Files
aare/python/src/interpolation.hpp

164 lines
6.7 KiB
C++

// SPDX-License-Identifier: MPL-2.0
#include "aare/CalculateEta.hpp"
#include "aare/Interpolator.hpp"
#include "aare/NDArray.hpp"
#include "aare/NDView.hpp"
#include "np_helper.hpp"
#include <cstdint>
#include <filesystem>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
namespace py = pybind11;
#define REGISTER_INTERPOLATOR_ETA2(T, N, M, U) \
register_interpolate<T, N, M, U, aare::calculate_full_eta2<T, N, M, U>>( \
interpolator, "_full_eta2", "full eta2"); \
register_interpolate<T, N, M, U, aare::calculate_eta2<T, N, M, U>>( \
interpolator, "", "eta2");
#define REGISTER_INTERPOLATOR_ETA3(T, N, M, U) \
register_interpolate<T, N, M, U, aare::calculate_eta3<T, N, M, U>>( \
interpolator, "_eta3", "full eta3"); \
register_interpolate<T, N, M, U, aare::calculate_cross_eta3<T, N, M, U>>( \
interpolator, "_cross_eta3", "cross eta3");
template <typename Type, uint8_t CoordSizeX, uint8_t CoordSizeY,
typename CoordType = uint16_t, auto EtaFunction>
void register_interpolate(py::class_<aare::Interpolator> &interpolator,
const std::string &typestr = "",
const std::string &doc_string_etatype = "eta2x2") {
using ClusterType = Cluster<Type, CoordSizeX, CoordSizeY, CoordType>;
const std::string docstring = "interpolation based on " +
doc_string_etatype +
"\n\nReturns:\n interpolated photons";
auto function_name = fmt::format("interpolate{}", typestr);
interpolator.def(
function_name.c_str(),
[](aare::Interpolator &self,
const ClusterVector<ClusterType> &clusters) {
auto photons = self.interpolate<EtaFunction, ClusterType>(clusters);
auto *ptr = new std::vector<Photon>{photons};
return return_vector(ptr);
},
docstring.c_str(), py::arg("cluster_vector"));
}
void define_interpolation_bindings(py::module &m) {
PYBIND11_NUMPY_DTYPE(aare::Photon, x, y, energy);
auto interpolator =
py::class_<aare::Interpolator>(m, "Interpolator")
.def(py::init(
[](py::array_t<double,
py::array::c_style | py::array::forcecast>
etacube,
py::array_t<double> xbins, py::array_t<double> ybins,
py::array_t<double> ebins) {
return Interpolator(
make_view_3d(etacube), make_view_1d(xbins),
make_view_1d(ybins), make_view_1d(ebins));
}),
R"doc(
Constructor
Args:
etacube:
joint distribution of eta_x, eta_y and photon energy (**Note:** for the joint distribution first dimension is eta_x, second: eta_y, third: energy bins.)
xbins:
bin edges of etax
ybins:
bin edges of etay
ebins:
bin edges of photon energy
)doc",
py::arg("etacube"),
py::arg("xbins"), py::arg("ybins"),
py::arg("ebins"))
.def(py::init(
[](py::array_t<double> xbins, py::array_t<double> ybins,
py::array_t<double> ebins) {
return Interpolator(make_view_1d(xbins),
make_view_1d(ybins),
make_view_1d(ebins));
}),
R"(
Constructor
Args:
xbins:
bin edges of etax
ybins:
bin edges of etay
ebins:
bin edges of photon energy
)", py::arg("xbins"),
py::arg("ybins"), py::arg("ebins"))
.def(
"rosenblatttransform",
[](Interpolator &self,
py::array_t<double,
py::array::c_style | py::array::forcecast>
etacube) {
return self.rosenblatttransform(make_view_3d(etacube));
},
R"(
calculated the rosenblatttransform for the given distribution
etacube:
joint distribution of eta_x, eta_y and photon energy (**Note:** for the joint distribution first dimension is eta_x, second: eta_y, third: energy bins.)
)",
py::arg("etacube"))
.def("get_ietax",
[](Interpolator &self) {
auto *ptr = new NDArray<double, 3>{};
*ptr = self.get_ietax();
return return_image_data(ptr);
}, R"(conditional CDF of etax conditioned on etay, marginal CDF of etax (if rosenblatt transform applied))")
.def("get_ietay", [](Interpolator &self) {
auto *ptr = new NDArray<double, 3>{};
*ptr = self.get_ietay();
return return_image_data(ptr);
}, R"(conditional CDF of etay conditioned on etax)");
REGISTER_INTERPOLATOR_ETA3(int, 3, 3, uint16_t);
REGISTER_INTERPOLATOR_ETA3(float, 3, 3, uint16_t);
REGISTER_INTERPOLATOR_ETA3(double, 3, 3, uint16_t);
REGISTER_INTERPOLATOR_ETA2(int, 3, 3, uint16_t);
REGISTER_INTERPOLATOR_ETA2(float, 3, 3, uint16_t);
REGISTER_INTERPOLATOR_ETA2(double, 3, 3, uint16_t);
REGISTER_INTERPOLATOR_ETA2(int, 2, 2, uint16_t);
REGISTER_INTERPOLATOR_ETA2(float, 2, 2, uint16_t);
REGISTER_INTERPOLATOR_ETA2(double, 2, 2, uint16_t);
// TODO! Evaluate without converting to double
m.def(
"hej",
[]() {
// auto boost_histogram = py::module_::import("boost_histogram");
// py::object axis =
// boost_histogram.attr("axis").attr("Regular")(10, 0.0, 10.0);
// py::object histogram = boost_histogram.attr("Histogram")(axis);
// return histogram;
// return h;
},
R"(
Evaluate a 1D Gaussian function for all points in x using parameters par.
Parameters
----------
x : array_like
The points at which to evaluate the Gaussian function.
par : array_like
The parameters of the Gaussian function. The first element is the amplitude, the second element is the mean, and the third element is the standard deviation.
)");
}