
|
||||
def ClusterFile(fname, cluster_size=(3,3), dtype=np.int32, chunk_size = 1000, mode = "r"):
|
||||
"""
|
||||
Factory function to create a ClusterFile object. Provides a cleaner syntax for
|
||||
the templated ClusterFile in C++.
|
||||
@@ -84,4 +86,4 @@ def ClusterFile(fname, cluster_size=(3,3), dtype=np.int32, chunk_size = 1000):
|
||||
"""
|
||||
|
||||
cls = _get_class("ClusterFile", cluster_size, dtype)
|
||||
return cls(fname, chunk_size=chunk_size)
|
||||
return cls(fname, chunk_size=chunk_size, mode=mode)
|
||||
|
||||
@@ -1,12 +1,22 @@
|
||||
# SPDX-License-Identifier: MPL-2.0
|
||||
|
||||
|
||||
from ._aare import ClusterVector_Cluster3x3i
|
||||
from . import _aare
|
||||
import numpy as np
|
||||
from .ClusterFinder import _get_class
|
||||
|
||||
def ClusterVector(cluster_size, dtype = np.int32):
|
||||
def ClusterVector(cluster_size=(3,3), dtype = np.int32):
|
||||
"""
|
||||
Factory function to create a ClusterVector object. Provides a cleaner syntax for
|
||||
the templated ClusterVector in C++.
|
||||
|
||||
.. code-block:: python
|
||||
|
||||
from aare import ClusterVector
|
||||
|
||||
ClusterVector(cluster_size=(3,3), dtype=np.float64)
|
||||
"""
|
||||
|
||||
cls = _get_class("ClusterVector", cluster_size, dtype)
|
||||
return cls()
|
||||
|
||||
if dtype == np.int32 and cluster_size == (3,3):
|
||||
return ClusterVector_Cluster3x3i()
|
||||
else:
|
||||
raise ValueError(f"Unsupported dtype: {dtype}. Only np.int32 is supported.")
|
||||
|
||||
@@ -8,16 +8,18 @@ from ._aare import Pedestal_d, Pedestal_f, ClusterFinder_Cluster3x3i, VarCluster
|
||||
from ._aare import DetectorType
|
||||
from ._aare import hitmap
|
||||
from ._aare import ROI
|
||||
from ._aare import corner
|
||||
|
||||
# from ._aare import ClusterFinderMT, ClusterCollector, ClusterFileSink, ClusterVector_i
|
||||
|
||||
from .ClusterFinder import ClusterFinder, ClusterCollector, ClusterFinderMT, ClusterFileSink, ClusterFile
|
||||
from .ClusterVector import ClusterVector
|
||||
from .Cluster import Cluster
|
||||
|
||||
|
||||
from ._aare import fit_gaus, fit_pol1, fit_scurve, fit_scurve2
|
||||
from ._aare import Interpolator
|
||||
from ._aare import calculate_eta2
|
||||
from ._aare import calculate_eta2, calculate_eta3, calculate_cross_eta3, calculate_full_eta2
|
||||
from ._aare import reduce_to_2x2, reduce_to_3x3
|
||||
|
||||
from ._aare import apply_custom_weights
|
||||
|
||||
@@ -81,9 +81,7 @@ void reduce_to_3x3(py::module &m) {
|
||||
[](const Cluster<T, ClusterSizeX, ClusterSizeY, CoordType> &cl) {
|
||||
return reduce_to_3x3(cl);
|
||||
},
|
||||
py::return_value_policy::move,
|
||||
"Reduce cluster to 3x3 subcluster by taking the 3x3 subcluster with "
|
||||
"the highest photon energy.");
|
||||
py::return_value_policy::move, R"(Reduce cluster to 3x3 subcluster)");
|
||||
}
|
||||
|
||||
template <typename T, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
@@ -96,8 +94,15 @@ void reduce_to_2x2(py::module &m) {
|
||||
return reduce_to_2x2(cl);
|
||||
},
|
||||
py::return_value_policy::move,
|
||||
"Reduce cluster to 2x2 subcluster by taking the 2x2 subcluster with "
|
||||
"the highest photon energy.");
|
||||
R"(
|
||||
Reduce cluster to 2x2 subcluster by taking the 2x2 subcluster with
|
||||
the highest photon energy.
|
||||
|
||||
RETURN:
|
||||
|
||||
reduced cluster (cluster is filled in row major ordering starting at the top left. Thus for a max subcluster in the top left corner the photon hit is at the fourth position.)
|
||||
|
||||
)");
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
@@ -82,23 +82,4 @@ void define_ClusterFile(py::module &m, const std::string &typestr) {
|
||||
});
|
||||
}
|
||||
|
||||
template <typename Type, uint8_t CoordSizeX, uint8_t CoordSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void register_calculate_eta(py::module &m) {
|
||||
using ClusterType = Cluster<Type, CoordSizeX, CoordSizeY, CoordType>;
|
||||
|
||||
m.def("calculate_eta2",
|
||||
[](const aare::ClusterVector<ClusterType> &clusters) {
|
||||
auto eta2 = new NDArray<double, 2>(calculate_eta2(clusters));
|
||||
return return_image_data(eta2);
|
||||
});
|
||||
|
||||
m.def("calculate_eta2", [](const aare::Cluster<Type, CoordSizeX, CoordSizeY,
|
||||
CoordType> &cluster) {
|
||||
auto eta2 = calculate_eta2(cluster);
|
||||
// TODO return proper eta class
|
||||
return py::make_tuple(eta2.x, eta2.y, eta2.sum);
|
||||
});
|
||||
}
|
||||
|
||||
#pragma GCC diagnostic pop
|
||||
@@ -121,12 +121,13 @@ void define_2x2_reduction(py::module &m) {
|
||||
reduce_to_2x2(cv));
|
||||
},
|
||||
R"(
|
||||
|
||||
Reduce cluster to 2x2 subcluster by taking the 2x2 subcluster with
|
||||
the highest photon energy."
|
||||
the highest photon energy.
|
||||
|
||||
Parameters
|
||||
----------
|
||||
cv : ClusterVector
|
||||
|
||||
cv : ClusterVector (clusters are filled in row-major ordering starting at the top left. Thus for a max subcluster in the top left corner the photon hit is at the fourth position.)
|
||||
|
||||
)",
|
||||
py::arg("clustervector"));
|
||||
}
|
||||
@@ -143,11 +144,10 @@ void define_3x3_reduction(py::module &m) {
|
||||
reduce_to_3x3(cv));
|
||||
},
|
||||
R"(
|
||||
Reduce cluster to 3x3 subcluster
|
||||
|
||||
Reduce cluster to 3x3 subcluster by taking the 3x3 subcluster with
|
||||
the highest photon energy."
|
||||
Parameters
|
||||
----------
|
||||
|
||||
cv : ClusterVector
|
||||
)",
|
||||
py::arg("clustervector"));
|
||||
|
||||
104
python/src/bind_Eta.hpp
Normal file
104
python/src/bind_Eta.hpp
Normal file
@@ -0,0 +1,104 @@
|
||||
#include "aare/CalculateEta.hpp"
|
||||
|
||||
#include <cstdint>
|
||||
// #include <pybind11/native_enum.h> only for version 3
|
||||
#include <pybind11/pybind11.h>
|
||||
|
||||
namespace py = pybind11;
|
||||
using namespace ::aare;
|
||||
|
||||
template <typename T>
|
||||
void define_eta(py::module &m, const std::string &typestr) {
|
||||
auto class_name = fmt::format("Eta{}", typestr);
|
||||
|
||||
py::class_<Eta2<T>>(m, class_name.c_str())
|
||||
.def(py::init<>())
|
||||
.def_readonly("x", &Eta2<T>::x, "eta x value")
|
||||
.def_readonly("y", &Eta2<T>::y, "eta y value")
|
||||
.def_readonly("c", &Eta2<T>::c,
|
||||
"eta corner value cTopLeft, cTopRight, "
|
||||
"cBottomLeft, cBottomRight")
|
||||
.def_readonly("sum", &Eta2<T>::sum, "photon energy of cluster");
|
||||
}
|
||||
|
||||
void define_corner_enum(py::module &m) {
|
||||
py::enum_<corner>(m, "corner", "enum.Enum")
|
||||
.value("cTopLeft", corner::cTopLeft)
|
||||
.value("cTopRight", corner::cTopRight)
|
||||
.value("cBottomLeft", corner::cBottomLeft)
|
||||
.value("cBottomRight", corner::cBottomRight)
|
||||
.export_values();
|
||||
}
|
||||
|
||||
template <typename Type, uint8_t CoordSizeX, uint8_t CoordSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void register_calculate_2x2eta(py::module &m) {
|
||||
using ClusterType = Cluster<Type, CoordSizeX, CoordSizeY, CoordType>;
|
||||
|
||||
m.def(
|
||||
"calculate_eta2",
|
||||
[](const aare::ClusterVector<ClusterType> &clusters) {
|
||||
auto eta2 = new std::vector<Eta2<typename ClusterType::value_type>>(
|
||||
calculate_eta2(clusters));
|
||||
return return_vector(eta2);
|
||||
},
|
||||
R"(calculates eta2x2)", py::arg("clusters"));
|
||||
|
||||
m.def(
|
||||
"calculate_eta2",
|
||||
[](const aare::Cluster<Type, CoordSizeX, CoordSizeY, CoordType>
|
||||
&cluster) { return calculate_eta2(cluster); },
|
||||
R"(calculates eta2x2)", py::arg("cluster"));
|
||||
|
||||
m.def(
|
||||
"calculate_full_eta2",
|
||||
[](const aare::Cluster<Type, CoordSizeX, CoordSizeY, CoordType>
|
||||
&cluster) { return calculate_full_eta2(cluster); },
|
||||
R"(calculates full eta2x2)", py::arg("cluster"));
|
||||
|
||||
m.def(
|
||||
"calculate_full_eta2",
|
||||
[](const aare::ClusterVector<ClusterType> &clusters) {
|
||||
auto eta2 = new std::vector<Eta2<typename ClusterType::value_type>>(
|
||||
calculate_full_eta2(clusters));
|
||||
return return_vector(eta2);
|
||||
},
|
||||
R"(calculates full eta2x2)", py::arg("clusters"));
|
||||
}
|
||||
|
||||
template <typename Type, uint8_t ClusterSizeX, uint8_t ClusterSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void register_calculate_3x3eta(py::module &m) {
|
||||
using ClusterType = Cluster<Type, ClusterSizeX, ClusterSizeY, CoordType>;
|
||||
|
||||
m.def(
|
||||
"calculate_eta3",
|
||||
[](const aare::ClusterVector<ClusterType> &clusters) {
|
||||
auto eta = new std::vector<Eta2<Type>>(calculate_eta3(clusters));
|
||||
return return_vector(eta);
|
||||
},
|
||||
R"(calculates eta3x3 using entire cluster)", py::arg("clusters"));
|
||||
|
||||
m.def(
|
||||
"calculate_cross_eta3",
