mirror of
https://github.com/slsdetectorgroup/aare.git
synced 2025-12-28 07:51:28 +01:00
164 lines
6.7 KiB
C++
164 lines
6.7 KiB
C++
// SPDX-License-Identifier: MPL-2.0
|
|
#include "aare/CalculateEta.hpp"
|
|
#include "aare/Interpolator.hpp"
|
|
#include "aare/NDArray.hpp"
|
|
#include "aare/NDView.hpp"
|
|
#include "np_helper.hpp"
|
|
#include <cstdint>
|
|
#include <filesystem>
|
|
#include <pybind11/pybind11.h>
|
|
#include <pybind11/stl.h>
|
|
|
|
namespace py = pybind11;
|
|
|
|
#define REGISTER_INTERPOLATOR_ETA2(T, N, M, U) \
|
|
register_interpolate<T, N, M, U, aare::calculate_full_eta2<T, N, M, U>>( \
|
|
interpolator, "_full_eta2", "full eta2"); \
|
|
register_interpolate<T, N, M, U, aare::calculate_eta2<T, N, M, U>>( \
|
|
interpolator, "", "eta2");
|
|
|
|
#define REGISTER_INTERPOLATOR_ETA3(T, N, M, U) \
|
|
register_interpolate<T, N, M, U, aare::calculate_eta3<T, N, M, U>>( \
|
|
interpolator, "_eta3", "full eta3"); \
|
|
register_interpolate<T, N, M, U, aare::calculate_cross_eta3<T, N, M, U>>( \
|
|
interpolator, "_cross_eta3", "cross eta3");
|
|
|
|
template <typename Type, uint8_t CoordSizeX, uint8_t CoordSizeY,
|
|
typename CoordType = uint16_t, auto EtaFunction>
|
|
void register_interpolate(py::class_<aare::Interpolator> &interpolator,
|
|
const std::string &typestr = "",
|
|
const std::string &doc_string_etatype = "eta2x2") {
|
|
|
|
using ClusterType = Cluster<Type, CoordSizeX, CoordSizeY, CoordType>;
|
|
|
|
const std::string docstring = "interpolation based on " +
|
|
doc_string_etatype +
|
|
"\n\nReturns:\n interpolated photons";
|
|
|
|
auto function_name = fmt::format("interpolate{}", typestr);
|
|
|
|
interpolator.def(
|
|
function_name.c_str(),
|
|
[](aare::Interpolator &self,
|
|
const ClusterVector<ClusterType> &clusters) {
|
|
auto photons = self.interpolate<EtaFunction, ClusterType>(clusters);
|
|
auto *ptr = new std::vector<Photon>{photons};
|
|
return return_vector(ptr);
|
|
},
|
|
docstring.c_str(), py::arg("cluster_vector"));
|
|
}
|
|
|
|
void define_interpolation_bindings(py::module &m) {
|
|
|
|
PYBIND11_NUMPY_DTYPE(aare::Photon, x, y, energy);
|
|
|
|
auto interpolator =
|
|
py::class_<aare::Interpolator>(m, "Interpolator")
|
|
.def(py::init(
|
|
[](py::array_t<double,
|
|
py::array::c_style | py::array::forcecast>
|
|
etacube,
|
|
py::array_t<double> xbins, py::array_t<double> ybins,
|
|
py::array_t<double> ebins) {
|
|
return Interpolator(
|
|
make_view_3d(etacube), make_view_1d(xbins),
|
|
make_view_1d(ybins), make_view_1d(ebins));
|
|
}),
|
|
R"doc(
|
|
Constructor
|
|
|
|
Args:
|
|
|
|
etacube:
|
|
joint distribution of eta_x, eta_y and photon energy (**Note:** for the joint distribution first dimension is eta_x, second: eta_y, third: energy bins.)