|
||||
[](const aare::ClusterVector<ClusterType> &clusters) {
|
||||
auto eta =
|
||||
new std::vector<Eta2<Type>>(calculate_cross_eta3(clusters));
|
||||
return return_vector(eta);
|
||||
},
|
||||
R"(calculates eta3x3 taking into account cross pixels in cluster)",
|
||||
py::arg("clusters"));
|
||||
|
||||
m.def(
|
||||
"calculate_eta3",
|
||||
[](const ClusterType &cluster) { return calculate_eta3(cluster); },
|
||||
R"(calculates eta3x3 using entire cluster)", py::arg("cluster"));
|
||||
|
||||
m.def(
|
||||
"calculate_cross_eta3",
|
||||
[](const ClusterType &cluster) {
|
||||
return calculate_cross_eta3(cluster);
|
||||
},
|
||||
R"(calculates eta3x3 taking into account cross pixels in cluster)",
|
||||
py::arg("cluster"));
|
||||
}
|
||||
@@ -1,4 +1,5 @@
|
||||
// SPDX-License-Identifier: MPL-2.0
|
||||
#include "aare/CalculateEta.hpp"
|
||||
#include "aare/Interpolator.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
#include "aare/NDView.hpp"
|
||||
@@ -10,19 +11,41 @@
|
||||
|
||||
namespace py = pybind11;
|
||||
|
||||
#define REGISTER_INTERPOLATOR_ETA2(T, N, M, U) \
|
||||
register_interpolate<T, N, M, U, aare::calculate_full_eta2<T, N, M, U>>( \
|
||||
interpolator, "_full_eta2", "full eta2"); \
|
||||
register_interpolate<T, N, M, U, aare::calculate_eta2<T, N, M, U>>( \
|
||||
interpolator, "", "eta2");
|
||||
|
||||
#define REGISTER_INTERPOLATOR_ETA3(T, N, M, U) \
|
||||
register_interpolate<T, N, M, U, aare::calculate_eta3<T, N, M, U>>( \
|
||||
interpolator, "_eta3", "full eta3"); \
|
||||
register_interpolate<T, N, M, U, aare::calculate_cross_eta3<T, N, M, U>>( \
|
||||
interpolator, "_cross_eta3", "cross eta3");
|
||||
|
||||
template <typename Type, uint8_t CoordSizeX, uint8_t CoordSizeY,
|
||||
typename CoordType = uint16_t>
|
||||
void register_interpolate(py::class_<aare::Interpolator> &interpolator) {
|
||||
typename CoordType = uint16_t, auto EtaFunction>
|
||||
void register_interpolate(py::class_<aare::Interpolator> &interpolator,
|
||||
const std::string &typestr = "",
|
||||
const std::string &doc_string_etatype = "eta2x2") {
|
||||
|
||||
using ClusterType = Cluster<Type, CoordSizeX, CoordSizeY, CoordType>;
|
||||
|
||||
interpolator.def("interpolate",
|
||||
const std::string docstring = "interpolation based on " +
|
||||
doc_string_etatype +
|
||||
"\n\nReturns:\n interpolated photons";
|
||||
|
||||
auto function_name = fmt::format("interpolate{}", typestr);
|
||||
|
||||
interpolator.def(
|
||||
function_name.c_str(),
|
||||
[](aare::Interpolator &self,
|
||||
const ClusterVector<ClusterType> &clusters) {
|
||||
auto photons = self.interpolate<ClusterType>(clusters);
|
||||
auto photons = self.interpolate<EtaFunction, ClusterType>(clusters);
|
||||
auto *ptr = new std::vector<Photon>{photons};
|
||||
return return_vector(ptr);
|
||||
});
|
||||
},
|
||||
docstring.c_str(), py::arg("cluster_vector"));
|
||||
}
|
||||
|
||||
void define_interpolation_bindings(py::module &m) {
|
||||
@@ -31,33 +54,91 @@ void define_interpolation_bindings(py::module &m) {
|
||||
|
||||
auto interpolator =
|
||||
py::class_<aare::Interpolator>(m, "Interpolator")
|
||||
.def(py::init([](py::array_t<double, py::array::c_style |
|
||||
py::array::forcecast>
|
||||
.def(py::init(
|
||||
[](py::array_t<double,
|
||||
py::array::c_style | py::array::forcecast>
|
||||
etacube,
|
||||
py::array_t<double> xbins,
|
||||
py::array_t<double> ybins,
|
||||
py::array_t<double> xbins, py::array_t<double> ybins,
|
||||
py::array_t<double> ebins) {
|
||||
return Interpolator(make_view_3d(etacube), make_view_1d(xbins),
|
||||
return Interpolator(
|
||||
make_view_3d(etacube), make_view_1d(xbins),
|
||||
make_view_1d(ybins), make_view_1d(ebins));
|
||||
}))
|
||||
}),
|
||||
R"doc(
|
||||
Constructor
|
||||
|
||||
Args:
|
||||
|
||||
etacube:
|
||||
joint distribution of eta_x, eta_y and photon energy (**Note:** for the joint distribution first dimension is eta_x, second: eta_y, third: energy bins.)
|
||||
xbins:
|
||||
bin edges of etax
|
||||
ybins:
|
||||
bin edges of etay
|
||||
ebins:
|
||||
bin edges of photon energy
|
||||
)doc",
|
||||
py::arg("etacube"),
|
||||
py::arg("xbins"), py::arg("ybins"),
|
||||
py::arg("ebins"))
|
||||
|
||||
.def(py::init(
|
||||
[](py::array_t<double> xbins, py::array_t<double> ybins,
|
||||
py::array_t<double> ebins) {
|
||||
return Interpolator(make_view_1d(xbins),
|
||||
make_view_1d(ybins),
|
||||
make_view_1d(ebins));
|
||||
}),
|
||||
R"(
|
||||
Constructor
|
||||
|
||||
Args:
|
||||
|
||||
xbins:
|
||||
bin edges of etax
|
||||
ybins:
|
||||
bin edges of etay
|
||||
ebins:
|
||||
bin edges of photon energy
|
||||
)", py::arg("xbins"),
|
||||
py::arg("ybins"), py::arg("ebins"))
|
||||
.def(
|
||||
"rosenblatttransform",
|
||||
[](Interpolator &self,
|
||||
py::array_t<double,
|
||||
py::array::c_style | py::array::forcecast>
|
||||
etacube) {
|
||||
return self.rosenblatttransform(make_view_3d(etacube));
|
||||
},
|
||||
R"(
|
||||
calculated the rosenblatttransform for the given distribution
|
||||
|
||||
etacube:
|
||||
joint distribution of eta_x, eta_y and photon energy (**Note:** for the joint distribution first dimension is eta_x, second: eta_y, third: energy bins.)
|
||||
)",
|
||||
py::arg("etacube"))
|
||||
.def("get_ietax",
|
||||
[](Interpolator &self) {
|
||||
auto *ptr = new NDArray<double, 3>{};
|
||||
*ptr = self.get_ietax();
|
||||
return return_image_data(ptr);
|
||||
})
|
||||
}, R"(conditional CDF of etax conditioned on etay, marginal CDF of etax (if rosenblatt transform applied))")
|
||||
.def("get_ietay", [](Interpolator &self) {
|
||||
auto *ptr = new NDArray<double, 3>{};
|
||||
*ptr = self.get_ietay();
|
||||
return return_image_data(ptr);
|
||||
});
|
||||
}, R"(conditional CDF of etay conditioned on etax)");
|
||||
|
||||
register_interpolate<int, 3, 3, uint16_t>(interpolator);
|
||||
register_interpolate<float, 3, 3, uint16_t>(interpolator);
|
||||
register_interpolate<double, 3, 3, uint16_t>(interpolator);
|
||||
register_interpolate<int, 2, 2, uint16_t>(interpolator);
|
||||
register_interpolate<float, 2, 2, uint16_t>(interpolator);
|
||||
register_interpolate<double, 2, 2, uint16_t>(interpolator);
|
||||
REGISTER_INTERPOLATOR_ETA3(int, 3, 3, uint16_t);
|
||||
REGISTER_INTERPOLATOR_ETA3(float, 3, 3, uint16_t);
|
||||
REGISTER_INTERPOLATOR_ETA3(double, 3, 3, uint16_t);
|
||||
|
||||
REGISTER_INTERPOLATOR_ETA2(int, 3, 3, uint16_t);
|
||||
REGISTER_INTERPOLATOR_ETA2(float, 3, 3, uint16_t);
|
||||
REGISTER_INTERPOLATOR_ETA2(double, 3, 3, uint16_t);
|
||||
REGISTER_INTERPOLATOR_ETA2(int, 2, 2, uint16_t);
|
||||
REGISTER_INTERPOLATOR_ETA2(float, 2, 2, uint16_t);
|
||||
REGISTER_INTERPOLATOR_ETA2(double, 2, 2, uint16_t);
|
||||
|
||||
// TODO! Evaluate without converting to double
|
||||
m.def(
|
||||
|
||||
@@ -9,6 +9,7 @@
|
||||
#include "bind_ClusterFinder.hpp"
|
||||
#include "bind_ClusterFinderMT.hpp"
|
||||
#include "bind_ClusterVector.hpp"
|
||||
#include "bind_Eta.hpp"
|
||||
#include "bind_calibration.hpp"
|
||||
|
||||
// TODO! migrate the other names
|
||||
@@ -43,14 +44,16 @@ double, 'f' for float)
|
||||
#define DEFINE_CLUSTER_BINDINGS(T, N, M, U, TYPE_CODE) \
|
||||
define_ClusterFile<T, N, M, U>(m, "Cluster" #N "x" #M #TYPE_CODE); \
|
||||
define_ClusterVector<T, N, M, U>(m, "Cluster" #N "x" #M #TYPE_CODE); \
|
||||
define_Cluster<T, N, M, U>(m, #N "x" #M #TYPE_CODE); \
|
||||
register_calculate_2x2eta<T, N, M, U>(m); \
|
||||
define_2x2_reduction<T, N, M, U>(m); \
|
||||
reduce_to_2x2<T, N, M, U>(m);
|
||||
|
||||
#define DEFINE_BINDINGS_CLUSTERFINDER(T, N, M, U, TYPE_CODE) \
|
||||
define_ClusterFinder<T, N, M, U>(m, "Cluster" #N "x" #M #TYPE_CODE); \
|
||||
define_ClusterFinderMT<T, N, M, U>(m, "Cluster" #N "x" #M #TYPE_CODE); \
|
||||
define_ClusterFileSink<T, N, M, U>(m, "Cluster" #N "x" #M #TYPE_CODE); \
|
||||
define_ClusterCollector<T, N, M, U>(m, "Cluster" #N "x" #M #TYPE_CODE); \
|
||||
define_Cluster<T, N, M, U>(m, #N "x" #M #TYPE_CODE); \
|
||||
register_calculate_eta<T, N, M, U>(m); \
|
||||
define_2x2_reduction<T, N, M, U>(m); \
|
||||
reduce_to_2x2<T, N, M, U>(m);
|
||||
define_ClusterCollector<T, N, M, U>(m, "Cluster" #N "x" #M #TYPE_CODE);
|
||||
|
||||
PYBIND11_MODULE(_aare, m) {
|
||||
define_file_io_bindings(m);
|
||||
@@ -88,7 +91,23 @@ PYBIND11_MODULE(_aare, m) {
|
||||
DEFINE_CLUSTER_BINDINGS(double, 9, 9, uint16_t, d);
|
||||
DEFINE_CLUSTER_BINDINGS(float, 9, 9, uint16_t, f);
|
||||
|
||||
// DEFINE_CLUSTER_BINDINGS(double, 2, 1, uint16_t, d);
|
||||
DEFINE_CLUSTER_BINDINGS(int16_t, 3, 3, uint16_t, i16);
|
||||
|
||||
DEFINE_BINDINGS_CLUSTERFINDER(int, 3, 3, uint16_t, i);
|
||||
DEFINE_BINDINGS_CLUSTERFINDER(double, 3, 3, uint16_t, d);
|
||||
DEFINE_BINDINGS_CLUSTERFINDER(float, 3, 3, uint16_t, f);
|
||||
|
||||
DEFINE_BINDINGS_CLUSTERFINDER(int, 5, 5, uint16_t, i);
|
||||
DEFINE_BINDINGS_CLUSTERFINDER(double, 5, 5, uint16_t, d);
|
||||
DEFINE_BINDINGS_CLUSTERFINDER(float, 5, 5, uint16_t, f);
|
||||
|
||||
DEFINE_BINDINGS_CLUSTERFINDER(int, 7, 7, uint16_t, i);
|
||||
DEFINE_BINDINGS_CLUSTERFINDER(double, 7, 7, uint16_t, d);
|
||||
DEFINE_BINDINGS_CLUSTERFINDER(float, 7, 7, uint16_t, f);
|
||||
|
||||
DEFINE_BINDINGS_CLUSTERFINDER(int, 9, 9, uint16_t, i);
|
||||
DEFINE_BINDINGS_CLUSTERFINDER(double, 9, 9, uint16_t, d);
|
||||
DEFINE_BINDINGS_CLUSTERFINDER(float, 9, 9, uint16_t, f);
|
||||
|
||||
define_3x3_reduction<int, 3, 3, uint16_t>(m);
|
||||
define_3x3_reduction<double, 3, 3, uint16_t>(m);
|
||||
@@ -116,10 +135,30 @@ PYBIND11_MODULE(_aare, m) {
|
||||
reduce_to_3x3<double, 9, 9, uint16_t>(m);
|
||||
reduce_to_3x3<float, 9, 9, uint16_t>(m);
|
||||
|
||||
register_calculate_3x3eta<int, 3, 3, uint16_t>(m);
|
||||
register_calculate_3x3eta<double, 3, 3, uint16_t>(m);
|
||||
register_calculate_3x3eta<float, 3, 3, uint16_t>(m);
|
||||
register_calculate_3x3eta<int16_t, 3, 3, uint16_t>(m);
|
||||
|
||||
using Sum_index_pair_d = Sum_index_pair<double, corner>;
|
||||
PYBIND11_NUMPY_DTYPE(Sum_index_pair_d, sum, index);
|
||||
using Sum_index_pair_f = Sum_index_pair<float, corner>;
|
||||
PYBIND11_NUMPY_DTYPE(Sum_index_pair_f, sum, index);
|
||||
using Sum_index_pair_i = Sum_index_pair<int, corner>;
|
||||
PYBIND11_NUMPY_DTYPE(Sum_index_pair_i, sum, index);
|
||||
|
||||
using eta_d = Eta2<double>;
|
||||
PYBIND11_NUMPY_DTYPE(eta_d, x, y, c, sum);
|
||||
using eta_i = Eta2<int>;
|
||||
PYBIND11_NUMPY_DTYPE(eta_i, x, y, c, sum);
|
||||
using eta_f = Eta2<float>;
|
||||
PYBIND11_NUMPY_DTYPE(eta_f, x, y, c, sum);
|
||||
using eta_i16 = Eta2<int16_t>;
|
||||
PYBIND11_NUMPY_DTYPE(eta_i16, x, y, c, sum);
|
||||
|
||||
define_corner_enum(m);
|
||||
define_eta<float>(m, "f");
|
||||
define_eta<double>(m, "d");
|
||||
define_eta<int>(m, "i");
|
||||
define_eta<int16_t>(m, "i16");
|
||||
}
|
||||
|
||||
339
python/tests/Rosenblatt.ipynb
Normal file
339
python/tests/Rosenblatt.ipynb
Normal file
File diff suppressed because one or more lines are too long
@@ -3,6 +3,7 @@ import pytest
|
||||
import numpy as np
|
||||
|
||||
from aare import _aare #import the C++ module
|
||||
from aare import corner
|
||||
from conftest import test_data_path
|
||||
|
||||
|
||||
@@ -40,52 +41,49 @@ def test_Interpolator():
|
||||
xbins = np.linspace(0, 5, 30, dtype=np.float64)
|
||||
ybins = np.linspace(0, 5, 30, dtype=np.float64)
|
||||
|
||||
etacube = np.zeros(shape=[30, 30, 20], dtype=np.float64)
|
||||
etacube = np.zeros(shape=[29, 29, 19], dtype=np.float64)
|
||||
interpolator = _aare.Interpolator(etacube, xbins, ybins, ebins)
|
||||
|
||||
assert interpolator.get_ietax().shape == (30,30,20)
|
||||
assert interpolator.get_ietay().shape == (30,30,20)
|
||||
clustervector = _aare.ClusterVector_Cluster3x3i()
|
||||
|
||||
cluster = _aare.Cluster3x3i(0,0, np.ones(9, dtype=np.int32))
|
||||
cluster = _aare.Cluster3x3i(1,1, np.ones(9, dtype=np.int32))
|
||||
clustervector.push_back(cluster)
|
||||
|
||||
interpolated_photons = interpolator.interpolate(clustervector)
|
||||
|
||||
assert interpolated_photons.size == 1
|
||||
|
||||
assert interpolated_photons[0]["x"] == 0
|
||||
assert interpolated_photons[0]["y"] == 0
|
||||
assert interpolated_photons[0]["x"] == 0.5
|
||||
assert interpolated_photons[0]["y"] == 0.5
|
||||
assert interpolated_photons[0]["energy"] == 4 #eta_sum = 4, dx, dy = -1,-1 m_ietax = 0, m_ietay = 0
|
||||
|
||||
clustervector = _aare.ClusterVector_Cluster2x2i()
|
||||
|
||||
cluster = _aare.Cluster2x2i(0,0, np.ones(4, dtype=np.int32))
|
||||
cluster = _aare.Cluster2x2i(1,1, np.ones(4, dtype=np.int32))
|
||||
clustervector.push_back(cluster)
|
||||
|
||||
interpolated_photons = interpolator.interpolate(clustervector)
|
||||
|
||||
assert interpolated_photons.size == 1
|
||||
|
||||
assert interpolated_photons[0]["x"] == 0
|
||||
assert interpolated_photons[0]["y"] == 0
|
||||
assert interpolated_photons[0]["x"] == 0.5
|
||||
assert interpolated_photons[0]["y"] == 0.5
|
||||
assert interpolated_photons[0]["energy"] == 4
|
||||
|
||||
|
||||
|
||||
def test_calculate_eta():
|
||||
"""Calculate Eta"""
|
||||
clusters = _aare.ClusterVector_Cluster3x3i()
|
||||
clusters.push_back(_aare.Cluster3x3i(0,0, np.ones(9, dtype=np.int32)))
|
||||
clusters.push_back(_aare.Cluster3x3i(0,0, np.array([1,1,1,2,2,2,3,3,3])))
|
||||
cluster = _aare.Cluster3x3i(0,0, np.ones(9, dtype=np.int32))
|
||||
|
||||
eta2 = _aare.calculate_eta2(clusters)
|
||||
eta2 = _aare.calculate_eta2(cluster)
|
||||
|
||||
assert eta2.shape == (2,2)
|
||||
assert eta2[0,0] == 0.5
|
||||
assert eta2[0,1] == 0.5
|
||||
assert eta2[1,0] == 0.5
|
||||
assert eta2[1,1] == 0.4 #2/5
|
||||
assert eta2.x == 0.5
|
||||
assert eta2.y == 0.5
|
||||
assert eta2.c == corner.cTopLeft
|
||||
assert eta2.sum == 4
|
||||
|
||||
|
||||
def test_max_sum():
|
||||
@@ -119,7 +117,7 @@ def test_2x2_reduction():
|
||||
|
||||
reduced_cluster = _aare.reduce_to_2x2(cluster)
|
||||
|
||||
assert reduced_cluster.x == 4
|
||||
assert reduced_cluster.x == 5
|
||||
assert reduced_cluster.y == 5
|
||||
assert (reduced_cluster.data == np.array([[2, 3], [2, 2]], dtype=np.int32)).all()
|
||||
|
||||
@@ -131,9 +129,9 @@ def test_3x3_reduction():
|
||||
|
||||
reduced_cluster = _aare.reduce_to_3x3(cluster)
|
||||
|
||||
assert reduced_cluster.x == 4
|
||||
assert reduced_cluster.x == 5
|
||||
assert reduced_cluster.y == 5
|
||||
assert (reduced_cluster.data == np.array([[1.0, 2.0, 1.0], [2.0, 2.0, 3.0], [1.0, 2.0, 1.0]], dtype=np.double)).all()
|
||||
assert (reduced_cluster.data == np.array([[2.0, 1.0, 1.0], [2.0, 3.0, 1.0], [2.0, 1.0, 1.0]], dtype=np.double)).all()
|
||||
|
||||
|
||||
|
||||
|
||||
@@ -6,7 +6,7 @@ import time
|
||||
from pathlib import Path
|
||||
import pickle
|
||||
|
||||
from aare import ClusterFile, ClusterVector
|
||||
from aare import ClusterFile, ClusterVector, calculate_eta2
|
||||
from aare import _aare
|
||||
from conftest import test_data_path
|
||||
|
||||
@@ -45,6 +45,19 @@ def test_max_2x2_sum():
|
||||
assert max_2x2[0]["index"] == 2
|
||||
|
||||
|
||||
def test_eta2():
|
||||
"""calculate eta2"""
|
||||
cv = _aare.ClusterVector_Cluster3x3i()
|
||||
cv.push_back(_aare.Cluster3x3i(19, 22, np.ones(9, dtype=np.int32)))
|
||||
assert cv.size == 1
|
||||
eta2 = calculate_eta2(cv)
|
||||
assert eta2.size == 1
|
||||
assert eta2[0]["x"] == 0.5
|
||||
assert eta2[0]["y"] == 0.5
|
||||
assert eta2[0]["c"] == 0
|
||||
assert eta2[0]["sum"] == 4
|
||||
|
||||
|
||||
def test_make_a_hitmap_from_cluster_vector():
|
||||
cv = _aare.ClusterVector_Cluster3x3i()
|
||||
|
||||
@@ -75,11 +88,11 @@ def test_2x2_reduction():
|
||||
reduced_cv = np.array(_aare.reduce_to_2x2(cv), copy=False)
|
||||
|
||||
assert reduced_cv.size == 2
|
||||
assert reduced_cv[0]["x"] == 4
|
||||
assert reduced_cv[0]["x"] == 5
|
||||
assert reduced_cv[0]["y"] == 5
|
||||
assert (reduced_cv[0]["data"] == np.array([[2, 3], [2, 2]], dtype=np.int32)).all()
|
||||
assert reduced_cv[1]["x"] == 4
|
||||
assert reduced_cv[1]["y"] == 6
|
||||
assert reduced_cv[1]["x"] == 5
|
||||
assert reduced_cv[1]["y"] == 5
|
||||
assert (reduced_cv[1]["data"] == np.array([[2, 2], [2, 3]], dtype=np.int32)).all()
|
||||
|
||||
|
||||
@@ -94,6 +107,6 @@ def test_3x3_reduction():
|
||||
reduced_cv = np.array(_aare.reduce_to_3x3(cv), copy=False)
|
||||
|
||||
assert reduced_cv.size == 2
|
||||
assert reduced_cv[0]["x"] == 4
|
||||
assert reduced_cv[0]["x"] == 5
|
||||
assert reduced_cv[0]["y"] == 5
|
||||
assert (reduced_cv[0]["data"] == np.array([[1.0, 2.0, 1.0], [2.0, 2.0, 3.0], [1.0, 2.0, 1.0]], dtype=np.double)).all()
|
||||
assert (reduced_cv[0]["data"] == np.array([[2.0, 1.0, 1.0], [2.0, 3.0, 1.0], [2.0, 1.0, 1.0]], dtype=np.double)).all()
|
||||
@@ -25,10 +25,6 @@ def create_photon_hit_with_gaussian_distribution(mean, covariance_matrix, data_p
|
||||
probability_values = gaussian.pdf(data_points)
|
||||
return (probability_values.reshape(X.shape)).round() #python bindings only support frame types of uint16_t
|
||||
|
||||
def photon_hit_in_euclidean_space(cluster_center, pixels_per_superpixel, photon_hit):
|
||||
scaled_photon_hit_x = cluster_center - (1 - photon_hit[0][0])*pixels_per_superpixel*pixel_width
|
||||
scaled_photon_hit_y = cluster_center - (1 - photon_hit[0][1])*pixels_per_superpixel*pixel_width
|
||||
return (scaled_photon_hit_x, scaled_photon_hit_y)
|
||||
|
||||
def create_2x2cluster_from_frame(frame, pixels_per_superpixel):