|
|
xbins:
|
|
bin edges of etax
|
|
ybins:
|
|
bin edges of etay
|
|
ebins:
|
|
bin edges of photon energy
|
|
)doc",
|
|
py::arg("etacube"),
|
|
py::arg("xbins"), py::arg("ybins"),
|
|
py::arg("ebins"))
|
|
|
|
.def(py::init(
|
|
[](py::array_t<double> xbins, py::array_t<double> ybins,
|
|
py::array_t<double> ebins) {
|
|
return Interpolator(make_view_1d(xbins),
|
|
make_view_1d(ybins),
|
|
make_view_1d(ebins));
|
|
}),
|
|
R"(
|
|
Constructor
|
|
|
|
Args:
|
|
|
|
xbins:
|
|
bin edges of etax
|
|
ybins:
|
|
bin edges of etay
|
|
ebins:
|
|
bin edges of photon energy
|
|
)", py::arg("xbins"),
|
|
py::arg("ybins"), py::arg("ebins"))
|
|
.def(
|
|
"rosenblatttransform",
|
|
[](Interpolator &self,
|
|
py::array_t<double,
|
|
py::array::c_style | py::array::forcecast>
|
|
etacube) {
|
|
return self.rosenblatttransform(make_view_3d(etacube));
|
|
},
|
|
R"(
|
|
calculated the rosenblatttransform for the given distribution
|
|
|
|
etacube:
|
|
joint distribution of eta_x, eta_y and photon energy (**Note:** for the joint distribution first dimension is eta_x, second: eta_y, third: energy bins.)
|
|
)",
|
|
py::arg("etacube"))
|
|
.def("get_ietax",
|
|
[](Interpolator &self) {
|
|
auto *ptr = new NDArray<double, 3>{};
|
|
*ptr = self.get_ietax();
|
|
return return_image_data(ptr);
|
|
}, R"(conditional CDF of etax conditioned on etay, marginal CDF of etax (if rosenblatt transform applied))")
|
|
.def("get_ietay", [](Interpolator &self) {
|
|
auto *ptr = new NDArray<double, 3>{};
|
|
*ptr = self.get_ietay();
|
|
return return_image_data(ptr);
|
|
}, R"(conditional CDF of etay conditioned on etax)");
|
|
|
|
REGISTER_INTERPOLATOR_ETA3(int, 3, 3, uint16_t);
|
|
REGISTER_INTERPOLATOR_ETA3(float, 3, 3, uint16_t);
|
|
REGISTER_INTERPOLATOR_ETA3(double, 3, 3, uint16_t);
|
|
|
|
REGISTER_INTERPOLATOR_ETA2(int, 3, 3, uint16_t);
|
|
REGISTER_INTERPOLATOR_ETA2(float, 3, 3, uint16_t);
|
|
REGISTER_INTERPOLATOR_ETA2(double, 3, 3, uint16_t);
|
|
REGISTER_INTERPOLATOR_ETA2(int, 2, 2, uint16_t);
|
|
REGISTER_INTERPOLATOR_ETA2(float, 2, 2, uint16_t);
|
|
REGISTER_INTERPOLATOR_ETA2(double, 2, 2, uint16_t);
|
|
|
|
// TODO! Evaluate without converting to double
|
|
m.def(
|
|
"hej",
|
|
[]() {
|
|
// auto boost_histogram = py::module_::import("boost_histogram");
|
|
// py::object axis =
|
|
// boost_histogram.attr("axis").attr("Regular")(10, 0.0, 10.0);
|
|
// py::object histogram = boost_histogram.attr("Histogram")(axis);
|
|
// return histogram;
|
|
// return h;
|
|
},
|
|
R"(
|
|
Evaluate a 1D Gaussian function for all points in x using parameters par.
|
|
|
|
Parameters
|
|
----------
|
|
x : array_like
|
|
The points at which to evaluate the Gaussian function.
|
|
par : array_like
|
|
The parameters of the Gaussian function. The first element is the amplitude, the second element is the mean, and the third element is the standard deviation.
|
|
)");
|
|
} |