|
||||
return Cluster2x2d(1, 1, np.array([frame[0:pixels_per_superpixel, 0:pixels_per_superpixel].sum(),
|
||||
@@ -49,10 +45,10 @@ def create_3x3cluster_from_frame(frame, pixels_per_superpixel):
|
||||
frame[2*pixels_per_superpixel:3*pixels_per_superpixel, 2*pixels_per_superpixel:3*pixels_per_superpixel].sum()], dtype=np.float64))
|
||||
|
||||
|
||||
def calculate_eta_distribution(num_frames, pixels_per_superpixel, random_number_generator, cluster_2x2 = True):
|
||||
def calculate_eta_distribution(num_frames, pixels_per_superpixel, random_number_generator, bin_edges_x = bh.axis.Regular(100, -0.2, 1.2), bin_edges_y = bh.axis.Regular(100, -0.2, 1.2), cluster_2x2 = True):
|
||||
hist = bh.Histogram(
|
||||
bh.axis.Regular(100, -0.2, 1.2),
|
||||
bh.axis.Regular(100, -0.2, 1.2), bh.axis.Regular(1, 0, num_pixels*num_pixels*1/(variance*2*np.pi)))
|
||||
bin_edges_x,
|
||||
bin_edges_y, bh.axis.Regular(1, 0, num_pixels*num_pixels*1/(variance*2*np.pi)))
|
||||
|
||||
for _ in range(0, num_frames):
|
||||
mean_x = random_number_generator.uniform(pixels_per_superpixel*pixel_width, 2*pixels_per_superpixel*pixel_width)
|
||||
@@ -67,7 +63,7 @@ def calculate_eta_distribution(num_frames, pixels_per_superpixel, random_number_
|
||||
cluster = create_3x3cluster_from_frame(frame, pixels_per_superpixel)
|
||||
|
||||
eta2 = calculate_eta2(cluster)
|
||||
hist.fill(eta2[0], eta2[1], eta2[2])
|
||||
hist.fill(eta2.x, eta2.y, eta2.sum)
|
||||
|
||||
return hist
|
||||
|
||||
@@ -86,9 +82,9 @@ def test_interpolation_of_2x2_cluster(test_data_path):
|
||||
pixels_per_superpixel = int(num_pixels*0.5)
|
||||
random_number_generator = np.random.default_rng(42)
|
||||
|
||||
eta_distribution = calculate_eta_distribution(num_frames, pixels_per_superpixel, random_number_generator)
|
||||
eta_distribution = calculate_eta_distribution(num_frames, pixels_per_superpixel, random_number_generator, bin_edges_x = bh.axis.Regular(100, -0.1, 0.6), bin_edges_y = bh.axis.Regular(100, -0.1, 0.6))
|
||||
|
||||
interpolation = Interpolator(eta_distribution, eta_distribution.axes[0].edges[:-1], eta_distribution.axes[1].edges[:-1], eta_distribution.axes[2].edges[:-1])
|
||||
interpolation = Interpolator(eta_distribution, eta_distribution.axes[0].edges, eta_distribution.axes[1].edges, eta_distribution.axes[2].edges)
|
||||
|
||||
#actual photon hit
|
||||
mean = 1.2*pixels_per_superpixel*pixel_width
|
||||
@@ -105,7 +101,7 @@ def test_interpolation_of_2x2_cluster(test_data_path):
|
||||
|
||||
cluster_center = 1.5*pixels_per_superpixel*pixel_width
|
||||
|
||||
scaled_photon_hit = photon_hit_in_euclidean_space(cluster_center, pixels_per_superpixel, interpolated_photon)
|
||||
scaled_photon_hit = (interpolated_photon[0][0]*pixels_per_superpixel*pixel_width, interpolated_photon[0][1]*pixels_per_superpixel*pixel_width)
|
||||
|
||||
assert (np.linalg.norm(scaled_photon_hit - mean) < np.linalg.norm(np.array([cluster_center, cluster_center] - mean)))
|
||||
|
||||
@@ -124,13 +120,14 @@ def test_interpolation_of_3x3_cluster(test_data_path):
|
||||
num_frames = 1000
|
||||
pixels_per_superpixel = int(num_pixels/3)
|
||||
random_number_generator = np.random.default_rng(42)
|
||||
eta_distribution = calculate_eta_distribution(num_frames, pixels_per_superpixel, random_number_generator, False)
|
||||
eta_distribution = calculate_eta_distribution(num_frames, pixels_per_superpixel, random_number_generator, bin_edges_x = bh.axis.Regular(100, -0.1, 1.1), bin_edges_y = bh.axis.Regular(100, -0.1, 1.1), cluster_2x2 = False)
|
||||
|
||||
interpolation = Interpolator(eta_distribution, eta_distribution.axes[0].edges[:-1], eta_distribution.axes[1].edges[:-1], eta_distribution.axes[2].edges[:-1])
|
||||
interpolation = Interpolator(eta_distribution, eta_distribution.axes[0].edges, eta_distribution.axes[1].edges, eta_distribution.axes[2].edges)
|
||||
|
||||
#actual photon hit
|
||||
mean = 1.2*pixels_per_superpixel*pixel_width
|
||||
mean = np.array([mean, mean])
|
||||
mean_x = (1 + 0.8)*pixels_per_superpixel*pixel_width
|
||||
mean_y = (1 + 0.2)*pixels_per_superpixel*pixel_width
|
||||
mean = np.array([mean_x, mean_y])
|
||||
frame = create_photon_hit_with_gaussian_distribution(mean, covariance_matrix, data_points)
|
||||
cluster = create_3x3cluster_from_frame(frame, pixels_per_superpixel)
|
||||
|
||||
@@ -143,7 +140,7 @@ def test_interpolation_of_3x3_cluster(test_data_path):
|
||||
|
||||
cluster_center = 1.5*pixels_per_superpixel*pixel_width
|
||||
|
||||
scaled_photon_hit = photon_hit_in_euclidean_space(cluster_center, pixels_per_superpixel, interpolated_photon)
|
||||
scaled_photon_hit = (interpolated_photon[0][0]*pixels_per_superpixel*pixel_width, interpolated_photon[0][1]*pixels_per_superpixel*pixel_width)
|
||||
|
||||
assert (np.linalg.norm(scaled_photon_hit - mean) < np.linalg.norm(np.array([cluster_center, cluster_center] - mean)))
|
||||
|
||||
|
||||
File diff suppressed because one or more lines are too long
291
python/tests/test_interpolation_simulated.py
Normal file
291
python/tests/test_interpolation_simulated.py
Normal file
@@ -0,0 +1,291 @@
|
||||
|
||||
#test script to test interpolation on simulated data
|
||||
|
||||
import pytest
|
||||
import pytest_check as check
|
||||
import numpy as np
|
||||
import boost_histogram as bh
|
||||
import pickle
|
||||
from scipy.stats import multivariate_normal
|
||||
|
||||
from aare import Interpolator, calculate_eta2, calculate_cross_eta3, calculate_full_eta2, calculate_eta3
|
||||
from aare import ClusterFile
|
||||
|
||||
from conftest import test_data_path
|
||||
|
||||
## TODO: is there something like a test fixture setup/teardown in pytest?
|
||||
|
||||
|
||||
def calculate_eta_distribution(cv, calculate_eta, edges_x=[-0.5,0.5], edges_y=[-0.5,0.5], nbins = 101):
|
||||
energy_bins = bh.axis.Regular(1, 0, 16) # max and min energy of simulated photons
|
||||
|
||||
eta_distribution = bh.Histogram(
|
||||
bh.axis.Regular(nbins, edges_x[0], edges_x[1]),
|
||||
bh.axis.Regular(nbins, edges_y[0], edges_y[1]), energy_bins)
|
||||
|
||||
eta = calculate_eta(cv)
|
||||
|
||||
eta_distribution.fill(eta['x'], eta['y'], eta['sum'])
|
||||
|
||||
return eta_distribution
|
||||
|
||||
|
||||
@pytest.fixture
|
||||
def load_data(test_data_path):
|
||||
"""Load simulated cluster data and ground truth positions"""
|
||||
f = ClusterFile(test_data_path / "clust" / "simulated_clusters.clust", dtype=np.float64, mode="r")
|
||||
cv = f.read_frame()
|
||||
|
||||
ground_truths = np.load(test_data_path / "interpolation/ground_truth_simulated.npy")
|
||||
|
||||
return cv, ground_truths
|
||||
|
||||
@pytest.mark.withdata
|
||||
def test_eta2_interpolation(load_data, check):
|
||||
"""Test eta2 interpolation on simulated data"""
|
||||
|
||||
cv, ground_truths = load_data
|
||||
|
||||
num_bins = 201
|
||||
eta_distribution = calculate_eta_distribution(cv, calculate_eta2, edges_x=[-0.1,1.1], edges_y=[-0.1,1.1], nbins=num_bins)
|
||||
|
||||
interpolator = Interpolator(eta_distribution, eta_distribution.axes[0].edges, eta_distribution.axes[1].edges, eta_distribution.axes[2].edges)
|
||||
|
||||
assert interpolator.get_ietax().shape == (num_bins,num_bins,1)
|
||||
assert interpolator.get_ietay().shape == (num_bins,num_bins,1)
|
||||
|
||||
interpolated_photons = interpolator.interpolate(cv)
|
||||
|
||||
assert interpolated_photons.size == cv.size
|
||||
|
||||
interpolated_photons["x"] += 1.0 #groud truth label uses 5x5 clusters
|
||||
interpolated_photons["y"] += 1.0
|
||||
|
||||
residuals_interpolated_x = abs(ground_truths[:, 0] - interpolated_photons["x"])
|
||||
residuals_interpolated_y = abs(ground_truths[:, 1] - interpolated_photons["y"])
|
||||
|
||||
"""
|
||||
residuals_center_pixel_x = abs(ground_truths[:, 0] - 2.5)
|
||||
residuals_center_pixel_y = abs(ground_truths[:, 1] - 2.5)
|
||||
|
||||
# interpolation needs to perform better than center pixel assignment - not true for photon close to the center
|
||||
assert (residuals_interpolated_x < residuals_center_pixel_x).all()
|
||||
assert (residuals_interpolated_y < residuals_center_pixel_y).all()
|
||||
"""
|
||||
|
||||
# check within photon hit pixel for all
|
||||
with check:
|
||||
assert np.allclose(interpolated_photons["x"], ground_truths[:, 0], atol=5e-1)
|
||||
with check:
|
||||
assert np.allclose(interpolated_photons["y"], ground_truths[:, 1], atol=5e-1)
|
||||
|
||||
# check mean and std of residuals
|
||||
with check:
|
||||
assert residuals_interpolated_y.mean() <= 0.1
|
||||
with check:
|
||||
assert residuals_interpolated_x.mean() <= 0.1
|
||||
with check:
|
||||
assert residuals_interpolated_x.std() <= 0.05
|
||||
with check:
|
||||
assert residuals_interpolated_y.std() <= 0.05
|
||||
|
||||
@pytest.mark.withdata
|
||||
def test_eta2_interpolation_rosenblatt(load_data, check):
|
||||
"""Test eta2 interpolation on simulated data using Rosenblatt transform"""
|
||||
|
||||
cv, ground_truths = load_data
|
||||
|
||||
num_bins = 201
|
||||
eta_distribution = calculate_eta_distribution(cv, calculate_eta2, edges_x=[-0.1,1.1], edges_y=[-0.1,1.1], nbins=num_bins)
|
||||
|
||||
interpolator = Interpolator(eta_distribution.axes[0].edges, eta_distribution.axes[1].edges, eta_distribution.axes[2].edges)
|
||||
|
||||
interpolator.rosenblatttransform(eta_distribution)
|
||||
|
||||
assert interpolator.get_ietax().shape == (num_bins,num_bins,1)
|
||||
assert interpolator.get_ietay().shape == (num_bins,num_bins,1)
|
||||
|
||||
interpolated_photons = interpolator.interpolate(cv)
|
||||
|
||||
assert interpolated_photons.size == cv.size
|
||||
|
||||
interpolated_photons["x"] += 1.0 #groud truth label uses 5x5 clusters
|
||||
interpolated_photons["y"] += 1.0
|
||||
|
||||
residuals_interpolated_x = abs(ground_truths[:, 0] - interpolated_photons["x"])
|
||||
residuals_interpolated_y = abs(ground_truths[:, 1] - interpolated_photons["y"])
|
||||
|
||||
"""
|
||||
residuals_center_pixel_x = abs(ground_truths[:, 0] - 2.5)
|
||||
residuals_center_pixel_y = abs(ground_truths[:, 1] - 2.5)
|
||||
|
||||
# interpolation needs to perform better than center pixel assignment - not true for photon close to the center
|
||||
assert (residuals_interpolated_x < residuals_center_pixel_x).all()
|
||||
assert (residuals_interpolated_y < residuals_center_pixel_y).all()
|
||||
"""
|
||||
|
||||
# check within photon hit pixel for all
|
||||
with check:
|
||||
assert np.allclose(interpolated_photons["x"], ground_truths[:, 0], atol=5e-1)
|
||||
with check:
|
||||
assert np.allclose(interpolated_photons["y"], ground_truths[:, 1], atol=5e-1)
|
||||
|
||||
# check mean and std of residuals
|
||||
with check:
|
||||
assert residuals_interpolated_y.mean() <= 0.1
|
||||
with check:
|
||||
assert residuals_interpolated_x.mean() <= 0.1
|
||||
with check:
|
||||
assert residuals_interpolated_x.std() <= 0.055 #performs slightly worse
|
||||
with check:
|
||||
assert residuals_interpolated_y.std() <= 0.055 #performs slightly worse
|
||||
|
||||
|
||||
@pytest.mark.withdata
|
||||
def test_cross_eta_interpolation(load_data, check):
|
||||
"""Test cross eta interpolation on simulated data"""
|
||||
|
||||
cv, ground_truths = load_data
|
||||
|
||||
num_bins = 201
|
||||
eta_distribution = calculate_eta_distribution(cv, calculate_cross_eta3, edges_x=[-0.5,0.5], edges_y=[-0.5,0.5], nbins=num_bins)
|
||||
|
||||
interpolator = Interpolator(eta_distribution, eta_distribution.axes[0].edges, eta_distribution.axes[1].edges, eta_distribution.axes[2].edges)
|
||||
|
||||
assert interpolator.get_ietax().shape == (num_bins,num_bins,1)
|
||||
assert interpolator.get_ietay().shape == (num_bins,num_bins,1)
|
||||
|
||||
interpolated_photons = interpolator.interpolate_cross_eta3(cv)
|
||||
|
||||
assert interpolated_photons.size == cv.size
|
||||
|
||||
interpolated_photons["x"] += 1.0 #groud truth label uses 5x5 clusters
|
||||
interpolated_photons["y"] += 1.0
|
||||
|
||||
residuals_interpolated_x = abs(ground_truths[:, 0] - interpolated_photons["x"])
|
||||
residuals_interpolated_y = abs(ground_truths[:, 1] - interpolated_photons["y"])
|
||||
|
||||
"""
|
||||
residuals_center_pixel_x = abs(ground_truths[:, 0] - 2.5)
|
||||
residuals_center_pixel_y = abs(ground_truths[:, 1] - 2.5)
|
||||
|
||||
# interpolation needs to perform better than center pixel assignment - not true for photon close to the center
|
||||
assert (residuals_interpolated_x < residuals_center_pixel_x).all()
|
||||
assert (residuals_interpolated_y < residuals_center_pixel_y).all()
|
||||
"""
|
||||
|
||||
# check within photon hit pixel for all
|
||||
# TODO: fails as eta_x = 0, eta_y = 0 is not leading to offset (0.5,0.5)
|
||||
with check:
|
||||
assert np.allclose(interpolated_photons["x"], ground_truths[:, 0], atol=5e-1)
|
||||
with check:
|
||||
assert np.allclose(interpolated_photons["y"], ground_truths[:, 1], atol=5e-1)
|
||||
|
||||
# check mean and std of residuals
|
||||
with check:
|
||||
assert residuals_interpolated_y.mean() <= 0.1
|
||||
with check:
|
||||
assert residuals_interpolated_x.mean() <= 0.1
|
||||
with check:
|
||||
assert residuals_interpolated_x.std() <= 0.05
|
||||
with check:
|
||||
assert residuals_interpolated_y.std() <= 0.05
|
||||
|
||||
@pytest.mark.withdata
|
||||
def test_eta3_interpolation(load_data, check):
|
||||
"""Test eta3 interpolation on simulated data"""
|
||||
|
||||
cv, ground_truths = load_data
|
||||
|
||||
num_bins = 201
|
||||
eta_distribution = calculate_eta_distribution(cv, calculate_eta3, edges_x=[-0.5,0.5], edges_y=[-0.5,0.5], nbins=num_bins)
|
||||
|
||||
interpolator = Interpolator(eta_distribution, eta_distribution.axes[0].edges, eta_distribution.axes[1].edges, eta_distribution.axes[2].edges)
|
||||
|
||||
assert interpolator.get_ietax().shape == (num_bins,num_bins,1)
|
||||
assert interpolator.get_ietay().shape == (num_bins,num_bins,1)
|
||||
|
||||
interpolated_photons = interpolator.interpolate_eta3(cv)
|
||||
|
||||
assert interpolated_photons.size == cv.size
|
||||
|
||||
interpolated_photons["x"] += 1.0 #groud truth label uses 5x5 clusters
|
||||
interpolated_photons["y"] += 1.0
|
||||
|
||||
residuals_interpolated_x = abs(ground_truths[:, 0] - interpolated_photons["x"])
|
||||
residuals_interpolated_y = abs(ground_truths[:, 1] - interpolated_photons["y"])
|
||||
|
||||
"""
|
||||
residuals_center_pixel_x = abs(ground_truths[:, 0] - 2.5)
|
||||
residuals_center_pixel_y = abs(ground_truths[:, 1] - 2.5)
|
||||
|
||||
# interpolation needs to perform better than center pixel assignment - not true for photon close to the center
|
||||
assert (residuals_interpolated_x < residuals_center_pixel_x).all()
|
||||
assert (residuals_interpolated_y < residuals_center_pixel_y).all()
|
||||
"""
|
||||
|
||||
# check within photon hit pixel for all
|
||||
# TODO: fails as eta_x = 0, eta_y = 0 is not leading to offset (0.5,0.5)
|
||||
with check:
|
||||
assert np.allclose(interpolated_photons["x"], ground_truths[:, 0], atol=5e-1)
|
||||
with check:
|
||||
assert np.allclose(interpolated_photons["y"], ground_truths[:, 1], atol=5e-1)
|
||||
|
||||
# check mean and std of residuals
|
||||
with check:
|
||||
assert residuals_interpolated_y.mean() <= 0.1
|
||||
with check:
|
||||
assert residuals_interpolated_x.mean() <= 0.1
|
||||
with check:
|
||||
assert residuals_interpolated_x.std() <= 0.05
|
||||
with check:
|
||||
assert residuals_interpolated_y.std() <= 0.05
|
||||
|
||||
@pytest.mark.withdata
|
||||
def test_full_eta2_interpolation(load_data, check):
|
||||
"""Test full eta2 interpolation on simulated data"""
|
||||
|
||||
cv, ground_truths = load_data
|
||||
|
||||
num_bins = 201
|
||||
eta_distribution = calculate_eta_distribution(cv, calculate_full_eta2, edges_x=[-0.1,1.1], edges_y=[-0.1,1.1], nbins=num_bins)
|
||||
|
||||
interpolator = Interpolator(eta_distribution, eta_distribution.axes[0].edges, eta_distribution.axes[1].edges, eta_distribution.axes[2].edges)
|
||||
|
||||
assert interpolator.get_ietax().shape == (num_bins,num_bins,1)
|
||||
assert interpolator.get_ietay().shape == (num_bins,num_bins,1)
|
||||
|
||||
interpolated_photons = interpolator.interpolate_full_eta2(cv)
|
||||
|
||||
assert interpolated_photons.size == cv.size
|
||||
|
||||
interpolated_photons["x"] += 1.0 #groud truth label uses 5x5 clusters
|
||||
interpolated_photons["y"] += 1.0
|
||||
|
||||
residuals_interpolated_x = abs(ground_truths[:, 0] - interpolated_photons["x"])
|
||||
residuals_interpolated_y = abs(ground_truths[:, 1] - interpolated_photons["y"])
|
||||
|
||||
"""
|
||||
residuals_center_pixel_x = abs(ground_truths[:, 0] - 2.5)
|
||||
residuals_center_pixel_y = abs(ground_truths[:, 1] - 2.5)
|
||||
|
||||
# interpolation needs to perform better than center pixel assignment - not true for photon close to the center
|
||||
assert (residuals_interpolated_x < residuals_center_pixel_x).all()
|
||||
assert (residuals_interpolated_y < residuals_center_pixel_y).all()
|
||||
"""
|
||||
|
||||
# check within photon hit pixel for all
|
||||
with check:
|
||||
assert np.allclose(interpolated_photons["x"], ground_truths[:, 0], atol=5e-1)
|
||||
with check:
|
||||
assert np.allclose(interpolated_photons["y"], ground_truths[:, 1], atol=5e-1)
|
||||
|
||||
# check mean and std of residuals
|
||||
with check:
|
||||
assert residuals_interpolated_y.mean() <= 0.1
|
||||
with check:
|
||||
assert residuals_interpolated_x.mean() <= 0.1
|
||||
with check:
|
||||
assert residuals_interpolated_x.std() <= 0.05
|
||||
with check:
|
||||
assert residuals_interpolated_y.std() <= 0.05
|
||||
@@ -21,21 +21,21 @@ using ClusterTypes =
|
||||
|
||||
auto get_test_parameters() {
|
||||
return GENERATE(
|
||||
std::make_tuple(ClusterTypes{Cluster<int, 2, 2>{0, 0, {1, 2, 3, 1}}},
|
||||
Eta2<int>{2. / 3, 3. / 4, corner::cTopLeft, 7}),
|
||||
std::make_tuple(ClusterTypes{Cluster<int, 2, 2>{0, 0, {1, 2, 1, 3}}},
|
||||
Eta2<int>{3. / 4, 3. / 5, corner::cTopLeft, 7}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 3, 3>{0, 0, {1, 2, 3, 4, 5, 6, 1, 2, 7}}},
|
||||
Eta2<int>{6. / 11, 2. / 7, corner::cBottomRight, 20}),
|
||||
ClusterTypes{Cluster<int, 3, 3>{0, 0, {1, 2, 3, 4, 7, 6, 1, 2, 5}}},
|
||||
Eta2<int>{6. / 13, 2. / 9, corner::cBottomRight, 20}),
|
||||
std::make_tuple(ClusterTypes{Cluster<int, 5, 5>{
|
||||
0, 0, {1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 9, 8,
|
||||
0, 0, {1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 8, 9,
|
||||
1, 4, 1, 6, 7, 8, 1, 1, 1, 1, 1, 1}}},
|
||||
Eta2<int>{8. / 17, 7. / 15, corner::cBottomLeft, 30}),
|
||||
Eta2<int>{9. / 17, 7. / 16, corner::cBottomLeft, 30}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 4, 2>{0, 0, {1, 4, 7, 2, 5, 6, 4, 3}}},
|
||||
Eta2<int>{4. / 10, 4. / 11, corner::cTopLeft, 21}),
|
||||
ClusterTypes{Cluster<int, 4, 2>{0, 0, {1, 4, 4, 2, 5, 6, 7, 3}}},
|
||||
Eta2<int>{7. / 13, 7. / 11, corner::cTopLeft, 21}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 2, 3>{0, 0, {1, 3, 2, 3, 4, 2}}},
|
||||
Eta2<int>{3. / 5, 2. / 5, corner::cBottomLeft, 11}));
|
||||
ClusterTypes{Cluster<int, 2, 3>{0, 0, {1, 3, 2, 4, 3, 2}}},
|
||||
Eta2<int>{4. / 6, 2. / 6, corner::cBottomLeft, 11}));
|
||||
}
|
||||
|
||||
TEST_CASE("compute_largest_2x2_subcluster", "[eta_calculation]") {
|
||||
@@ -62,10 +62,22 @@ TEST_CASE("calculate_eta2", "[eta_calculation]") {
|
||||
CHECK(eta.sum == expected_eta.sum);
|
||||
}
|
||||
|
||||
// 3x3 cluster layout (rotated to match the cBottomLeft enum):
|
||||
// 6, 7, 8
|
||||
// 3, 4, 5
|
||||
// 0, 1, 2
|
||||
TEST_CASE("calculate_eta2 after reduction", "[eta_calculation]") {
|
||||
|
||||
auto [cluster, expected_eta] = get_test_parameters();
|
||||
|
||||
auto eta = std::visit(
|
||||
[](const auto &clustertype) {
|
||||
auto reduced_cluster = reduce_to_2x2(clustertype);
|
||||
return calculate_eta2(reduced_cluster);
|
||||
},
|
||||
cluster);
|
||||
|
||||
CHECK(eta.x == expected_eta.x);
|
||||
CHECK(eta.y == expected_eta.y);
|
||||
CHECK(eta.c == expected_eta.c);
|
||||
CHECK(eta.sum == expected_eta.sum);
|
||||
}
|
||||
|
||||
TEST_CASE("Calculate eta2 for a 3x3 int32 cluster with the largest 2x2 sum in "
|
||||
"the bottom left",
|
||||
@@ -75,29 +87,25 @@ TEST_CASE("Calculate eta2 for a 3x3 int32 cluster with the largest 2x2 sum in "
|
||||
Cluster<int32_t, 3, 3> cl;
|
||||
cl.x = 0;
|
||||
cl.y = 0;
|
||||
cl.data[0] = 30;
|
||||
cl.data[1] = 23;
|
||||
cl.data[0] = 8;
|
||||
cl.data[1] = 2;
|
||||
cl.data[2] = 5;
|
||||
cl.data[3] = 20;
|
||||
cl.data[4] = 50;
|
||||
cl.data[5] = 3;
|
||||
cl.data[6] = 8;
|
||||
cl.data[7] = 2;
|
||||
cl.data[6] = 30;
|
||||
cl.data[7] = 23;
|
||||
cl.data[8] = 3;
|
||||
|
||||
// 8, 2, 3
|
||||
// 20, 50, 3
|
||||
// 30, 23, 5
|
||||
|
||||
auto eta = calculate_eta2(cl);
|
||||
CHECK(eta.c == corner::cBottomLeft);
|
||||
CHECK(eta.x == 50.0 / (20 + 50)); // 4/(3+4)
|
||||
CHECK(eta.y == 50.0 / (23 + 50)); // 4/(1+4)
|
||||
CHECK(eta.x == 50.0 / (20 + 50));
|
||||
CHECK(eta.y == 23.0 / (23 + 50));
|
||||
CHECK(eta.sum == 30 + 23 + 20 + 50);
|
||||
}
|
||||
|
||||
TEST_CASE("Calculate eta2 for a 3x3 int32 cluster with the largest 2x2 sum in "
|
||||
"the top left",
|
||||
"the top right",
|
||||
"[eta_calculation]") {
|
||||
|
||||
// Create a 3x3 cluster
|
||||
@@ -106,21 +114,67 @@ TEST_CASE("Calculate eta2 for a 3x3 int32 cluster with the largest 2x2 sum in "
|
||||
cl.y = 0;
|
||||
cl.data[0] = 8;
|
||||
cl.data[1] = 12;
|
||||
cl.data[2] = 5;
|
||||
cl.data[2] = 82;
|
||||
cl.data[3] = 77;
|
||||
cl.data[4] = 80;
|
||||
cl.data[5] = 3;
|
||||
cl.data[6] = 82;
|
||||
cl.data[7] = 91;
|
||||
cl.data[5] = 91;
|
||||
cl.data[6] = 5;
|
||||
cl.data[7] = 3;
|
||||
cl.data[8] = 3;
|
||||
|
||||
// 82, 91, 3
|
||||
// 77, 80, 3
|
||||
// 8, 12, 5
|
||||
|
||||
auto eta = calculate_eta2(cl);
|
||||
CHECK(eta.c == corner::cTopLeft);
|
||||
CHECK(eta.x == 80. / (77 + 80)); // 4/(3+4)
|
||||
CHECK(eta.y == 91.0 / (91 + 80)); // 7/(7+4)
|
||||
CHECK(eta.sum == 77 + 80 + 82 + 91);
|
||||
CHECK(eta.c == corner::cTopRight);
|
||||
CHECK(eta.x == 91. / (80 + 91));
|
||||
CHECK(eta.y == 80.0 / (80 + 12));
|
||||
CHECK(eta.sum == 12 + 80 + 82 + 91);
|
||||
}
|
||||
|
||||
auto get_test_parameters_fulleta2x2() {
|
||||
return GENERATE(
|
||||
std::make_tuple(ClusterTypes{Cluster<int, 2, 2>{0, 0, {1, 2, 1, 3}}},
|
||||
Eta2<int>{5. / 7, 4. / 7, corner::cTopLeft, 7}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 3, 3>{0, 0, {1, 2, 3, 4, 7, 6, 1, 2, 5}}},
|
||||
Eta2<int>{11. / 20, 7. / 20, corner::cBottomRight, 20}),
|
||||
std::make_tuple(ClusterTypes{Cluster<int, 5, 5>{
|
||||
0, 0, {1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 8, 9,
|
||||
1, 4, 1, 6, 7, 8, 1, 1, 1, 1, 1, 1}}},
|
||||
Eta2<int>{16. / 30, 13. / 30, corner::cBottomLeft, 30}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 4, 2>{0, 0, {1, 4, 4, 2, 5, 6, 7, 3}}},
|
||||
Eta2<int>{11. / 21, 13. / 21, corner::cTopLeft, 21}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 2, 3>{0, 0, {1, 3, 2, 4, 3, 2}}},
|
||||
Eta2<int>{6. / 11, 5. / 11, corner::cBottomLeft, 11}));
|
||||
}
|
||||
|
||||
TEST_CASE("Calculate full eta2", "[eta_calculation]") {
|
||||
|
||||
auto [test_cluster, expected_eta] = get_test_parameters_fulleta2x2();
|
||||
|
||||
auto eta = std::visit(
|
||||
[](const auto &clustertype) {
|
||||
return calculate_full_eta2(clustertype);
|
||||
},
|
||||
test_cluster);
|
||||
CHECK(expected_eta.c == eta.c);
|
||||
CHECK(expected_eta.sum == eta.sum);
|
||||
CHECK(expected_eta.x == eta.x);
|
||||
CHECK(expected_eta.y == eta.y);
|
||||
}
|
||||
|
||||
TEST_CASE("Calculate full eta2 after reduction", "[eta_calculation]") {
|
||||
|
||||
auto [test_cluster, expected_eta] = get_test_parameters_fulleta2x2();
|
||||
|
||||
auto eta = std::visit(
|
||||
[](const auto &clustertype) {
|
||||
auto reduced_cluster = reduce_to_2x2(clustertype);
|
||||
return calculate_full_eta2(reduced_cluster);
|
||||
},
|
||||
test_cluster);
|
||||
CHECK(expected_eta.c == eta.c);
|
||||
CHECK(expected_eta.sum == eta.sum);
|
||||
CHECK(expected_eta.x == eta.x);
|
||||
CHECK(expected_eta.y == eta.y);
|
||||
}
|
||||
@@ -15,7 +15,7 @@
|
||||
|
||||
using namespace aare;
|
||||
|
||||
TEST_CASE("Test sum of Cluster", "[.cluster]") {
|
||||
TEST_CASE("Test sum of Cluster", "[cluster]") {
|
||||
Cluster<int, 2, 2> cluster{0, 0, {1, 2, 3, 4}};
|
||||
|
||||
CHECK(cluster.sum() == 10);
|
||||
@@ -27,33 +27,33 @@ using ClusterTypes = std::variant<Cluster<int, 2, 2>, Cluster<int, 3, 3>,
|
||||
using ClusterTypesLargerThan2x2 =
|
||||
std::variant<Cluster<int, 3, 3>, Cluster<int, 4, 4>, Cluster<int, 5, 5>>;
|
||||
|
||||
TEST_CASE("Test reduce to 2x2 Cluster", "[.cluster]") {
|
||||
TEST_CASE("Test reduce to 2x2 Cluster", "[cluster]") {
|
||||
auto [cluster, expected_reduced_cluster] = GENERATE(
|
||||
std::make_tuple(ClusterTypes{Cluster<int, 2, 2>{5, 5, {1, 2, 3, 4}}},
|
||||
Cluster<int, 2, 2>{4, 6, {1, 2, 3, 4}}),
|
||||
Cluster<int, 2, 2>{5, 5, {1, 2, 3, 4}}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 3, 3>{5, 5, {1, 1, 1, 1, 3, 2, 1, 2, 2}}},
|
||||
Cluster<int, 2, 2>{5, 5, {3, 2, 2, 2}}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 3, 3>{5, 5, {1, 1, 1, 2, 3, 1, 2, 2, 1}}},
|
||||
Cluster<int, 2, 2>{4, 5, {2, 3, 2, 2}}),
|
||||
Cluster<int, 2, 2>{5, 5, {2, 3, 2, 2}}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 3, 3>{5, 5, {2, 2, 1, 2, 3, 1, 1, 1, 1}}},
|
||||
Cluster<int, 2, 2>{4, 6, {2, 2, 2, 3}}),
|
||||
Cluster<int, 2, 2>{5, 5, {2, 2, 2, 3}}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 3, 3>{5, 5, {1, 2, 2, 1, 3, 2, 1, 1, 1}}},
|
||||
Cluster<int, 2, 2>{5, 6, {2, 2, 3, 2}}),
|
||||
Cluster<int, 2, 2>{5, 5, {2, 2, 3, 2}}),
|
||||
std::make_tuple(ClusterTypes{Cluster<int, 5, 5>{
|
||||
5, 5, {1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 3,
|
||||
2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}},
|
||||
Cluster<int, 2, 2>{5, 6, {2, 2, 3, 2}}),
|
||||
Cluster<int, 2, 2>{5, 5, {2, 2, 3, 2}}),
|
||||
std::make_tuple(ClusterTypes{Cluster<int, 5, 5>{
|
||||
5, 5, {1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3,
|
||||
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1}}},
|
||||
Cluster<int, 2, 2>{4, 6, {2, 2, 2, 3}}),
|
||||
Cluster<int, 2, 2>{5, 5, {2, 2, 2, 3}}),
|
||||
std::make_tuple(
|
||||
ClusterTypes{Cluster<int, 2, 3>{5, 5, {2, 2, 3, 2, 1, 1}}},
|
||||
Cluster<int, 2, 2>{4, 6, {2, 2, 3, 2}}));
|
||||
Cluster<int, 2, 2>{5, 5, {2, 2, 3, 2}}));
|
||||
|
||||
auto reduced_cluster = std::visit(
|
||||
[](const auto &clustertype) { return reduce_to_2x2(clustertype); },
|
||||
@@ -66,7 +66,7 @@ TEST_CASE("Test reduce to 2x2 Cluster", "[.cluster]") {
|
||||
expected_reduced_cluster.data.begin()));
|
||||
}
|
||||
|
||||
TEST_CASE("Test reduce to 3x3 Cluster", "[.cluster]") {
|
||||
TEST_CASE("Test reduce to 3x3 Cluster", "[cluster]") {
|
||||
auto [cluster, expected_reduced_cluster] = GENERATE(
|
||||
std::make_tuple(ClusterTypesLargerThan2x2{Cluster<int, 3, 3>{
|
||||
5, 5, {1, 1, 1, 1, 3, 1, 1, 1, 1}}},
|
||||
@@ -74,23 +74,11 @@ TEST_CASE("Test reduce to 3x3 Cluster", "[.cluster]") {
|
||||
std::make_tuple(
|
||||
ClusterTypesLargerThan2x2{Cluster<int, 4, 4>{
|
||||
5, 5, {2, 2, 1, 1, 2, 2, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1}}},
|
||||
Cluster<int, 3, 3>{4, 6, {2, 2, 1, 2, 2, 1, 1, 1, 3}}),
|
||||
std::make_tuple(
|
||||
ClusterTypesLargerThan2x2{Cluster<int, 4, 4>{
|
||||
5, 5, {1, 1, 2, 2, 1, 1, 2, 2, 1, 1, 3, 1, 1, 1, 1, 1}}},
|
||||
Cluster<int, 3, 3>{5, 6, {1, 2, 2, 1, 2, 2, 1, 3, 1}}),
|
||||
std::make_tuple(
|
||||
ClusterTypesLargerThan2x2{Cluster<int, 4, 4>{
|
||||
5, 5, {1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1, 2, 2}}},
|
||||
Cluster<int, 3, 3>{5, 5, {1, 1, 1, 1, 3, 2, 1, 2, 2}}),
|
||||
std::make_tuple(
|
||||
ClusterTypesLargerThan2x2{Cluster<int, 4, 4>{
|
||||
5, 5, {1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 1, 2, 2, 1, 1}}},
|
||||
Cluster<int, 3, 3>{4, 5, {1, 1, 1, 2, 2, 3, 2, 2, 1}}),
|
||||
Cluster<int, 3, 3>{5, 5, {2, 1, 1, 1, 3, 1, 1, 1, 1}}),
|
||||
std::make_tuple(ClusterTypesLargerThan2x2{Cluster<int, 5, 5>{
|
||||
5, 5, {1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 3,
|
||||
1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1}}},
|
||||
Cluster<int, 3, 3>{4, 5, {1, 2, 1, 2, 2, 3, 1, 2, 1}}));
|
||||
Cluster<int, 3, 3>{5, 5, {2, 1, 1, 2, 3, 1, 2, 1, 1}}));
|
||||
|
||||
auto reduced_cluster = std::visit(
|
||||
[](const auto &clustertype) { return reduce_to_3x3(clustertype); },
|
||||
|
||||
166
src/Interpolation.test.cpp
Normal file
166
src/Interpolation.test.cpp
Normal file
@@ -0,0 +1,166 @@
|
||||
#include "aare/ClusterVector.hpp"
|
||||
#include "aare/Interpolator.hpp"
|
||||
#include "aare/NDArray.hpp"
|
||||
|
||||
#include <array>
|
||||
#include <catch2/catch_all.hpp>
|
||||
#include <catch2/catch_test_macros.hpp>
|
||||
#include <iostream>
|
||||
|
||||
using namespace aare;
|
||||
|
||||
TEST_CASE("Test new Interpolation API", "[Interpolation]") {
|
||||
|
||||
NDArray<double, 1> energy_bins(std::array<ssize_t, 1>{2});
|
||||
NDArray<double, 1> etax_bins(std::array<ssize_t, 1>{4}, 0.0);
|
||||
NDArray<double, 1> etay_bins(std::array<ssize_t, 1>{4}, 0.0);
|
||||
NDArray<double, 3> eta_distribution(std::array<ssize_t, 3>{3, 3, 1}, 0.0);
|
||||
|
||||
Interpolator interpolator(eta_distribution.view(), etax_bins.view(),
|
||||
etay_bins.view(), energy_bins.view());
|
||||
|
||||
ClusterVector<Cluster<double, 3, 3>> cluster_vec{};
|
||||
|
||||
cluster_vec.push_back(Cluster<double, 3, 3>{
|
||||
2, 2, std::array<double, 9>{1, 2, 2, 1, 4, 1, 1, 2, 1}});
|
||||
|
||||
auto photons =
|
||||
interpolator.interpolate<calculate_eta2<double, 3, 3>>(cluster_vec);
|
||||
|
||||
CHECK(photons.size() == 1);
|
||||
}
|
||||
|
||||
TEST_CASE("Test constructor", "[Interpolation]") {
|
||||
NDArray<double, 1> energy_bins(std::array<ssize_t, 1>{2});
|
||||
NDArray<double, 1> etax_bins(std::array<ssize_t, 1>{4}, 0.0);
|
||||
NDArray<double, 1> etay_bins(std::array<ssize_t, 1>{4}, 0.0);
|
||||
NDArray<double, 3> eta_distribution(std::array<ssize_t, 3>{3, 3, 1});
|
||||
|
||||
std::iota(eta_distribution.begin(), eta_distribution.end(), 1.0);
|
||||
|
||||
Interpolator interpolator(eta_distribution.view(), etax_bins.view(),
|
||||
etay_bins.view(), energy_bins.view());
|
||||
|
||||
auto ietax = interpolator.get_ietax();
|
||||
auto ietay = interpolator.get_ietay();
|
||||
|
||||
CHECK(ietax.shape(0) == 3);
|
||||
CHECK(ietax.shape(1) == 3);
|
||||
CHECK(ietax.shape(2) == 1);
|
||||
|
||||
CHECK(ietay.shape(0) == 3);
|
||||
CHECK(ietay.shape(1) == 3);
|
||||
CHECK(ietay.shape(2) == 1);
|
||||
|
||||
std::array<double, 9> expected_ietax{
|
||||
0.0, 0.0, 0.0, 4.0 / 11.0, 5.0 / 13.0, 6.0 / 15.0, 1.0, 1.0, 1.0};
|
||||
|
||||
std::array<double, 9> expected_ietay{
|
||||
0.0, 2.0 / 5.0, 1.0, 0.0, 5.0 / 11.0, 1.0, 0.0, 8.0 / 17.0, 1.0};
|
||||
|
||||
for (ssize_t i = 0; i < ietax.shape(0); i++) {
|
||||
for (ssize_t j = 0; j < ietax.shape(1); j++) {
|
||||
CHECK(ietax(i, j, 0) ==
|
||||
Catch::Approx(expected_ietax[i * ietax.shape(1) + j]));
|
||||
}
|
||||
}
|
||||
for (ssize_t i = 0; i < ietay.shape(0); i++) {
|
||||
for (ssize_t j = 0; j < ietay.shape(1); j++) {
|
||||
CHECK(ietay(i, j, 0) ==
|
||||
Catch::Approx(expected_ietay[i * ietay.shape(1) + j]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Test constructor with zero bins at borders", "[Interpolation]") {
|
||||
NDArray<double, 1> energy_bins(std::array<ssize_t, 1>{2});
|
||||
NDArray<double, 1> etax_bins(std::array<ssize_t, 1>{5}, 0.0);
|
||||
NDArray<double, 1> etay_bins(std::array<ssize_t, 1>{5}, 0.0);
|
||||
NDArray<double, 3> eta_distribution(std::array<ssize_t, 3>{4, 4, 1}, 0.0);
|
||||
|
||||
eta_distribution(1, 1, 0) = 1.0;
|
||||
eta_distribution(1, 2, 0) = 2.0;
|
||||
eta_distribution(2, 1, 0) = 3.0;
|
||||
eta_distribution(2, 2, 0) = 4.0;
|
||||
|
||||
Interpolator interpolator(eta_distribution.view(), etax_bins.view(),
|
||||
etay_bins.view(), energy_bins.view());
|
||||
|
||||
auto ietax = interpolator.get_ietax();
|
||||
auto ietay = interpolator.get_ietay();
|
||||
|
||||
CHECK(ietax.shape(0) == 4);
|
||||
CHECK(ietax.shape(1) == 4);
|
||||
CHECK(ietax.shape(2) == 1);
|
||||
|
||||
CHECK(ietay.shape(0) == 4);
|
||||
CHECK(ietay.shape(1) == 4);
|
||||
CHECK(ietay.shape(2) == 1);
|
||||
|
||||
std::array<double, 16> expected_ietax{
|
||||
0.0, 0.0, 0.0, 0.0, 0.0, 1.0 / 4.0, 2.0 / 6.0, 0.0,
|
||||
0.0, 1.0, 1.0, 0.0, 0.0, 1.0, 1.0, 0.0};
|
||||
|
||||
std::array<double, 16> expected_ietay{
|
||||
0.0, 0.0, 0.0, 0.0, 0.0, 1.0 / 3.0, 1.0, 1.0,
|
||||
0.0, 3.0 / 7.0, 1.0, 1.0, 0.0, 0.0, 0.0, 0.0};
|
||||
|
||||
for (ssize_t i = 0; i < ietax.shape(0); i++) {
|
||||
for (ssize_t j = 0; j < ietax.shape(1); j++) {
|
||||
CHECK(ietax(i, j, 0) ==
|
||||
Catch::Approx(expected_ietax[i * ietax.shape(1) + j]));
|
||||
}
|
||||
}
|
||||
for (ssize_t i = 0; i < ietay.shape(0); i++) {
|
||||
for (ssize_t j = 0; j < ietay.shape(1); j++) {
|
||||
CHECK(ietay(i, j, 0) ==
|
||||
Catch::Approx(expected_ietay[i * ietay.shape(1) + j]));
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Test Rosenblatt", "[Interpolation]") {
|
||||
NDArray<double, 1> energy_bins(std::array<ssize_t, 1>{2});
|
||||
NDArray<double, 1> etax_bins(std::array<ssize_t, 1>{4}, 0.0);
|
||||
NDArray<double, 1> etay_bins(std::array<ssize_t, 1>{4}, 0.0);
|
||||
NDArray<double, 3> eta_distribution(std::array<ssize_t, 3>{3, 3, 1});
|
||||
|
||||
std::iota(eta_distribution.begin(), eta_distribution.end(), 1.0);
|
||||
|
||||
Interpolator interpolator(etax_bins.view(), etay_bins.view(),
|
||||
energy_bins.view());
|
||||
|
||||
interpolator.rosenblatttransform(eta_distribution.view());
|
||||
|
||||
auto ietax = interpolator.get_ietax();
|
||||
auto ietay = interpolator.get_ietay();
|
||||
|
||||
CHECK(ietax.shape(0) == 3);
|
||||
CHECK(ietax.shape(1) == 3);
|
||||
CHECK(ietax.shape(2) == 1);
|
||||
|
||||
CHECK(ietay.shape(0) == 3);
|
||||
CHECK(ietay.shape(1) == 3);
|
||||
CHECK(ietay.shape(2) == 1);
|
||||
|
||||
// marginal CDF of eta_x
|
||||
std::array<double, 9> expected_ietax{
|
||||
0.0, 0.0, 0.0, 15.0 / 39.0, 15.0 / 39.0, 15.0 / 39.0, 1.0, 1.0, 1.0};
|
||||
|
||||
// conditional CDF of eta_y
|
||||
std::array<double, 9> expected_ietay{
|
||||
0.0, 2.0 / 5.0, 1.0, 0.0, 5.0 / 11.0, 1.0, 0.0, 8.0 / 17.0, 1.0};
|
||||
|
||||
for (ssize_t i = 0; i < ietax.shape(0); i++) {
|
||||
for (ssize_t j = 0; j < ietax.shape(1); j++) {
|
||||
CHECK(ietax(i, j, 0) ==
|
||||
Catch::Approx(expected_ietax[i * ietax.shape(1) + j]));
|
||||
}
|
||||
}
|
||||
for (ssize_t i = 0; i < ietay.shape(0); i++) {
|
||||
for (ssize_t j = 0; j < ietay.shape(1); j++) {
|
||||
CHECK(ietay(i, j, 0) ==
|
||||
Catch::Approx(expected_ietay[i * ietay.shape(1) + j]));
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -3,55 +3,145 @@
|
||||
|
||||
namespace aare {
|
||||
|
||||
Interpolator::Interpolator(NDView<double, 1> xbins, NDView<double, 1> ybins,
|
||||
NDView<double, 1> ebins)
|
||||
: m_etabinsx(xbins), m_etabinsy(ybins), m_energy_bins(ebins){};
|
||||
|
||||
Interpolator::Interpolator(NDView<double, 3> etacube, NDView<double, 1> xbins,
|
||||
NDView<double, 1> ybins, NDView<double, 1> ebins)
|
||||
: m_ietax(etacube), m_ietay(etacube), m_etabinsx(xbins), m_etabinsy(ybins),
|
||||
m_energy_bins(ebins) {
|
||||
if (etacube.shape(0) != xbins.size() || etacube.shape(1) != ybins.size() ||
|
||||
etacube.shape(2) != ebins.size()) {
|
||||
: m_etabinsx(xbins), m_etabinsy(ybins), m_energy_bins(ebins) {
|
||||
if (etacube.shape(0) + 1 != xbins.size() ||
|
||||
etacube.shape(1) + 1 != ybins.size() ||
|
||||
etacube.shape(2) + 1 != ebins.size()) {
|
||||
throw std::invalid_argument(
|
||||
"The shape of the etacube does not match the shape of the bins");
|
||||
}
|
||||
|
||||
// Cumulative sum in the x direction
|
||||
for (ssize_t i = 1; i < m_ietax.shape(0); i++) {
|
||||
for (ssize_t j = 0; j < m_ietax.shape(1); j++) {
|
||||
for (ssize_t k = 0; k < m_ietax.shape(2); k++) {
|
||||
m_ietax(i, j, k) += m_ietax(i - 1, j, k);
|
||||
}
|
||||
}
|
||||
}
|
||||
m_ietax = NDArray<double, 3>(etacube);
|
||||
|
||||
// Normalize by the highest row, if norm less than 1 don't do anything
|
||||
m_ietay = NDArray<double, 3>(etacube);
|
||||
|
||||
// prefix sum - conditional CDF
|
||||
for (ssize_t i = 0; i < m_ietax.shape(0); i++) {
|
||||
for (ssize_t j = 0; j < m_ietax.shape(1); j++) {
|
||||
for (ssize_t k = 0; k < m_ietax.shape(2); k++) {
|
||||
auto val = m_ietax(m_ietax.shape(0) - 1, j, k);
|
||||
double norm = val < 1 ? 1 : val;
|
||||
m_ietax(i, j, k) /= norm;
|
||||
m_ietax(i, j, k) += (i == 0) ? 0 : m_ietax(i - 1, j, k);
|
||||
|
||||
m_ietay(i, j, k) += (j == 0) ? 0 : m_ietay(i, j - 1, k);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// Cumulative sum in the y direction
|
||||
for (ssize_t i = 0; i < m_ietay.shape(0); i++) {
|
||||
for (ssize_t j = 1; j < m_ietay.shape(1); j++) {
|
||||
for (ssize_t k = 0; k < m_ietay.shape(2); k++) {
|
||||
m_ietay(i, j, k) += m_ietay(i, j - 1, k);
|
||||
}
|
||||
}
|
||||
}
|
||||
// Standardize, if norm less than 1 don't do anything
|
||||
for (ssize_t i = 0; i < m_ietax.shape(0); i++) {
|
||||
for (ssize_t j = 0; j < m_ietax.shape(1); j++) {
|
||||
for (ssize_t k = 0; k < m_ietax.shape(2); k++) {
|
||||
auto shift_x = etacube(0, j, k);
|
||||
auto val_etax = m_ietax(m_ietax.shape(0) - 1, j, k) - shift_x;
|
||||
double norm_etax = val_etax == 0 ? 1 : val_etax;
|
||||
m_ietax(i, j, k) -= shift_x;
|
||||
m_ietax(i, j, k) /= norm_etax;
|
||||
auto shift_y = etacube(i, 0, k);
|
||||
auto val_etay = m_ietay(i, m_ietay.shape(1) - 1, k) - shift_y;
|
||||
double norm_etay = val_etay == 0 ? 1 : val_etay;
|
||||
m_ietay(i, j, k) -= shift_y;
|
||||
|
||||
// Normalize by the highest column, if norm less than 1 don't do anything
|
||||
for (ssize_t i = 0; i < m_ietay.shape(0); i++) {
|
||||
for (ssize_t j = 0; j < m_ietay.shape(1); j++) {
|
||||
for (ssize_t k = 0; k < m_ietay.shape(2); k++) {
|
||||
auto val = m_ietay(i, m_ietay.shape(1) - 1, k);
|
||||
double norm = val < 1 ? 1 : val;
|
||||
m_ietay(i, j, k) /= norm;
|
||||
m_ietay(i, j, k) /= norm_etay;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
void Interpolator::rosenblatttransform(NDView<double, 3> etacube) {
|
||||
|
||||
if (etacube.shape(0) + 1 != m_etabinsx.size() ||
|
||||
etacube.shape(1) + 1 != m_etabinsy.size() ||
|
||||
etacube.shape(2) + 1 != m_energy_bins.size()) {
|
||||
throw std::invalid_argument(
|
||||
"The shape of the etacube does not match the shape of the bins");
|
||||
}
|
||||
|
||||
// TODO: less loops and better performance if ebins is first dimension
|
||||
// (violates backwardscompatibility ieta_x and ieta_y public getters,
|
||||
// previously generated etacubes)
|
||||
// TODO: maybe more loops is better then storing total_sum_y and
|
||||
// total_sum_x
|
||||
|
||||
// marginal CDF for eta_x
|
||||
NDArray<double, 2> marg_CDF_EtaX(
|
||||
std::array<ssize_t, 2>{m_etabinsx.size() - 1, m_energy_bins.size() - 1},
|
||||
0.0); // simulate proper probability distribution with zero at start
|
||||
|
||||
// conditional CDF for eta_y
|
||||
NDArray<double, 3> cond_CDF_EtaY(etacube);
|
||||
|
||||
for (ssize_t i = 0; i < cond_CDF_EtaY.shape(0); ++i) {
|
||||
for (ssize_t j = 0; j < cond_CDF_EtaY.shape(1); ++j) {
|
||||
for (ssize_t k = 0; k < cond_CDF_EtaY.shape(2); ++k) {
|
||||
// cumsum along y-axis
|
||||
marg_CDF_EtaX(i, k) +=
|
||||
etacube(i, j,
|
||||
k); // marginal probability for etaX
|
||||
|
||||
// cumsum along y-axis
|
||||
cond_CDF_EtaY(i, j, k) +=
|
||||
(j == 0) ? 0 : cond_CDF_EtaY(i, j - 1, k);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
// cumsum along x-axis
|
||||
for (ssize_t i = 1; i < marg_CDF_EtaX.shape(0); ++i) {
|
||||
for (ssize_t k = 0; k < marg_CDF_EtaX.shape(1); ++k) {
|
||||
marg_CDF_EtaX(0, k) =
|
||||
0.0; // shift by first value to ensure values between 0 and 1
|
||||
|
||||
marg_CDF_EtaX(i, k) += marg_CDF_EtaX(i - 1, k);
|
||||
}
|
||||
}
|
||||
|
||||
// normalize marg_CDF_EtaX
|
||||
for (ssize_t i = 1; i < marg_CDF_EtaX.shape(0); ++i) {
|
||||
for (ssize_t k = 0; k < marg_CDF_EtaX.shape(1); ++k) {
|
||||
double norm = marg_CDF_EtaX(marg_CDF_EtaX.shape(0) - 1, k) == 0
|
||||
? 1
|
||||
: marg_CDF_EtaX(marg_CDF_EtaX.shape(0) - 1, k);
|
||||
marg_CDF_EtaX(i, k) /= norm;
|
||||
}
|
||||
}
|
||||
|
||||
// standardize, normalize conditional CDF for etaY
|
||||
// Note P(EtaY|EtaX) = P(EtaY,EtaX)/P(EtaX) we dont divide by P(EtaX) as it
|
||||
// cancels out during normalization
|
||||
for (ssize_t i = 0; i < cond_CDF_EtaY.shape(0); ++i) {
|
||||
for (ssize_t j = 0; j < cond_CDF_EtaY.shape(1); ++j) {
|
||||
for (ssize_t k = 0; k < cond_CDF_EtaY.shape(2); ++k) {
|
||||
double shift = etacube(i, 0, k);
|
||||
double norm =
|
||||
(cond_CDF_EtaY(i, cond_CDF_EtaY.shape(1) - 1, k) - shift) ==
|
||||
0
|
||||
? 1
|
||||
: cond_CDF_EtaY(i, cond_CDF_EtaY.shape(1) - 1, k) -
|
||||
shift;
|
||||
cond_CDF_EtaY(i, j, k) -= shift;
|
||||
cond_CDF_EtaY(i, j, k) /= norm;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
m_ietay = std::move(
|
||||
cond_CDF_EtaY); // TODO maybe rename m_ietay to lookup or CDF_EtaY_cond
|
||||
|
||||
// TODO: should actually be only 2dimensional keep three dimension due to
|
||||
// consistency with Annas code change though
|
||||
m_ietax = NDArray<double, 3>(
|
||||
std::array<ssize_t, 3>{m_etabinsx.size() - 1, m_etabinsy.size() - 1,
|
||||
m_energy_bins.size() - 1});
|
||||
|
||||
for (ssize_t i = 0; i < m_etabinsx.size() - 1; ++i)
|
||||
for (ssize_t j = 0; j < m_etabinsy.size() - 1; ++j)
|
||||
for (ssize_t k = 0; k < m_energy_bins.size() - 1; ++k)
|
||||
m_ietax(i, j, k) = marg_CDF_EtaX(i, k);
|
||||
}
|
||||
|
||||
} // namespace aare
|
||||
@@ -193,3 +193,43 @@ TEST_CASE("Last element is different", "[algorithm]") {
|
||||
std::vector<int> vec = {1, 1, 1, 1, 2};
|
||||
REQUIRE(aare::all_equal(vec) == false);
|
||||
}
|
||||
|
||||
TEST_CASE("Linear interpolation", "[algorithm]") {
|
||||
SECTION("interpolated mean value") {
|
||||
const double interpolated_value =
|
||||
aare::linear_interpolation({0.0, 1.0}, {4.0, 6.0}, 0.5);
|
||||
REQUIRE(interpolated_value == 5.0);
|
||||
}
|
||||
|
||||
SECTION("interpolate left value") {
|
||||
const double interpolated_value =
|
||||
aare::linear_interpolation({0.0, 1.0}, {4.0, 6.0}, 0.0);
|
||||
REQUIRE(interpolated_value == 4.0);
|
||||
}
|
||||
|
||||
SECTION("interpolate right value") {
|
||||
const double interpolated_value =
|
||||
aare::linear_interpolation({0.0, 1.0}, {4.0, 6.0}, 1.0);
|
||||
REQUIRE(interpolated_value == 6.0);
|
||||
}
|
||||
|
||||
SECTION("interpolate the same value") {
|
||||
const double interpolated_value =
|
||||
aare::linear_interpolation({0.0, 1.0}, {4.0, 4.0}, 0.5);
|
||||
REQUIRE(interpolated_value == 4.0);
|
||||
}
|
||||
}
|
||||
|
||||
TEST_CASE("Bilinear interpolation", "[algorithm]") {
|
||||
SECTION("interpolated mean value") {
|
||||
const double interpolated_value_left =
|
||||
aare::linear_interpolation({0.0, 1.0}, {4.0, 6.0}, 0.5);
|
||||
const double interpolated_value_right =
|
||||
aare::linear_interpolation({0.0, 1.0}, {5.0, 6.0}, 0.5);
|
||||
|
||||
const double interpolated_value = aare::linear_interpolation(
|
||||
{0.5, 1.0}, {interpolated_value_left, interpolated_value_right},
|
||||
0.75);
|
||||
REQUIRE(interpolated_value == 5.25);
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user